Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Apoptotic Effects of Melittin on 4T1 Breast Cancer Cell Line is associated with Up Regulation of Mfn1 and Drp1 mRNA Expression

Author(s): Farnaz D. Moghaddam, Pejman Mortazavi*, Somayeh Hamedi, Mohammad Nabiuni and Nasim H. Roodbari

Volume 20, Issue 7, 2020

Page: [790 - 799] Pages: 10

DOI: 10.2174/1871520620666200211091451

Price: $65

Abstract

Background and Purpose: Melittin, as the main ingredient of honeybee venom, that has shown anticancer properties. The present study aimed at investigating the cytotoxic impacts of melittin on 4T1 breast cancer cells.

Methods: Hemolytic activity of different concentrations (0.125, 0.25, 0.5, 1, 2, 4, 8μg/ml) of melittin was assayed and then cytotoxicity of selected concentrations of melittin (2, 4, 8, 16, 32, and 64μg/ml), 2 and 4μg/ml of cisplatin and 0.513, 0.295 and 0.123μg/ml of doxorubicin was evaluated on 4T1 cells using MTT assay. We used Morphological evaluation and flow cytometric analysis was used. Real time PCR was also used to determine mRNA expression of Mfn1 and Drp1 genes.

Results: All compounds showed anti-proliferative effects on the tumor cell line with different potencies. Melittin had higher cytotoxicity against 4T1 breast cancer cells (IC50= 32μg/ml-72h) and higher hemolytic activity (HD50= 1μg/ml), as compared to cisplatin and doxorubicin. Mellitin at 16 and 32μg/ml showed apoptotic effects on 4T1 cells according to the flow cytometric analysis. The Real time PCR analysis of Drp1 and Mfn1 expression in cells treated with 16μg/ml of melittin revealed an up-regulation in Drp1 and Mfn1 genes mRNA expression in comparison with control group. Treatment with 32μg/ml of melittin was also associated with a rise in mRNA expression of Drp1 and Mfn1 as compared to the control group.

Conclusion: The results of this study showed that melittin has anticancer effects on 4T1 cell lines in a dose and time dependent manner and can be a good candidate for further research on breast cancer treatment.

Keywords: 4T1, melittin, apoptosis, cisplatin, doxorubicin, breast cancer.

Graphical Abstract
[1]
DeSantis, C.E.; Lin, C.C.; Mariotto, A.B.; Siegel, R.L.; Stein, K.D.; Kramer, J.L.; Alteri, R.; Robbins, A.S.; Jemal, A. Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin., 2014, 64(4), 252-271.
[http://dx.doi.org/10.3322/caac.21235] [PMID: 24890451]
[2]
Fiorica, J.V. Breast cancer screening, mammography, and other modalities. Clin. Obstet. Gynecol., 2016, 59(4), 688-709.
[http://dx.doi.org/10.1097/GRF.0000000000000246] [PMID: 27741212]
[3]
Eccles, S.A.; Aboagye, E.O.; Ali, S.; Anderson, A.S.; Armes, J.; Berditchevski, F.; Blaydes, J.P.; Brennan, K.; Brown, N.J.; Bryant, H.E.; Bundred, N.J.; Burchell, J.M.; Campbell, A.M.; Carroll, J.S.; Clarke, R.B.; Coles, C.E.; Cook, G.J.; Cox, A.; Curtin, N.J.; Dekker, L.V.; Silva, I.S.; Duffy, S.W.; Easton, D.F.; Eccles, D.M.; Edwards, D.R.; Edwards, J.; Evans, D.; Fenlon, D.F.; Flanagan, J.M.; Foster, C.; Gallagher, W.M.; Garcia-Closas, M.; Gee, J.M.; Gescher, A.J.; Goh, V.; Groves, A.M.; Harvey, A.J.; Harvie, M.; Hennessy, B.T.; Hiscox, S.; Holen, I.; Howell, S.J.; Howell, A.; Hubbard, G.; Hulbert-Williams, N.; Hunter, M.S.; Jasani, B.; Jones, L.J.; Key, T.J.; Kirwan, C.C.; Kong, A.; Kunkler, I.H.; Langdon, S.P.; Leach, M.O.; Mann, D.J.; Marshall, J.F.; Martin, L.; Martin, S.G.; Macdougall, J.E.; Miles, D.W.; Miller, W.R.; Morris, J.R.; Moss, S.M.; Mullan, P.; Natrajan, R.; O’Connor, J.P.; O’Connor, R.; Palmieri, C.; Pharoah, P.D.; Rakha, E.A.; Reed, E.; Robinson, S.P.; Sahai, E.; Saxton, J.M.; Schmid, P.; Smalley, M.J.; Speirs, V.; Stein, R.; Stingl, J.; Streuli, C.H.; Tutt, A.N.; Velikova, G.; Walker, R.A.; Watson, C.J.; Williams, K.J.; Young, L.S.; Thompson, A.M. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res., 2013, 15(5), R92.
[http://dx.doi.org/10.1186/bcr3493] [PMID: 24286369]
[4]
Arnold, M.; Karim-Kos, H.E.; Coebergh, J.W.; Byrnes, G.; Antilla, A.; Ferlay, J.; Renehan, A.G.; Forman, D.; Soerjomataram, I. Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur. J. Cancer, 2015, 51(9), 1164-1187.
[http://dx.doi.org/10.1016/j.ejca.2013.09.002] [PMID: 24120180]
[5]
Colditz, G.A.; Bohlke, K. Priorities for the primary prevention of breast cancer. CA Cancer J. Clin., 2014, 64(3), 186-194.
[http://dx.doi.org/10.3322/caac.21225] [PMID: 24647877]
[6]
Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet. Genomics, 2011, 21(7), 440-446.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[7]
Rambold, A.S.; Kostelecky, B.; Elia, N.; Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA, 2011, 108(25), 10190-10195.
[http://dx.doi.org/10.1073/pnas.1107402108] [PMID: 21646527]
[8]
Lee, J.Y.; Kapur, M.; Li, M.; Choi, M.C.; Choi, S.; Kim, H.J.; Kim, I.; Lee, E.; Taylor, J.P.; Yao, T.P. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J. Cell Sci., 2014, 127(Pt 22), 4954-4963.
[http://dx.doi.org/10.1242/jcs.157321] [PMID: 25271058]
[9]
Seervi, M.; Xue, D. Mitochondrial cell death pathways in Caenorhabiditis elegans. Curr. Top. Dev. Biol., 2015, 114, 43-65.
[http://dx.doi.org/10.1016/bs.ctdb.2015.07.019] [PMID: 26431563]
[10]
Rosdah, A.A.; Holien, J.; Delbridge, L.M.; Dusting, G.J.; Lim, S.Y. Mitochondrial fission - a drug target for cytoprotection or cytodestruction? Pharmacol. Res. Perspect., 2016, 4(3), e00235
[http://dx.doi.org/10.1002/prp2.235] [PMID: 27433345]
[11]
Zhao, J.; Zhang, J.; Yu, M.; Xie, Y.; Huang, Y.; Wolff, D.W.; Abel, P.W.; Tu, Y. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene, 2013, 32(40), 4814-4824.
[http://dx.doi.org/10.1038/onc.2012.494] [PMID: 23128392]
[12]
Oršolić, N. Bee venom in cancer therapy. Cancer Metastasis Rev., 2012, 31(1-2), 173-194.
[http://dx.doi.org/10.1007/s10555-011-9339-3] [PMID: 22109081]
[13]
Huh, J.E.; Baek, Y.H.; Lee, M.H.; Choi, D.Y.; Park, D.S.; Lee, J.D. Bee venom inhibits tumor angiogenesis and metastasis by inhibiting tyrosine phosphorylation of VEGFR-2 in LLC-tumor-bearing mice. Cancer Lett., 2010, 292(1), 98-110.
[http://dx.doi.org/10.1016/j.canlet.2009.11.013] [PMID: 20188461]
[14]
Kim, J.I.; Yang, E.J.; Lee, M.S.; Kim, Y.S.; Huh, Y.; Cho, I.H.; Kang, S.; Koh, H.K. Bee venom reduces neuroinflammation in the MPTP-induced model of Parkinson’s disease. Int. J. Neurosci., 2011, 121(4), 209-217.
[http://dx.doi.org/10.3109/00207454.2010.548613] [PMID: 21265705]
[15]
Shin, S.H.; Kim, Y.H.; Kim, J.K.; Park, K.K. Anti-allergic effect of bee venom in an allergic rhinitis mouse model. Biol. Pharm. Bull., 2014, 37(8), 1295-1300.
[http://dx.doi.org/10.1248/bpb.b14-00102] [PMID: 25087951]
[16]
Bazzo, R.; Tappin, M.J.; Pastore, A.; Harvey, T.S.; Carver, J.A.; Campbell, I.D. The structure of melittin. A 1H-NMR study in methanol. Eur. J. Biochem., 1988, 173(1), 139-146.
[http://dx.doi.org/10.1111/j.1432-1033.1988.tb13977.x] [PMID: 3356186]
[17]
Vogel, H.; Jähnig, F. The structure of melittin in membranes. Biophys. J., 1986, 50(4), 573-582.
[http://dx.doi.org/10.1016/S0006-3495(86)83497-X] [PMID: 3779000]
[18]
Dawson, C.R.; Drake, A.F.; Helliwell, J.; Hider, R.C. The interaction of bee melittin with lipid bilayer membranes. Biochim. Biophys. Acta, 1978, 510(1), 75-86.
[http://dx.doi.org/10.1016/0005-2736(78)90131-1] [PMID: 667038]
[19]
Pulaski, B.A.; Ostrand-Rosenberg, S. Mouse 4T1 breast tumor model. Curr. Protoc. Immunol., 2001, 20(20), 2.
[PMID: 18432775]
[20]
DuPré, S.A.; Redelman, D.; Hunter, K.W., Jr The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int. J. Exp. Pathol., 2007, 88(5), 351-360.
[http://dx.doi.org/10.1111/j.1365-2613.2007.00539.x] [PMID: 17877537]
[21]
Baliga, M.S.; Meleth, S.; Katiyar, S.K. Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems. Clin. Cancer Res., 2005, 11(5), 1918-1927.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1976] [PMID: 15756018]
[22]
Leung, H.W.; Yang, W.H.; Lai, M.Y.; Lin, C.J.; Lee, H.Z. Inhibition of 12-lipoxygenase during baicalein-induced human lung nonsmall carcinoma H460 cell apoptosis. Food Chem. Toxicol., 2007, 45(3), 403-411.
[http://dx.doi.org/10.1016/j.fct.2006.08.021] [PMID: 17050058]
[23]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.043] [PMID: 19835863]
[24]
Brown, C.K.; Kirkwood, J.M. Medical management of melanoma., Surg. Clin. North Am., 2003, 83(2), 283-322, viii..
[http://dx.doi.org/10.1016/S0039-6109(02)00187-1 PMID: 12744611]
[25]
Son, D.J.; Lee, J.W.; Lee, Y.H.; Song, H.S.; Lee, C.K.; Hong, J.T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther., 2007, 115(2), 246-270.
[http://dx.doi.org/10.1016/j.pharmthera.2007.04.004] [PMID: 17555825]
[26]
Gülmez, Y.; Aydın, A.; Can, İ.; Tekin, Ş.; Cacan, E.E. Cellular toxicity and biological activities of honey bee (Apis mellifera L.) venom. Marmara Pharm. J., 2017, 21(2), 251-260.
[http://dx.doi.org/10.12991/marupj.300329]
[27]
Chu, S.T.; Cheng, H.H.; Huang, C.J.; Chang, H.C.; Chi, C.C.; Su, H.H.; Hsu, S.S.; Wang, J.L.; Chen, I.S.; Liu, S.I.; Lu, Y.C.; Huang, J.K.; Ho, C.M.; Jan, C.R. Phospholipase A2-independent Ca2+ entry and subsequent apoptosis induced by melittin in human MG63 osteosarcoma cells. Life Sci., 2007, 80(4), 364-369.
[http://dx.doi.org/10.1016/j.lfs.2006.09.024] [PMID: 17054998]
[28]
Jo, M.; Park, M.H.; Kollipara, P.S.; An, B.J.; Song, H.S.; Han, S.B.; Kim, J.H.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol. Appl. Pharmacol., 2012, 258(1), 72-81.
[http://dx.doi.org/10.1016/j.taap.2011.10.009] [PMID: 22027265]
[29]
Park, M.H.; Choi, M.S.; Kwak, D.H.; Oh, K.W. Yoon do, Y.; Han, S.B.; Song, H.S.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-kappaB. Prostate, 2011, 71, 801-812.
[http://dx.doi.org/10.1002/pros.21296] [PMID: 21456063]
[30]
Park, J.H.; Jeong, Y.J.; Park, K.K.; Cho, H.J.; Chung, I.K.; Min, K.S.; Kim, M.; Lee, K.G.; Yeo, J.H.; Park, K.K.; Chang, Y.C. Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol. Cells, 2010, 29(2), 209-215.
[http://dx.doi.org/10.1007/s10059-010-0028-9] [PMID: 20082219]
[31]
Chou, T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[32]
Choi, E.J. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr. Cancer, 2007, 59(1), 115-119.
[http://dx.doi.org/10.1080/01635580701419030] [PMID: 17927510]
[33]
Palit, S.; Kar, S.; Sharma, G.; Das, P.K. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J. Cell. Physiol., 2015, 230(8), 1729-1739.
[http://dx.doi.org/10.1002/jcp.24818] [PMID: 25204891]
[34]
Deng, Y.; Sriwiriyajan, S.; Tedasen, A.; Hiransai, P.; Graidist, P. Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. Ethnopharmacol.J;, 2016, 188, 87-95.
[35]
Ip, S-W.; Liao, S-S.; Lin, S-Y.; Lin, J-P.; Yang, J.S.; Lin, M.L.; Chen, G.W.; Lu, H.F.; Lin, M.W.; Han, S.M.; Chung, J.G. The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In Vivo, 2008, 22(2), 237-245.
[PMID: 18468409]
[36]
Jang, M-H.; Shin, M-C.; Lim, S.; Han, S-M.; Park, H-J.; Shin, I.; Lee, J-S.; Kim, K-A.; Kim, E-H.; Kim, C-J. Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J. Pharmacol. Sci., 2003, 91(2), 95-104.
[http://dx.doi.org/10.1254/jphs.91.95] [PMID: 12686753]
[37]
Hong, S.J.; Rim, G.S.; Yang, H.I.; Yin, C.S.; Koh, H.G.; Jang, M.H.; Kim, C.J.; Choe, B.K.; Chung, J.H. Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis. Toxicon, 2005, 46(1), 39-45.
[http://dx.doi.org/10.1016/j.toxicon.2005.03.015] [PMID: 15922390]
[38]
Moon, D.O.; Park, S.Y.; Heo, M.S.; Kim, K.C.; Park, C.; Ko, W.S.; Choi, Y.H.; Kim, G.Y. Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int. Immunopharmacol., 2006, 6(12), 1796-1807.
[http://dx.doi.org/10.1016/j.intimp.2006.07.027] [PMID: 17052670]
[39]
Wang, C.; Chen, T.; Zhang, N.; Yang, M.; Li, B.; Lü, X.; Cao, X.; Ling, C. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB. J. Biol. Chem., 2009, 284(6), 3804-3813.
[http://dx.doi.org/10.1074/jbc.M807191200] [PMID: 19074436]
[40]
Sharon, M.; Oren, Z.; Shai, Y.; Anglister, J. 2D-NMR and ATR-FTIR study of the structure of a cell-selective diastereomer of melittin and its orientation in phospholipids. Biochemistry, 1999, 38(46), 15305-15316.
[http://dx.doi.org/10.1021/bi991225t] [PMID: 10563816]
[41]
Batenburg, A.M.; van Esch, J.H.; de Kruijff, B. Melittin-induced changes of the macroscopic structure of phosphatidylethanolamines. Biochemistry, 1988, 27(7), 2324-2331.
[http://dx.doi.org/10.1021/bi00407a013] [PMID: 3382625]
[42]
Tosteson, M.T.; Tosteson, D.C. The sting. Melittin forms channels in lipid bilayers. Biophys. J., 1981, 36(1), 109-116.
[http://dx.doi.org/10.1016/S0006-3495(81)84719-4] [PMID: 6269667]
[43]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[44]
Rehman, J.; Zhang, H.J.; Toth, P.T.; Zhang, Y.; Marsboom, G.; Hong, Z.; Salgia, R.; Husain, A.N.; Wietholt, C.; Archer, S.L. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J., 2012, 26(5), 2175-2186.
[http://dx.doi.org/10.1096/fj.11-196543] [PMID: 22321727]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy