Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Network Pharmacology-Based and Molecular Docking Analysis of Resveratrol’s Pharmacological Effects on Type I Endometrial Cancer

Author(s): Zixing Zhong, Xin Guo and Yanmei Zheng*

Volume 22, Issue 10, 2022

Published on: 21 December, 2021

Page: [1933 - 1944] Pages: 12

DOI: 10.2174/1871520621666211015140455

open access plus

Abstract

Background: Resveratrol is a natural polyphenol commonly seen in foods. It has demonstrated an inhibitive effect on endometrial cancer, but the molecular action is still not known.

Objective: We aimed to use network pharmacology to systematically study the possible mechanisms of resveratrol’s pharmacological effects on type I endometrial cancer.

Methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were used to predict resveratrol’s possible target genes. They were then converted to UniProt gene symbols. Simultaneously, type I endometrial cancer-related target genes were collected from GeneCards. All data were pooled to identify common target genes. The protein-protein interaction (PPI) network was constructed and further analyzed via STRING Online Database. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were also performed afterward. To visualise resveratrol's overall pharmacological effects on type I endometrial cancer, a network of drug components-target gene-disease (CTD) was constructed. Then, we performed in silico molecular docking study to validate the possible binding conformation between resveratrol and candidate targets.

Results: There are 150 target genes of resveratrol retrieved after UniProt conversion; 122 of them shared interaction with type I endometrial cancer. Some important oncogenes and signaling pathways are involved in the process of resveratrol’s pharmacological effects on endometrioid cancer. Molecular docking analysis confirmed that hydrogen bonding and hydrophobic interaction are the main interaction between resveratrol and its targets.

Conclusion: We have explored the possible underlying mechanism of resveratrol in antagonising type I endometrial cancer through a network pharmacology-based approach and in-silico verification. However, further experiments are necessary to add to the evidence identifying resveratrol as a promising anti-type I endometrial cancer agent.

Keywords: Endometrial cancer, gynecological cancer, cancer agent, hydrophobic interaction, antagonist, molecular docking.

Graphical Abstract
[1]
Raglan, O.; Kalliala, I.; Markozannes, G.; Cividini, S.; Gunter, M.J.; Nautiyal, J.; Gabra, H.; Paraskevaidis, E.; Martin-Hirsch, P.; Tsilidis, K.K.; Kyrgiou, M. Risk factors for endometrial cancer: An umbrella review of the literature. Int. J. Cancer, 2019, 145(7), 1719-1730.
[http://dx.doi.org/10.1002/ijc.31961] [PMID: 30387875]
[2]
Ma, Y.; Han, X. Research progress of molecular biology related to endometrial cancer. J Medical Recapitulate, 2020, 26(10), 1941-1945.
[3]
Lu, K.H.; Broaddus, R.R. Endometrial cancer. N. Engl. J. Med., 2020, 383(21), 2053-2064.
[http://dx.doi.org/10.1056/NEJMra1514010] [PMID: 33207095]
[4]
Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial cancer. Lancet, 2016, 387(10023), 1094-1108.
[http://dx.doi.org/10.1016/S0140-6736(15)00130-0] [PMID: 26354523]
[5]
Mueller, M.D.; Vigne, J.L.; Minchenko, A.; Lebovic, D.I.; Leitman, D.C.; Taylor, R.N. Regulation of Vascular Endothelial Growth Factor (VEGF) gene transcription by estrogen receptors alpha and beta. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 10972-10977.
[http://dx.doi.org/10.1073/pnas.200377097] [PMID: 10995484]
[6]
Applanat, M.P.; Buteau-Lozano, H.; Herve, M.A.; Corpet, A. Vascular endothelial growth factor is a target gene for estrogen receptor and contributes to breast cancer progression. Adv. Exp. Med. Biol., 2008, 617, 437-444.
[http://dx.doi.org/10.1007/978-0-387-69080-3_42] [PMID: 18497067]
[7]
Recchia, F.; Candeloro, G.; Desideri, G.; Necozione, S.; Rea, S. Estrogen and vascular endothelial growth factor (VEGF): Their role in breast cANCER (BC) carcinogenesis and disease progression in premenopause. 2011, 29(15), 540.
[8]
Aoki, Y.; Kanao, H.; Wang, X.; Yunokawa, M.; Omatsu, K.; Fusegi, A.; Takeshima, N. Adjuvant treatment of endometrial cancer today. Jpn. J. Clin. Oncol., 2020, 50(7), 753-765.
[http://dx.doi.org/10.1093/jjco/hyaa071] [PMID: 32463094]
[9]
Nakata, R.; Takahashi, S.; Inoue, H. Recent advances in the study on resveratrol. Biol. Pharm. Bull., 2012, 35(3), 273-279.
[http://dx.doi.org/10.1248/bpb.35.273] [PMID: 22382311]
[10]
Celotti, E.; Ferrarini, R.; Zironi, R.; Conte, L.S. Resveratrol content of some wines obtained from dried Valpolicella grapes. Recioto and Amarone. J. Chromatogr. A, 1996, 730(1-2), 47-52.
[http://dx.doi.org/10.1016/0021-9673(95)00962-0] [PMID: 8680595]
[11]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[12]
Delmas, D.; Lançon, A.; Colin, D.; Jannin, B.; Latruffe, N. Resveratrol as a chemopreventive agent: A promising molecule for fighting cancer. Curr. Drug Targets, 2006, 7(4), 423-442.
[http://dx.doi.org/10.2174/138945006776359331] [PMID: 16611030]
[13]
Sexton, E.; Van Themsche, C.; LeBlanc, K.; Parent, S.; Lemoine, P.; Asselin, E. Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells. Mol. Cancer, 2006, 5, 45.
[http://dx.doi.org/10.1186/1476-4598-5-45] [PMID: 17044934]
[14]
Dann, J.M.; Sykes, P.H.; Mason, D.R.; Evans, J.J. Regulation of vascular endothelial growth factor in endometrial tumour cells by resveratrol and EGCG. Gynecol. Oncol., 2009, 113(3), 374-378.
[http://dx.doi.org/10.1016/j.ygyno.2009.02.014] [PMID: 19321194]
[15]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[16]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[17]
Zhou, Z.; Chen, B.; Chen, S.; Lin, M.; Chen, Y.; Jin, S.; Chen, W.; Zhang, Y. Applications of network pharmacology in traditional Chinese medicine research. Evid. Based Complement. Alternat. Med., 2020, 2020 ,1646905.
[http://dx.doi.org/10.1155/2020/1646905] [PMID: 32148533]
[18]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[19]
Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[20]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[21]
Garrido-Gomez, T.; Quiñonero, A.; Dominguez, F.; Rubert, L.; Perales, A.; Hajjar, K.A.; Simon, C. Preeclampsia: A defect in decidualization is associated with deficiency of Annexin A2. Am. J. Obstet. Gynecol., 2020, 222(4), 376.e1-376.e17.
[http://dx.doi.org/10.1016/j.ajog.2019.11.1250] [PMID: 31738896]
[22]
Li, S.; Zhang, Z.Q.; Wu, L.J.; Zhang, X.G.; Li, Y.D.; Wang, Y.Y. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst. Biol., 2007, 1(1), 51-60.
[http://dx.doi.org/10.1049/iet-syb:20060032] [PMID: 17370429]
[23]
Costas, L.; Frias-Gomez, J.; Guardiola, M.; Benavente, Y.; Pineda, M.; Pavón, M.A.; Martínez, J.M.; Climent, M.; Barahona, M.; Canet, J.; Paytubi, S.; Salinas, M.; Palomero, L.; Bianchi, I.; Reventós, J.; Capellà, G.; Diaz, M.; Vidal, A.; Piulats, J.M.; Aytés, Á.; Ponce, J.; Brunet, J.; Bosch, F.X.; Matias-Guiu, X.; Alemany, L.; de Sanjosé, S.; Screenwide, T. New perspectives on screening and early detection of endometrial cancer. Int. J. Cancer, 2019, 145(12), 3194-3206.
[http://dx.doi.org/10.1002/ijc.32514] [PMID: 31199503]
[24]
Wang, W.; Wang, S.; Liu, T.; Ma, Y.; Huang, S.; Lei, L.; Wen, A.; Ding, Y. Resveratrol: Multi-targets mechanism on neurodegenerative diseases based on network pharmacology. Front. Pharmacol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphar.2020.00694] [PMID: 32477148]
[25]
Liu, T.H.; Tu, W.Q.; Tao, W.C.; Liang, Q.E.; Xiao, Y.; Chen, L.G. Verification of resveratrol inhibits intestinal aging by downregulating ATF4/Chop/Bcl-2/Bax signaling pathway: Based on network pharmacology and animal experiment. Front. Pharmacol., 2020, 11, 1064.
[http://dx.doi.org/10.3389/fphar.2020.01064] [PMID: 32754039]
[26]
Koushki, M.; Amiri-Dashatan, N.; Ahmadi, N.; Abbaszadeh, H.A.; Rezaei-Tavirani, M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci. Nutr., 2018, 6(8), 2473-2490.
[http://dx.doi.org/10.1002/fsn3.855] [PMID: 30510749]
[27]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12) ,E2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[28]
Han, Y.; Jo, H.; Cho, J.H.; Dhanasekaran, D.N.; Song, Y.S. Resveratrol as a tumor-suppressive nutraceutical modulating tumor microenvironment and malignant behaviors of cancer. Int. J. Mol. Sci., 2019, 20(4) ,E925.
[http://dx.doi.org/10.3390/ijms20040925] [PMID: 30791624]
[29]
Vervandier-Fasseur, D.; Latruffe, N. The potential use of resveratrol for cancer prevention. Molecules, 2019, 24(24) ,E4506.
[http://dx.doi.org/10.3390/molecules24244506] [PMID: 31835371]
[30]
Kazi, A.A.; Koos, R.D. Estrogen-induced activation of hypoxia-inducible factor-1α, vascular endothelial growth factor expression, and edema in the uterus are mediated by the phosphatidylinositol 3-kinase/Akt pathway. Endocrinology, 2007, 148(5), 2363-2374.
[http://dx.doi.org/10.1210/en.2006-1394] [PMID: 17272396]
[31]
Guo, J.; Chen, M.; Ai, G.; Mao, W.; Li, H.; Zhou, J. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed. Pharmacother., 2019, 115 ,108957.
[http://dx.doi.org/10.1016/j.biopha.2019.108957] [PMID: 31082770]
[32]
Stuchi, L.P.; Castanhole-Nunes, M.M.U.; Maniezzo-Stuchi, N.; Biselli-Chicote, P.M.; Henrique, T.; Padovani Neto, J.A.; de-Santi Neto, D.; Girol, A.P.; Pavarino, E.C.; Goloni-Bertollo, E.M. VEGFA and NFE2L2 gene expression and regulation by microRNAs in thyroid papillary cancer and colloid goiter. Genes (Basel), 2020, 11(9) ,E954.
[http://dx.doi.org/10.3390/genes11090954] [PMID: 32824922]
[33]
Lu, Y.; Qin, T.; Li, J.; Wang, L.; Zhang, Q.; Jiang, Z.; Mao, J. MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther., 2017, 24(9), 386-392.
[http://dx.doi.org/10.1038/cgt.2017.30] [PMID: 28752859]
[34]
Kazi, A.A.; Koos, R.D. Estrogen-induced activation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor expression, and edema in the uterus are mediated by the phosphatidylinositol 3-kinase/Akt pathway. Endocrinology, 2007, 148(5), 2363-2374.
[http://dx.doi.org/10.1210/en.2006-1394] [PMID: 17272396]
[35]
Chen, H.; Liu, H.; Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther., 2018, 3, 5.
[http://dx.doi.org/10.1038/s41392-018-0008-7] [PMID: 29527331]
[36]
Tsujii, M.; Kawano, S.; Tsuji, S.; Sawaoka, H.; Hori, M.; DuBois, R.N. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 1998, 93(5), 705-716.
[http://dx.doi.org/10.1016/S0092-8674(00)81433-6] [PMID: 9630216]
[37]
Bruey, J.M.; Bruey-Sedano, N.; Luciano, F.; Zhai, D.; Balpai, R.; Xu, C.; Kress, C.L.; Bailly-Maitre, B.; Li, X.; Osterman, A.; Matsuzawa, S.; Terskikh, A.V.; Faustin, B.; Reed, J.C. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell, 2007, 129(1), 45-56.
[http://dx.doi.org/10.1016/j.cell.2007.01.045] [PMID: 17418785]
[38]
Peiró, G.; Diebold, J.; Baretton, G.B.; Kimmig, R.; Löhrs, U. Cellular apoptosis susceptibility gene expression in endometrial carcinoma: Correlation with Bcl-2, Bax, and caspase-3 expression and outcome. Int. J. Gynecol. Pathol., 2001, 20(4), 359-367.
[http://dx.doi.org/10.1097/00004347-200110000-00008] [PMID: 11603220]
[39]
Dhar, S.; Kumar, A.; Rimando, A.M.; Zhang, X.; Levenson, A.S. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget, 2015, 6(29), 27214-27226.
[http://dx.doi.org/10.18632/oncotarget.4877] [PMID: 26318586]
[40]
Berchuck, A.; Kohler, M.F.; Marks, J.R.; Wiseman, R.; Boyd, J.; Bast, R.C., Jr The p53 tumor suppressor gene frequently is altered in gynecologic cancers. Am. J. Obstet. Gynecol., 1994, 170(1 Pt 1), 246-252.
[http://dx.doi.org/10.1016/S0002-9378(94)70414-7] [PMID: 8296829]
[41]
Okamoto, A.; Sameshima, Y.; Yamada, Y.; Teshima, S.; Terashima, Y.; Terada, M.; Yokota, J. Allelic loss on chromosome 17p and p53 mutations in human endometrial carcinoma of the uterus. Cancer Res., 1991, 51(20), 5632-5635.
[PMID: 1913680]
[42]
Schultheis, A.M.; Martelotto, L.G.; De Filippo, M.R.; Piscuglio, S.; Ng, C.K.; Hussein, Y.R.; Reis-Filho, J.S.; Soslow, R.A.; Weigelt, B. TP53 mutational spectrum in endometrioid and serous endometrial cancers. Int. J. Gynecol. Pathol., 2016, 35(4), 289-300.
[http://dx.doi.org/10.1097/PGP.0000000000000243] [PMID: 26556035]
[43]
Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell, 2007, 129(7), 1261-1274.
[http://dx.doi.org/10.1016/j.cell.2007.06.009] [PMID: 17604717]
[44]
Memarzadeh, S.; Zong, Y.; Janzen, D.M.; Goldstein, A.S.; Cheng, D.; Kurita, T.; Schafenacker, A.M.; Huang, J.; Witte, O.N. Cell-autonomous activation of the PI3-kinase pathway initiates endometrial cancer from adult uterine epithelium. Proc. Natl. Acad. Sci. USA, 2010, 107(40), 17298-17303.
[http://dx.doi.org/10.1073/pnas.1012548107] [PMID: 20855612]
[45]
Yang, Y.; Bao, W.; Sang, Z.; Yang, Y.; Lu, M.; Xi, X. Microarray pathway analysis indicated that mitogen-activated protein kinase/extracellular signal-regulated kinase and insulin growth factor 1 signaling pathways were inhibited by small interfering RNA against AT-rich interactive domain 1A in endometrial cancer. Oncol. Lett., 2018, 15(2), 1829-1838.
[PMID: 29399196]
[46]
Murata, T.; Shinozuka, Y.; Obata, Y.; Yokoyama, K.K. Phosphorylation of two eukaryotic transcription factors, Jun dimerization protein 2 and activation transcription factor 2, in Escherichia coli by Jun N-terminal kinase 1. Anal. Biochem., 2008, 376(1), 115-121.
[http://dx.doi.org/10.1016/j.ab.2008.01.038] [PMID: 18307971]
[47]
Wu, F.; Zhang, W.; Li, L.; Zheng, F.; Shao, X.; Zhou, J.; Li, H. Inhibitory effects of honokiol on lipopolysaccharide-induced cellular responses and signaling events in human renal mesangial cells. Eur. J. Pharmacol., 2011, 654(1), 117-121.
[http://dx.doi.org/10.1016/j.ejphar.2010.11.022] [PMID: 21147091]
[48]
Yamamoto, T.; Sekine, Y.; Kashima, K.; Kubota, A.; Sato, N.; Aoki, N.; Matsuda, T. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem. Biophys. Res. Commun., 2002, 297(4), 811-817.
[http://dx.doi.org/10.1016/S0006-291X(02)02291-X] [PMID: 12359225]
[49]
Chen, C.L.; Hsieh, F.C.; Lieblein, J.C.; Brown, J.; Chan, C.; Wallace, J.A.; Cheng, G.; Hall, B.M.; Lin, J. Stat3 activation in human endometrial and cervical cancers. Br. J. Cancer, 2007, 96(4), 591-599.
[http://dx.doi.org/10.1038/sj.bjc.6603597] [PMID: 17311011]
[50]
Yu, L.J.; Wu, M.L.; Li, H.; Chen, X.Y.; Wang, Q.; Sun, Y.; Kong, Q.Y.; Liu, J. Inhibition of STAT3 expression and signaling in resveratrol-differentiated medulloblastoma cells. Neoplasia, 2008, 10(7), 736-744.
[http://dx.doi.org/10.1593/neo.08304] [PMID: 18592012]
[51]
Saxena, N.K.; Vertino, P.M.; Anania, F.A.; Sharma, D. leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. J. Biol. Chem., 2007, 282(18), 13316-13325.
[http://dx.doi.org/10.1074/jbc.M609798200] [PMID: 17344214]
[52]
Nie, H.; Zheng, Y.; Li, R.; Guo, T.B.; He, D.; Fang, L.; Liu, X.; Xiao, L.; Chen, X.; Wan, B.; Chin, Y.E.; Zhang, J.Z. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med., 2013, 19(3), 322-328.
[http://dx.doi.org/10.1038/nm.3085] [PMID: 23396208]
[53]
Blaser, H.; Dostert, C.; Mak, T.W.; Brenner, D. TNF and ROS crosstalk in inflammation. Trends Cell Biol., 2016, 26(4), 249-261.
[http://dx.doi.org/10.1016/j.tcb.2015.12.002] [PMID: 26791157]
[54]
Nakahara, H.; Song, J.; Sugimoto, M.; Hagihara, K.; Kishimoto, T.; Yoshizaki, K.; Nishimoto, N. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum., 2003, 48(6), 1521-1529.
[http://dx.doi.org/10.1002/art.11143] [PMID: 12794819]
[55]
Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res., 2004, 24(5A), 2783-2840.
[PMID: 15517885]
[56]
Tomé-Carneiro, J.; Larrosa, M.; González-Sarrías, A.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Resveratrol and clinical trials: The crossroad from in vitro studies to human evidence. Curr. Pharm. Des., 2013, 19(34), 6064-6093.
[http://dx.doi.org/10.2174/13816128113199990407] [PMID: 23448440]
[57]
Harikumar, K.B.; Kunnumakkara, A.B.; Sethi, G.; Diagaradjane, P.; Anand, P.; Pandey, M.K.; Gelovani, J.; Krishnan, S.; Guha, S.; Aggarwal, B.B. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int. J. Cancer, 2010, 127(2), 257-268..
[PMID: 19908231]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy