Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Mini-Review Article

Actions of Alcohol in Brain: Genetics, Metabolomics, GABA Receptors, Proteomics and Glutamate Transporter GLAST/EAAT1

Author(s): Mohammed Abul Kashem, Omar Šerý, David V. Pow, Benjamin D. Rowlands, Caroline D. Rae and Vladimir J. Balcar*

Volume 14, Issue 2, 2021

Published on: 24 April, 2020

Page: [138 - 149] Pages: 12

DOI: 10.2174/1874467213666200424155244

Price: $65

Abstract

We present an overview of genetic, metabolomic, proteomic and neurochemical studies done mainly in our laboratories that could improve prediction, mechanistic understanding and possibly extend to diagnostics and treatment of alcoholism and alcohol addiction. Specific polymorphisms in genes encoding for interleukins 2 and 6, catechol-O-methyl transferase (COMT), monaminooxidase B (MAO B) and several other enzymes were identified as associated with altered risks of alcoholism in humans. A polymorphism in the gene for BDNF has been linked to the risk of developing deficiences in colour vision sometimes observed in alcoholics. Metabolomic studies of acute ethanol effects on guinea pig brain cortex in vitro, lead to the identification of specific subtypes of GABA(A) receptors involved in the actions of alcohol at various doses. Acute alcohol affected energy metabolism, oxidation and the production of actaldehyde and acetate; this could have specific consequences not only for the brain energy production/utilization but could influence the cytotoxicity of alcohol and impact the epigenetics (histone acetylation). It is unlikely that brain metabolism of ethanol occurs to any significant degree; the reduction in glucose metabolism following alcohol consumption is due to ethanol effects on receptors, such as α4β3δ GABA(A) receptors. Metabolomics using post-mortem human brain indicated that the catecholaminergic signalling may be preferentially affected by chronic excessive drinking. Changes in the levels of glutathione were consistent with the presence of severe oxidative stress. Proteomics of the post-mortem alcoholic brains identified a large number of proteins, the expression of which was altered by chronic alcohol, with those associated with brain energy metabolism among the most numerous. Neurochemical studies found the increased expression of glutamate transporter GLAST/EAAT1 in brain as one of the largest changes caused by alcoholism. Given that GLAST/EAAT1 is one of the most abundant proteins in the nervous tissue and is intimately associated with the function of the excitatory (glutamatergic) synapses, this may be among the most important effects of chronic alcohol on brain function. It has so far been observed mainly in the prefrontal cortex. We show several experiments suggesting that acute alcohol can translocate GLAST/EAAT1 in astrocytes towards the plasma membrane (and this effect is inhibited by the GABA(B) agonist baclofen) but neither the mechanism nor the specificity (to alcohol) of this phenomenon have been established. Furthermore, as GLAST/EAAT1 is also expressed in testes and sperm (and could also be affected there by chronic alcohol), the levels of GLAST/EAAT1 in sperm could be used as a diagnostic tool in testing the severity of alcoholism in human males. We conclude that the reviewed studies present a unique set of data which could help to predict the risk of developing alcohol dependence (genetics), to improve the understanding of the intoxicating actions of alcohol (metabolomics), to aid in assessing the extent of damage to brain cells caused by chronic excessive drinking (metabolomics and proteomics) and to point to molecular targets that could be used in the treatment and diagnosis of alcoholism and alcohol addiction.

Keywords: Ethanol, alcoholism, addiction, brain metabolism, metabolom, genetics, epigenetics, interactomics, glutamate transport, GLAST, EAAT1.

Graphical Abstract
[1]
Köhnke, M.D. Approach to the genetics of alcoholism: a review based on pathophysiology. Biochem. Pharmacol., 2008, 75(1), 160-177.
[http://dx.doi.org/10.1016/j.bcp.2007.06.021] [PMID: 17669369]
[2]
Cloninger, C.R.; Sigvardsson, S.; Gilligan, S.B.; von Knorring, A.L.; Reich, T.; Bohman, M. Genetic heterogeneity and the classification of alcoholism. Adv. Alcohol Subst. Abuse, 1988, 7(3-4), 3-16.
[http://dx.doi.org/10.1300/J251v07n03_02] [PMID: 3066194]
[3]
Olds, J.; Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol., 1954, 47(6), 419-427.
[http://dx.doi.org/10.1037/h0058775] [PMID: 13233369]
[4]
Blum, K.; Gondré-Lewis, M.C.; Baron, D.; Thanos, P.K.; Braverman, E.R.; Neary, J.; Elman, I.; Badgaiyan, R.D. Introducing Precision Addiction Management of Reward Deficiency Syndrome, the Construct That Underpins All Addictive Behaviors. Front. Psychiatry, 2018, 9, 548.
[http://dx.doi.org/10.3389/fpsyt.2018.00548]
[5]
Blum, K.; Gardner, E.; Oscar-Berman, M.; Gold, M. “Liking” and “wanting” linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry. Curr. Pharm. Des., 2012, 18(1), 113-118.
[http://dx.doi.org/10.2174/138161212798919110] [PMID: 22236117]
[6]
Bühler, K.M.; Giné, E.; Echeverry-Alzate, V.; Calleja-Conde, J.; de Fonseca, F.R.; López-Moreno, J.A. Common single nucleotide variants underlying drug addiction: more than a decade of research. Addict. Biol., 2015, 20(5), 845-871.
[http://dx.doi.org/10.1111/adb.12204] [PMID: 25603899]
[7]
Šerý, O.; Hladilová, R.; Novotný, M.; Hríbková, H.; Znojil, V.; Zvolský, P. Association between -174 G/C polymorphism of interleukin-6 gene and alcoholism. Acta Neuropsychiatr., 2003, 15(5), 257-261.
[http://dx.doi.org/10.1034/j.1601-5215.2003.00040.x] [PMID: 26983653]
[8]
Serý, O.; Didden, W.; Mikeš, V.; Pitelová, R.; Znojil, V.; Zvolský, P. The association between high-activity COMT allele and alcoholism. Neuroendocrinol. Lett., 2006, 27(1-2), 231-235.
[PMID: 16648777]
[9]
Šerý, O.; Lochman, J.; Gláslová, K.; Štaif, R.; Kmoch, V.; Zvolský, P. The association study of the relationship between fourteen candidate gene polymorphisms and dispositions to alcoholism.The International Psychiatry and Behavioral Neurosciences Yearbook; Boutros, N., Ed.; Nova Science Publishers, New York, U.S.: New York, United States, 2012, Vol. II, .
[10]
Serý, O.; Sťastný, F.; Zvolský, P.; Hlinomazová, Z.; Balcar, V.J. Association between Val66Met polymorphism of Brain-Derived Neurotrophic Factor (BDNF) gene and a deficiency of colour vision in alcohol-dependent male patients. Neurosci. Lett., 2011, 499(3), 154-157.
[http://dx.doi.org/10.1016/j.neulet.2011.05.038] [PMID: 21640793]
[11]
Nasrallah, F.A.; Griffin, J.L.; Balcar, V.J.; Rae, C. Understanding your inhibitions: modulation of brain cortical metabolism by GABA(B) receptors. J. Cereb. Blood Flow Metab., 2007, 27(8), 1510-1520.
[http://dx.doi.org/10.1038/sj.jcbfm.9600453] [PMID: 17293844]
[12]
Nasrallah, F.A.; Griffin, J.L.; Balcar, V.J.; Rae, C. Understanding your inhibitions: effects of GABA and GABAA receptor modulation on brain cortical metabolism. J. Neurochem., 2009, 108(1), 57-71.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05742.x] [PMID: 19014380]
[13]
Nasrallah, F.A.; Balcar, V.J.; Rae, C.D. Activity dependent GABA release controls brain cortical tissue slice metabolism. J. Neurosci. Res., 2009, 89, 1935-1945.
[http://dx.doi.org/10.1002/jnr.22649] [PMID: 21618581]
[14]
Rae, C.; Nasrallah, F.A.; Balcar, V.J.; Rowlands, B.D.; Johnston, G.A.R.; Hanrahan, J.R. Metabolomic Approaches to Defining the Role(s) of GABAρ Receptors in the Brain. J. Neuroimmune Pharmacol., 2015, 10(3), 445-456.
[http://dx.doi.org/10.1007/s11481-014-9579-4] [PMID: 25577264]
[15]
Rae, C.; Nasrallah, F.A.; Griffin, J.L.; Balcar, V.J. Now I know my ABC. A systems neurochemistry and functional metabolomic approach to understanding the GABAergic system. J. Neurochem., 2009, 109(Suppl. 1), 109-116.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05803.x] [PMID: 19393016]
[16]
Rae, C.D.; Davidson, J.E.; Maher, A.D.; Rowlands, B.D.; Kashem, M.A.; Nasrallah, F.A.; Rallapalli, S.K.; Cook, J.M.; Balcar, V.J. Ethanol, not detectably metabolized in brain, significantly reduces brain metabolism, probably via action at specific GABA(A) receptors and has measureable metabolic effects at very low concentrations. J. Neurochem., 2014, 129(2), 304-314.
[http://dx.doi.org/10.1111/jnc.12634] [PMID: 24313287]
[17]
Lovinger, D.M.; White, G.; Weight, F.F. Ethanol inhibition of neuronal glutamate receptor function. Ann. Med., 1990, 22(4), 247-252.
[http://dx.doi.org/10.3109/07853899009148935] [PMID: 1701093]
[18]
Allgaier, C. Ethanol sensitivity of NMDA receptors. Neurochem. Int., 2002, 41(6), 377-382.
[http://dx.doi.org/10.1016/S0197-0186(02)00046-3] [PMID: 12213224]
[19]
Engblom, A.C.; Akerman, K.E.O. Effect of ethanol on gamma-aminobutyric acid and glycine receptor-coupled Cl- fluxes in rat brain synaptoneurosomes. J. Neurochem., 1991, 57(2), 384-390.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb03764.x] [PMID: 1712827]
[20]
Perkins, D.I.; Trudell, J.R.; Crawford, D.K.; Alkana, R.L.; Davies, D.L. Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol. Ther., 2010, 127(1), 53-65.
[http://dx.doi.org/10.1016/j.pharmthera.2010.03.003] [PMID: 20399807]
[21]
Lewohl, J.M.; Wilson, W.R.; Mayfield, R.D.; Brozowski, S.J.; Morrisett, R.A.; Harris, R.A. G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nat. Neurosci., 1999, 2(12), 1084-1090.
[http://dx.doi.org/10.1038/16012] [PMID: 10570485]
[22]
Ikeda, K.; Kobayashi, T.; Kumanishi, T.; Yano, R.; Sora, I.; Niki, H. Molecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel one of the keys? Neurosci. Res., 2002, 44(2), 121-131.
[http://dx.doi.org/10.1016/S0168-0102(02)00094-9] [PMID: 12354627]
[23]
Rae, R.D.; Balcar, V.J. A metabolomics multivariate statistical approach for obtaining data-driven information in neurpoharmacological research. Receptors Clin. Investig., 2014, 1, 153-156.
[24]
Nasrallah, F.A.; Maher, A.D.; Hanrahan, J.R.; Balcar, V.J.; Rae, C.D. γ-Hydroxybutyrate and the GABAergic footprint: a metabolomic approach to unpicking the actions of GHB. J. Neurochem., 2010, 115(1), 58-67.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06901.x] [PMID: 20681954]
[25]
Absalom, N.; Eghorn, L.F.; Villumsen, I.S.; Karim, N.; Bay, T.; Olsen, J.V.; Knudsen, G.M.; Bräuner-Osborne, H.; Frølund, B.; Clausen, R.P.; Chebib, M.; Wellendorph, P. α4βδ GABA(A) receptors are high-affinity targets for γ-hydroxybutyric acid (GHB). Proc. Natl. Acad. Sci. USA, 2012, 109(33), 13404-13409.
[http://dx.doi.org/10.1073/pnas.1204376109] [PMID: 22753476]
[26]
Spanagel, R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol. Rev., 2009, 89(2), 649-705.
[http://dx.doi.org/10.1152/physrev.00013.2008] [PMID: 19342616]
[27]
Rae, C.; Moussa, Cel-H.; Griffin, J.L.; Bubb, W.A.; Wallis, T.; Balcar, V.J. Group I and II metabotropic glutamate receptors alter brain cortical metabolic and glutamate/glutamine cycle activity: a 13C NMR spectroscopy and metabolomic study. J. Neurochem., 2005, 92(2), 405-416.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02880.x] [PMID: 15663488]
[28]
Rae, C.; Moussa, Cel-H.; Griffin, J.L.; Parekh, S.B.; Bubb, W.A.; Hunt, N.H.; Balcar, V.J. A metabolomic approach to ionotropic glutamate receptor subtype function: a nuclear magnetic resonance in vitro investigation. J. Cereb. Blood Flow Metab., 2006, 26(8), 1005-1017.
[http://dx.doi.org/10.1038/sj.jcbfm.9600257] [PMID: 16395280]
[29]
Moussa, Cel-H.; Mitrovic, A.D.; Vandenberg, R.J.; Provis, T.; Rae, C.; Bubb, W.A.; Balcar, V.J. Effects of L-glutamate transport inhibition by a conformationally restricted glutamate analogue (2S,1‘S,2’R)-2-(carboxycyclopropyl)glycine (L-CCG III) on metabolism in brain tissue in vitro analysed by NMR spectroscopy. Neurochem. Res., 2002, 27(1-2), 27-35.
[http://dx.doi.org/10.1023/A:1014842303583] [PMID: 11926273]
[30]
Moussa, C.E-H.; Rae, C.; Bubb, W.A.; Griffin, J.L.; Deters, N.A.; Balcar, V.J. Inhibitors of glutamate transport modulate distinct patterns in brain metabolism. J. Neurosci. Res., 2007, 85(2), 342-350.
[http://dx.doi.org/10.1002/jnr.21108] [PMID: 17086545]
[31]
Learn, J.E.; Smith, D.G.; McBride, W.J.; Lumeng, L.; Li, T.K. Ethanol effects on local cerebral glucose utilization in high-alcohol-drinking and low-alcohol-drinking rats. Alcohol, 2003, 29(1), 1-9.
[http://dx.doi.org/10.1016/S0741-8329(02)00323-3] [PMID: 12657371]
[32]
Strother, W.N.; Lumeng, L.; McBride, W.J. Acute ethanol effects on local cerebral glucose utilization in select central nervous system regions of adolescent alcohol-preferring (P) and alcohol-nonpreferring (NP) rats. Alcohol. Clin. Exp. Res., 2008, 32(11), 1875-1883.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00772.x] [PMID: 18715279]
[33]
Volkow, N.D.; Wang, G.J.; Franceschi, D.; Fowler, J.S.; Thanos, P.P.; Maynard, L.; Gatley, S.J.; Wong, C.; Veech, R.L.; Kunos, G.; Kai Li, T. Low doses of alcohol substantially decrease glucose metabolism in the human brain. Neuroimage, 2006, 29(1), 295-301.
[http://dx.doi.org/10.1016/j.neuroimage.2005.07.004] [PMID: 16085426]
[34]
Crow, K.E.; Cornell, N.W.; Veech, R.L. The rate of ethanol metabolism in isolated rat hepatocytes. Alcohol. Clin. Exp. Res., 1977, 1(1), 43-50.
[http://dx.doi.org/10.1111/j.1530-0277.1977.tb05765.x] [PMID: 201177]
[35]
Krebs, H.A.; Stubbs, M. Factors controlling the rate of alcohol disposal by the liver.Alcohol Intoxication and Withdrawal, Advances in Exp. Med. Biol; Gross, M., Ed.; Springer, US, 1975, Vol. 59, pp. 149-161.
[http://dx.doi.org/10.1007/978-1-4757-0632-1_12]
[36]
Mukherji, B.; Kashiki, Y.; Ohyanagi, H.; Sloviter, H.A. Metabolism of ethanol and acetaldehyde by the isolated perfused rat brain. J. Neurochem., 1975, 24(4), 841-843.
[http://dx.doi.org/10.1111/j.1471-4159.1975.tb03881.x] [PMID: 235601]
[37]
Mews, P.; Egervar, G.; Nativio, R.; Sidoli, S.; Donahue, G.; Lombroso, S.I.; Alexander, D.C.; Riesche, S.L.; Heller, E.A.; Nestler, E.J.; Garcia, B.A. Berger, S.L. Alcohol metabolism contributes to brain histone acetylation. Nature, in press
[38]
Hamby-Mason, R.; Chen, J.J.; Schenker, S.; Perez, A.; Henderson, G.I. Catalase mediates acetaldehyde formation from ethanol in fetal and neonatal rat brain. Alcohol. Clin. Exp. Res., 1997, 21(6), 1063-1072.
[http://dx.doi.org/10.1111/j.1530-0277.1997.tb04255.x] [PMID: 9309319]
[39]
Taffe, M.A.; Kotzebue, R.W.; Crean, R.D.; Crawford, E.F.; Edwards, S.; Mandyam, C.D. Long-lasting reduction in hippocampal neurogenesis by alcohol consumption in adolescent nonhuman primates. Proc. Natl. Acad. Sci. USA, 2010, 107(24), 11104-11109.
[http://dx.doi.org/10.1073/pnas.0912810107] [PMID: 20534463]
[40]
Lees, B.; Mewton, L.; Stapinski, L.A.; Squeglia, L.M.; Rae, C.D.; Teesson, M. Neurobiological and cognitive profile of young binge drinkers: a systematic review and meta-analysis. Neuropsychol. Rev., 2019, 29(3), 357-385.
[http://dx.doi.org/10.1007/s11065-019-09411-w] [PMID: 31512192]
[41]
McClain, J.A.; Morris, S.A.; Deeny, M.A.; Marshall, S.A.; Hayes, D.M.; Kiser, Z.M.; Nixon, K. Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav. Immun., 2011, 25(Suppl. 1), S120-S128.
[http://dx.doi.org/10.1016/j.bbi.2011.01.006] [PMID: 21262339]
[42]
Pascual, M.; Pla, A.; Miñarro, J.; Guerri, C. Neuroimmune activation and myelin changes in adolescent rats exposed to high-dose alcohol and associated cognitive dysfunction: a review with reference to human adolescent drinking. Alcohol Alcohol., 2014, 49(2), 187-192.
[http://dx.doi.org/10.1093/alcalc/agt164] [PMID: 24217958]
[43]
Wang, J.; Du, H.; Jiang, L.; Ma, X.; de Graaf, R.A.; Behar, K.L.; Mason, G.F. Oxidation of ethanol in the rat brain and effects associated with chronic ethanol exposure. Proc. Natl. Acad. Sci. USA, 2013, 110(35), 14444-14449.
[http://dx.doi.org/10.1073/pnas.1306011110] [PMID: 23940368]
[44]
Deelchand, D.K.; Shestov, A.A.; Koski, D.M.; Uğurbil, K.; Henry, P.G. Acetate transport and utilization in the rat brain. J. Neurochem., 2009, 109(Suppl. 1), 46-54.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05895.x] [PMID: 19393008]
[45]
Rae, C.; Fekete, A.D.; Kashem, M.A.; Nasrallah, F.A.; Bröer, S. Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem. Res., 2012, 37(11), 2541-2553.
[http://dx.doi.org/10.1007/s11064-012-0847-5] [PMID: 22851350]
[46]
Minchin, M.C.W.; Beart, P.M. Compartmentation of amino acid metabolism in the rat dorsal root ganglion; a metabolic and autoradiographic study. Brain Res., 1975, 83(3), 437-449.
[http://dx.doi.org/10.1016/0006-8993(75)90835-5] [PMID: 234271]
[47]
Van den Berg, C.J.; Mela, P.; Waelsch, H. On the contribution of the tricarboxylic acid cycle to the synthesis of glutamate, glutamine and aspartate in brain. Biochem. Biophys. Res. Commun., 1966, 23(4), 479-484.
[http://dx.doi.org/10.1016/0006-291X(66)90753-4] [PMID: 5961085]
[48]
Rowlands, B.D.; Klugmann, M.; Rae, C.D. Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation. J. Neurochem., 2017, 140(6), 903-918.
[http://dx.doi.org/10.1111/jnc.13916] [PMID: 27925207]
[49]
Andersen, J.V.; McNair, L.F.; Schousboe, A.; Waagepetersen, H.S. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis. J. Neurosci. Res., 2017, 95(11), 2207-2216.
[http://dx.doi.org/10.1002/jnr.24038] [PMID: 28244146]
[50]
Waniewski, R.A.; Martin, D.L. Preferential utilization of acetate by astrocytes is attributable to transport. J. Neurosci., 1998, 18(14), 5225-5233.
[http://dx.doi.org/10.1523/JNEUROSCI.18-14-05225.1998] [PMID: 9651205]
[51]
Hallows, W.C.; Lee, S.; Denu, J.M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10230-10235.
[http://dx.doi.org/10.1073/pnas.0604392103] [PMID: 16790548]
[52]
Park, P.H.; Miller, R.; Shukla, S.D. Acetylation of histone H3 at lysine 9 by ethanol in rat hepatocytes. Biochem. Biophys. Res. Commun., 2003, 306(2), 501-504.
[http://dx.doi.org/10.1016/S0006-291X(03)01040-4] [PMID: 12804592]
[53]
Choudhury, M.; Shukla, S.D. Surrogate alcohols and their metabolites modify histone H3 acetylation: involvement of histone acetyl transferase and histone deacetylase. Alcohol. Clin. Exp. Res., 2008, 32(5), 829-839.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00630.x] [PMID: 18336638]
[54]
Park, P.H.; Lim, R.W.; Shukla, S.D. Gene-selective histone H3 acetylation in the absence of increase in global histone acetylation in liver of rats chronically fed alcohol. Alcohol Alcohol., 2012, 47(3), 233-239.
[http://dx.doi.org/10.1093/alcalc/ags004] [PMID: 22301686]
[55]
Lee, Y.J.; Shukla, S.D. Pro- and anti-apoptotic roles of c-Jun N-terminal kinase (JNK) in ethanol and acetaldehyde exposed rat hepatocytes. Eur. J. Pharmacol., 2005, 508(1-3), 31-45.
[http://dx.doi.org/10.1016/j.ejphar.2004.12.006] [PMID: 15680252]
[56]
Shukla, S.D.; Restrepo, R.; Fish, P.; Lim, R.W.; Ibdah, J.A. Different mechanisms for histone acetylation by ethanol and its metabolite acetate in rat primary hepatocytes. J. Pharmacol. Exp. Ther., 2015, 354(1), 18-23.
[http://dx.doi.org/10.1124/jpet.115.223867] [PMID: 25886906]
[57]
Kriss, C.L.; Gregory-Lott, E.; Storey, A.J.; Tackett, A.J.; Wahls, W.P.; Stevens, S.M., Jr In vivo metabolic tracing demonstrates the site-specific contribution of hepatic ethanol metabolism to histone acetylation. Alcohol. Clin. Exp. Res., 2018, 42(10), 1909-1923.
[http://dx.doi.org/10.1111/acer.13843] [PMID: 30030934]
[58]
Lieber, C.S.; Leo, M.A.; Wang, X.; Decarli, L.M. Alcohol alters hepatic FoxO1, p53, and mitochondrial SIRT5 deacetylation function. Biochem. Biophys. Res. Commun., 2008, 373(2), 246-252.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.006] [PMID: 18555008]
[59]
Kim, S.J.; Kwon, O.K.; Ki, S.H.; Jeong, T.C.; Lee, S. Characterization of novel mechanisms for steatosis from global protein hyperacetylation in ethanol-induced mouse hepatocytes. Biochem. Biophys. Res. Commun., 2015, 463(4), 832-838.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.154] [PMID: 26056001]
[60]
Fritz, K.S.; Green, M.F.; Petersen, D.R.; Hirschey, M.D. Ethanol metabolism modifies hepatic protein acylation in mice. PLoS One, 2013, 8(9)e75868
[http://dx.doi.org/10.1371/journal.pone.0075868] [PMID: 24073283]
[61]
Fritz, K.S.; Galligan, J.J.; Hirschey, M.D.; Verdin, E.; Petersen, D.R. Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice. J. Proteome Res., 2012, 11(3), 1633-1643.
[http://dx.doi.org/10.1021/pr2008384] [PMID: 22309199]
[62]
Picklo, M.J., Sr Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochem. Biophys. Res. Commun., 2008, 376(3), 615-619.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.039] [PMID: 18804449]
[63]
Shepard, B.D.; Tuma, D.J.; Tuma, P.L. Chronic ethanol consumption induces global hepatic protein hyperacetylation. Alcohol. Clin. Exp. Res., 2010, 34(2), 280-291.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01091.x] [PMID: 19951295]
[64]
You, M.; Liang, X.; Ajmo, J.M.; Ness, G.C. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 294(4), G892-G898.
[http://dx.doi.org/10.1152/ajpgi.00575.2007] [PMID: 18239056]
[65]
Ali, H.R.; Assiri, M.A.; Harris, P.S.; Michel, C.R.; Yun, Y.; Marentette, J.O.; Huynh, F.K.; Orlicky, D.J.; Shearn, C.T.; Saba, L.M.; Reisdorph, R.; Reisdorph, N.; Hirschey, M.D.; Fritz, K.S. Quantifying Competition among Mitochondrial Protein Acylation Events Induced by Ethanol Metabolism. J. Proteome Res., 2019, 18(4), 1513-1531.
[http://dx.doi.org/10.1021/acs.jproteome.8b00800] [PMID: 30644754]
[66]
Galligan, J.J.; Smathers, R.L.; Fritz, K.S.; Epperson, L.E.; Hunter, L.E.; Petersen, D.R. Protein carbonylation in a murine model for early alcoholic liver disease. Chem. Res. Toxicol., 2012, 25(5), 1012-1021.
[http://dx.doi.org/10.1021/tx300002q] [PMID: 22502949]
[67]
Pal-Bhadra, M.; Bhadra, U.; Jackson, D.E.; Mamatha, L.; Park, P.H.; Shukla, S.D. Distinct methylation patterns in histone H3 at Lys-4 and Lys-9 correlate with up- & down-regulation of genes by ethanol in hepatocytes. Life Sci., 2007, 81(12), 979-987.
[http://dx.doi.org/10.1016/j.lfs.2007.07.030] [PMID: 17826801]
[68]
Nicholas, P.C.; Kim, D.; Crews, F.T.; Macdonald, J.M. 1H NMR-based metabolomic analysis of liver, serum, and brain following ethanol administration in rats. Chem. Res. Toxicol., 2008, 21(2), 408-420.
[http://dx.doi.org/10.1021/tx700324t] [PMID: 18095657]
[69]
Masuo, Y.; Imai, T.; Shibato, J.; Hirano, M.; Jones, O.A.H.; Maguire, M.L.; Satoh, K.; Kikuchi, S.; Rakwal, R. Omic analyses unravels global molecular changes in the brain and liver of a rat model for chronic Sake (Japanese alcoholic beverage) intake. Electrophoresis, 2009, 30(8), 1259-1275.
[http://dx.doi.org/10.1002/elps.200900045] [PMID: 19382137]
[70]
Kashem, M.A.; Ahmed, S.; Sultana, N.; Ahmed, E.U.; Pickford, R.; Rae, C.; Šerý, O.; McGregor, I.S.; Balcar, V.J. Metabolomics of neurotransmitters and related metabolites in post=mortem tissue from the dorsal and ventral striatum of alcoholic human brain. Neurochem. Res., 2016, 41(1-2), 385-397.
[http://dx.doi.org/10.1007/s11064-016-1830-3] [PMID: 26801172]
[71]
Takarada, T.; Balcar, V.J.; Baba, K.; Takamoto, A.; Acosta, G.B.; Takano, K.; Yoneda, Y. Uptake of [3H]L-serine in rat brain synaptosomal fractions. Brain Res., 2003, 983(1-2), 36-47.
[http://dx.doi.org/10.1016/S0006-8993(03)03024-5] [PMID: 12914964]
[72]
Jaeken, J.; Detheux, M.; Fryns, J-P.; Collet, J.F.; Alliet, P.; Van Schaftingen, E. Phosphoserine phosphatase deficiency in a patient with Williams syndrome. J. Med. Genet., 1997, 34(7), 594-596.
[http://dx.doi.org/10.1136/jmg.34.7.594] [PMID: 9222972]
[73]
Mothet, J.P.; Parent, A.T.; Wolosker, H.; Brady, R.O., Jr; Linden, D.J.; Ferris, C.D.; Rogawski, M.A.; Snyder, S.H. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA, 2000, 97(9), 4926-4931.
[http://dx.doi.org/10.1073/pnas.97.9.4926] [PMID: 10781100]
[74]
Kashem, M.A.; James, G.; Harper, C.; Wilce, P.; Matsumoto, I. Differential protein expression in the corpus callosum (splenium) of human alcoholics: a proteomics study. Neurochem. Int., 2007, 50(2), 450-459.
[http://dx.doi.org/10.1016/j.neuint.2006.10.009] [PMID: 17141922]
[75]
Kashem, M.A.; Harper, C.; Matsumoto, I. Differential protein expression in the corpus callosum (genu) of human alcoholics. Neurochem. Int., 2008, 53(1-2), 1-11.
[http://dx.doi.org/10.1016/j.neuint.2008.04.003] [PMID: 18513832]
[76]
Kashem, M.A.; Etages, H.D.; Kopitar-Jerala, N.; McGregor, I.S.; Matsumoto, I. Differential protein expression in the corpus callosum (body) of human alcoholic brain. J. Neurochem., 2009, 110(2), 486-495.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06141.x] [PMID: 19457110]
[77]
Matsuda-Matsumoto, H.; Iwazaki, T.; Kashem, M.A.; Harper, C.; Matsumoto, I. Differential protein expression profiles in the hippocampus of human alcoholics. Neurochem. Int., 2007, 51(6-7), 370-376.
[http://dx.doi.org/10.1016/j.neuint.2007.04.001] [PMID: 17513015]
[78]
Matsumoto, I.; Alexander-Kaufman, K.; Iwazaki, T.; Kashem, M.A.; Matsuda-Matsumoto, H. CNS proteomes in alcohol and drug abuse and dependence. Expert Rev. Proteomics, 2007, 4(4), 539-552.
[http://dx.doi.org/10.1586/14789450.4.4.539] [PMID: 17705711]
[79]
Alexander-Kaufman, K.; Harper, C.; Wilce, P.; Matsumoto, I. Cerebellar vermis proteome of chronic alcoholic individuals. Alcohol. Clin. Exp. Res., 2007, 31(8), 1286-1296.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00437.x] [PMID: 17561921]
[80]
Hargreaves, G.A.; Quinn, H.; Kashem, M.A.; Matsumoto, I.; McGregor, I.S. Proteomic analysis demonstrates adolescent vulnerability to lasting hippocampal changes following chronic alcohol consumption. Alcohol. Clin. Exp. Res., 2009, 33(1), 86-94.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00814.x] [PMID: 18945221]
[81]
Kashem, M.A.; Ahmed, S.; Sarker, R.; Ahmed, E.U.; Hargreaves, G.A.; McGregor, I.S. Long-term daily access to alcohol alters dopamine-related synthesis and signaling proteins in the rat striatum. Neurochem. Int., 2012, 61(8), 1280-1288.
[http://dx.doi.org/10.1016/j.neuint.2012.08.013] [PMID: 22995788]
[82]
Kashem, M.A.; Sultana, N.; Balcar, V.J. Exposure of rat neural stem cells to ethanol affects cell numbers and alters expression of 28 protein. Neurochem. Res., 2018, 43(9), 1841-1854.
[http://dx.doi.org/10.1007/s11064-018-2600-1] [PMID: 30043189]
[83]
Sutherland, G.T.; Sheedy, D.; Kril, J.J. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age. Alcohol. Clin. Exp. Res., 2014, 38(1), 1-8.
[http://dx.doi.org/10.1111/acer.12243] [PMID: 24033426]
[84]
Gorini, G.; Harris, R.A.; Mayfield, R.D. Proteomic approaches and identification of novel therapeutic targets for alcoholism. Neuropsychopharmacology, 2014, 39(1), 104-130.
[http://dx.doi.org/10.1038/npp.2013.182] [PMID: 23900301]
[85]
Davidson, M.; Shanley, B.; Wilce, P. Increased NMDA-induced excitability during ethanol withdrawal: a behavioural and histological study. Brain Res., 1995, 674(1), 91-96.
[http://dx.doi.org/10.1016/0006-8993(94)01440-S] [PMID: 7773699]
[86]
Hardy, P.A.; Chen, W.; Wilce, P.A. Chronic ethanol exposure and withdrawal influence NMDA receptor subunit and splice variant mRNA expression in the rat cerebral cortex. Brain Res., 1999, 819(1-2), 33-39.
[http://dx.doi.org/10.1016/S0006-8993(98)01340-7] [PMID: 10082858]
[87]
Flatscher-Bader, T.; Wilce, P.A. Impact of alcohol abuse on protein expression of midkine and excitatory amino acid transporter 1 in the human prefrontal cortex. Alcohol. Clin. Exp. Res., 2008, 32(10), 1849-1858.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00754.x] [PMID: 18657127]
[88]
Kryger, R.; Wilce, P.A. The effects of alcoholism on the human basolateral amygdala. Neuroscience, 2010, 167(2), 361-371.
[http://dx.doi.org/10.1016/j.neuroscience.2010.01.061] [PMID: 20153402]
[89]
Rimondini, R.; Arlinde, C.; Sommer, W.; Heilig, M. Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J., 2002, 16(1), 27-35.
[http://dx.doi.org/10.1096/fj.01-0593com] [PMID: 11772933]
[90]
Kashem, M.A.; Sultana, N.; Pow, D.V.; Balcar, V.J. GLAST (GLutamate and ASpartate Transporter) in human prefrontal cortex; interactome in healthy brains and the expression of GLAST in brains of chronic alcoholics. Neurochem. Int., 2019, 125, 111-116.
[http://dx.doi.org/10.1016/j.neuint.2019.02.009] [PMID: 30817938]
[91]
Logan, W.J.; Snyder, S.H. Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature, 1971, 234(5327), 297-299.
[http://dx.doi.org/10.1038/234297b0] [PMID: 4333164]
[92]
Balcar, V.J.; Johnston, G.A.R. The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J. Neurochem., 1972, 19(11), 2657-2666.
[http://dx.doi.org/10.1111/j.1471-4159.1972.tb01325.x] [PMID: 4404455]
[93]
Danbolt, N.C.J. Glutamate uptake. Prog. Neurobiol., 2001, 65(1), 1-105.
[http://dx.doi.org/10.1016/S0301-0082(00)00067-8] [PMID: 11369436]
[94]
Pajarillo, E.; Rizor, A.; Lee, J.; Aschner, M.; Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology, 2019, 161107559
[http://dx.doi.org/10.1016/j.neuropharm.2019.03.002] [PMID: 30851309]
[95]
Spencer, S.; Kalivas, P.W. Glutamate transport: A new bench to bedside mechanism for trating drug abuse. Int. J. Neuropsychopharmacol., 2017, 20(10), 797-812.
[http://dx.doi.org/10.1093/ijnp/pyx050] [PMID: 28605494]
[96]
O’Donovan, S.M.; Sullivan, C.R.; McCullumsmith, R.E. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr., 2017, 3(1), 32.
[http://dx.doi.org/10.1038/s41537-017-0037-1] [PMID: 28935880]
[97]
Šerý, O.; Sultana, N.; Kashem, M.A.; Pow, D.V.; Balcar, V.J. GLAST nut not least – distribution function, genetics and epigenetics of L-glutamate transport in brain – Focus on GLAST/EAAT1. Neurochem. Res., 2015, 40(12), 2461-2472.
[http://dx.doi.org/10.1007/s11064-015-1605-2] [PMID: 25972039]
[98]
Balcar, V.J. Molecular pharmacology of the Na+-dependent transport of acidic amino acids in the mammalian central nervous system. Biol. Pharm. Bull., 2002, 25(3), 291-301.
[http://dx.doi.org/10.1248/bpb.25.291] [PMID: 11913521]
[99]
Petr, G.T.; Sun, Y.; Frederick, N.M.; Zhou, Y.; Dhamne, S.C.; Hameed, M.Q.; Miranda, C.; Bedoya, E.A.; Fischer, K.D.; Armsen, W.; Wang, J.; Danbolt, N.C.; Rotenberg, A.; Aoki, C.J.; Rosenberg, P.A. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J. Neurosci., 2015, 35(13), 5187-5201.
[http://dx.doi.org/10.1523/JNEUROSCI.4255-14.2015] [PMID: 25834045]
[100]
Danbolt, N.C.; Furness, D.N.; Zhou, Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem. Int., 2016, 98, 29-45.
[http://dx.doi.org/10.1016/j.neuint.2016.05.009] [PMID: 27235987]
[101]
Susarla, B.T.S.; Robinson, M.B. Rottlerin, an inhibitor of protein kinase Cdelta (PKCdelta), inhibits astrocytic glutamate transport activity and reduces GLAST immunoreactivity by a mechanism that appears to be PKCdelta-independent. J. Neurochem., 2003, 86(3), 635-645.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01886.x] [PMID: 12859677]
[102]
Shin, J.W.; Nguyen, K.T.D.; Pow, D.V.; Knight, T.; Buljan, V.; Bennett, M.R.; Balcar, V.J. Distribution of glutamate transporter GLAST in membranes of cultured astrocytes in the presence of glutamate transport substrates and ATP. Neurochem. Res., 2009, 34(10), 1758-1766.
[http://dx.doi.org/10.1007/s11064-009-9982-z] [PMID: 19440835]
[103]
Balcar, V.J.; Kashem, M.A.; Sultana, N. Proteomics and immunocytochemistry of rat neural stem cells, neurons and astrocytes exposed to alcohol: Implications for FASD. J. Neurochem., 2017, 142, 232-232.
[104]
Leggio, L.; Garbutt, J.C.; Addolorato, G. Effectiveness and safety of baclofen in the treatment of alcohol dependent patients. CNS Neurol. Disord. Drug Targets, 2010, 9(1), 33-44.
[http://dx.doi.org/10.2174/187152710790966614] [PMID: 20201813]
[105]
Kashem, M.A.; Sultana, N.; Balcar, V.J. Exposure of rat neural stem cells to ethanol affects cell numbers and alters expression of 28 proteins. Neurochem. Res., 2018, 43(9), 1841-1854.
[http://dx.doi.org/10.1007/s11064-018-2600-1] [PMID: 30043189]
[106]
Nguyen, K.T.D.; Buljan, V.; Else, P.L.; Pow, D.V.; Balcar, V.J. Cardiac glycosides ouabain and digoxin interfere with the regulation of glutamate transporter GLAST in astrocytes cultured from neonatal rat brain. Neurochem. Res., 2010, 35(12), 2062-2069.
[http://dx.doi.org/10.1007/s11064-010-0274-4] [PMID: 20890657]
[107]
Sheean, R.K.; Lau, C.L.; Shin, Y.S.; O’Shea, R.D.; Beart, P.M. Links between L-glutamate transporters, Na+/K+-ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin. Neuroscience, 2013, 254, 335-346.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.043] [PMID: 24095695]
[108]
Taylor, D.L. The differential effects of ethanol and baclofen on astroglial morphology., 2014.December;
[109]
Babu, P.P.; Kumari, L.R.; Vemuri, M.C. Differential changes in cell morphology, macromolecular composition and membrane protein profiles of neurons and astrocytes in chronic ethanol treated rats. Mol. Cell. Biochem., 1994, 130(1), 29-40.
[http://dx.doi.org/10.1007/BF01084265] [PMID: 7514715]
[110]
Barret, L.; Soubeyran, A.; Usson, Y.; Eysseric, H.; Saxod, R. Characterization of the morphological variations of astrocytes in culture following ethanol exposure. Neurotoxicology, 1996, 17(2), 497-507.
[PMID: 8856744]
[111]
Matsutani, S.; Yamamoto, N. Neuronal regulation of astrocyte morphology in vitro is mediated by GABAergic signaling. Glia, 1997, 20(1), 1-9.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199705)20:1<1::AID-GLIA1>3.0.CO;2-E] [PMID: 9145300]
[112]
Robinson, M.B.; Jackson, J.G. Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem. Int., 2016, 98, 56-71.
[http://dx.doi.org/10.1016/j.neuint.2016.03.014] [PMID: 27013346]
[113]
Pellerin, L.; Magistretti, P.J. Glutamate uptake stimulates Na+,K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J. Neurochem., 1997, 69(5), 2132-2137.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69052132.x] [PMID: 9349559]
[114]
Nanitsos, E.K.; Acosta, G.B.; Saihara, Y.; Stanton, D.; Liao, L.P.; Shin, J.W.; Rae, C.; Balcar, V.J. Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na-/K(+)-ATPase in brain tissue in vitro. Clin. Exp. Pharmacol. Physiol., 2004, 31(11), 762-769.
[http://dx.doi.org/10.1111/j.1440-1681.2004.04090.x] [PMID: 15566390]
[115]
Bauer, D.E.; Jackson, J.G.; Genda, E.N.; Montoya, M.M. Yudkoff, Robinson, M.B. Neurochem. Int., 2012, 61, 566-574.
[http://dx.doi.org/10.1016/j.neuint.2012.01.013] [PMID: 22306776]
[116]
Alexander-Kaufman, K.; Cordwell, S.; Harper, C.; Matsumoto, I. A proteome analysis of the dorsolateral prefrontal cortex in human alcoholic patients. Proteomics Clin. Appl., 2007, 1(1), 62-72.
[http://dx.doi.org/10.1002/prca.200600417] [PMID: 21136612]
[117]
Dodd, P.R.; Lewohl, J.M. Cell death mediated by amino acid transmitter receptors in human alcoholic brain damage: conflicts in the evidence. Ann. N. Y. Acad. Sci., 1998, 844, 50-58.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb08221.x] [PMID: 9668664]
[118]
Redecker, P.; Kreutz, M.R.; Bockmann, J.; Gundelfinger, E.D.; Boeckers, T.M. Brain synaptic junctional proteins at the acrosome of rat testicular germ cells. J. Histochem. Cytochem., 2003, 51(6), 809-819.
[http://dx.doi.org/10.1177/002215540305100612] [PMID: 12754292]
[119]
Takarada, T.; Hinoi, E.; Balcar, V.J.; Taniura, H.; Yoneda, Y. Possible expression of functional glutamate transporters in the rat testis. J. Endocrinol., 2004, 181(2), 233-244.
[http://dx.doi.org/10.1677/joe.0.1810233] [PMID: 15128272]
[120]
Hu, J.H.; Yang, N.; Ma, Y.H.; Jiang, J.; Zhang, J.F.; Fei, J.; Guo, L.H. Identification of glutamate receptors and transporters in mouse and human sperm. J. Androl., 2004, 25(1), 140-146.
[http://dx.doi.org/10.1002/j.1939-4640.2004.tb02769.x] [PMID: 14662797]
[121]
Lee, A.; Anderson, A.R.; Barnett, A.C.; Chan, A.; Pow, D.V. Expression of multiple glutamate transporter splice variants in the rodent tstis. Asian J. Androl., 2011, 13, 154-165.
[http://dx.doi.org/10.1038/aja.2010.99]
[122]
Kashem, M.A.; Lee, A.; Pow, D.V.; Šerý, O.; Balcar, V.J. Could ethanol-induced alterations in the expression of glutamate transporters in testes contribute to the effect of paternal drinking on the risk of abnormalities in the offspring? Med. Hypotheses, 2017, 98, 57-59.
[http://dx.doi.org/10.1016/j.mehy.2016.11.015] [PMID: 28012606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy