Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Drug Conjugates Using Different Dynamic Covalent Bonds and their Application in Cancer Therapy

Author(s): Panagiotis Theodosis-Nobelos, Despina Charalambous, Charalampos Triantis and Maria Rikkou-Kalourkoti*

Volume 17, Issue 7, 2020

Page: [542 - 557] Pages: 16

DOI: 10.2174/1567201817999200508092141

Price: $65

Abstract

Polymer-drug conjugates are polymers with drug molecules chemically attached to polymer side chains through either a weak (degradable bond) or a dynamic covalent bond. These systems are known as pro-drugs in the inactive form when passing into the blood circulation system. When the prodrug reaches the target organ, tissue or cell, the drug is activated by cleavage of the bond between the drug and polymer, under certain conditions existing in the target organ. The advantages of polymer-drug conjugates compared to other controlled-release carriers and conventional pharmaceutical formulations are the increased drug loading capacity, prolonged in vivo circulation time, enhanced intercellular uptake, better-controlled release, improved therapeutic efficacy, and enhanced permeability and retention effect. The aim of the present review is the investigation of polymer-drug conjugates bearing anti-cancer drugs. The polymer, through its side chains, is linked to the anti-cancer drugs via dynamic covalent bonds, such as hydrazone/imine bonds, disulfide bonds, and boronate esters. These dynamic covalent bonds are cleaved in conditions existing only in cancer cells and not in healthy ones. Thus, ensuring the selective release of drug to the targeted tissue, reducing in this way, the frequent side effects of chemotherapy, leading to a more targeted application, despite the nature of the applied polymer, possessing the ability to aim tumors selectively via incorporation of a relative ligand.

Keywords: Polymer-drug conjugates, dynamic covalent bonds, anticancer pro-drugs, controlled drug delivery, targeted polymers, degradable polymers.

Graphical Abstract
[1]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[2]
Salem, H.; Attiya, G.; El-Fishawy, N. Classification of Human cancer diseases by gene expression profiles. Appl. Soft Comput. J., 2017, 50, 124-134.
[http://dx.doi.org/10.1016/j.asoc.2016.11.026]
[3]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[4]
Meacham, C.E.; Morrison, S.J. Tumour heterogeneity and cancer cell plasticity. Nature, 2013, 501(7467), 328-337.
[http://dx.doi.org/10.1038/nature12624] [PMID: 24048065]
[5]
Alibert, C.; Goud, B.; Manneville, J.B. Are cancer cells really softer than normal cells? Biol. Cell, 2017, 109(5), 167-189.
[http://dx.doi.org/10.1111/boc.201600078] [PMID: 28244605]
[6]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[7]
Urruticoechea, a; Alemany, R.; Balart, J.; Villanueva, A.; Viñals, F.; Capellá, G. Recent advances in cancer therapy: an overview. Curr. Pharm. Des., 2010, 16, 3-10.
[8]
Brown, J.M.; Giaccia, A.J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res., 1998, 58(7), 1408-1416.
[PMID: 9537241]
[9]
Chabner, B.A.; Roberts, T.G. Jr. Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[10]
Liu, H.; Lv, L.; Yang, K. Chemotherapy targeting cancer stem cells. Am. J. Cancer Res., 2015, 5(3), 880-893.
[PMID: 26045975]
[11]
Pillai, O.; Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol., 2001, 5(4), 447-451.
[http://dx.doi.org/10.1016/S1367-5931(00)00227-1] [PMID: 11470609]
[12]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[13]
Bennet, D.; Kim, S. Polymer nanoparticles for smart drug delivery. appli. nanotechnol. drug deliv, 2014, pp. 257-310.
[http://dx.doi.org/10.5772/58422]
[14]
Priya James, H.; John, R.; Alex, A.; Anoop, K.R. Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm. Sin. B, 2014, 4(2), 120-127.
[http://dx.doi.org/10.1016/j.apsb.2014.02.005] [PMID: 26579373]
[15]
Uhrich, K.E.; Cannizzaro, S.M.; Langer, R.S.; Shakesheff, K.M. Polymeric systems for controlled drug release. Chem. Rev., 1999, 99(11), 3181-3198.
[http://dx.doi.org/10.1021/cr940351u] [PMID: 11749514]
[16]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[17]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[18]
Ercole, F.; Thomas, P. Davis, Richard A. Evans. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem., 2010, 1, 37-54.
[http://dx.doi.org/10.1039/B9PY00300B]
[19]
Fenton, O.S.; Olafson, K.N.; Pillai, P.S.; Mitchell, M.J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater., 2018, 30(7), e1705328.
[http://dx.doi.org/10.1002/adma.201705328] [PMID: 29736981]
[20]
Rikkou, M.D.; Patrickios, C.S. Polymers prepared using cleavable initiators: synthesis, characterization and degradation. Prog. Polym. Sci., 2011, 36(8), 1079-1097.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.004]
[21]
Khoshnevisan, K.; Maleki, H.; Samadian, H.; Shahsavari, S.; Sarrafzadeh, M.H.; Larijani, B.; Dorkoosh, F.A.; Haghpanah, V.; Khorramizadeh, M.R. Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr. Polym., 2018, 198(198), 131-141.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.072] [PMID: 30092983]
[22]
Holowka, E.P.; Bhatia, S.K. Drug delivery. Mat. Des. Clin. Perspect; Springer-Verlag: New York, 2014, pp. 7-35.
[23]
Chandra, R.; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci., 1998, 23, 1273-1335.
[http://dx.doi.org/10.1016/S0079-6700(97)00039-7]
[24]
Putnam, D.; Kopeček, J. Polymer conjugates with anticancer activity. Biopolymers II; Peppas, N.A.; Langer, R.S. eds.; springer berlin heidelberg: berlin, heidelberg,; , 1995, pp. 55-123.
[http://dx.doi.org/10.1007/3540587888_14]
[25]
Feng, Q.; Tong, R.; Tong, C.R. Anticancer nanoparticulate polymer-drug conjugate. Bioeng. Transl. Med., 2016, 1(3), 277-296.
[http://dx.doi.org/10.1002/btm2.10033] [PMID: 29313017]
[26]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[27]
Dunn, S.S.; Byrne, J.D.; Perry, J.L.; Chen, K.; Desimone, J.M. Generating better medicines for cancer. ACS Macro Lett., 2013, 2(5), 393-397.
[http://dx.doi.org/10.1021/mz400116a] [PMID: 23772351]
[28]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[29]
Nori, A.; Kopeček, J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. adv. drug deliv. rev., 2005, 57(4 spec.iss.), 609-636.
[http://dx.doi.org/10.1016/j.addr.2004.10.006]
[30]
Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: reorganizable Polymers with dynamic covalent bonds. Prog. Polym. Sci., 2009, 34(7), 581-604.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.03.001]
[31]
Rowan, S.J.; Cantrill, S.J.; Cousins, G.R.L.; Sanders, J.K.M.; Stoddart, J.F. Dynamic covalent chemistry. angewandte Chemie. Int. Ed., 2002, 41(6), 898-952.
[32]
Shajari, N; Mansoori, B; Davudian, S; Mohammadi, A; Baradaran, B Overcoming the challenges of siRNA delivery: nanoparticle strategies. Curr. Drug Deliv., 2017, 14(1), 36-46.
[33]
Li, J; Liang, H; Liu, J; Wang, Z Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int. J. Pharm., 2018, 546(1-2), 215-225.
[34]
Liu, J.; Li, J; Liu, N In vitro studies of phospholipid-modified PAMAM-siMDR1 complexes for the reversal of multidrug resistance in human breast cancer cells. Int. J. Pharm., 2017, 530(1-2), 291-299.
[35]
Lascano, S.; Zhang, K-D.; Wehlauch, R.; Gademann, K.; Sakai, N.; Matile, S.; Hu, X.; Liu, G.; Li, Y.Y.; Wang, X.X. Disulfide-functionalized unimolecular micelles as selective redox-responsive nanocarriers. Biochemistry, 2015, 10(1), 1249-1253.
[36]
Du, N.; Song, L-P.; Li, X-S.; Wang, L.; Wan, L.; Ma, H-Y.; Zhao, H. Novel pH-sensitive nanoformulated docetaxel as a potential therapeutic strategy for the treatment of cholangiocarcinoma. J. Nanobiotechnol, 2015, 13(1), 17-23.
[http://dx.doi.org/10.1186/s12951-015-0066-8] [PMID: 25889600]
[37]
Gao, Y.; Zhou, Y.; Zhao, L.; Zhang, C.; Li, Y.; Li, J.; Li, X.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater., 2015, 23, 127-135.
[http://dx.doi.org/10.1016/j.actbio.2015.05.021] [PMID: 26013038]
[38]
Cui, Q.; Wu, F.; Wang, E.; Stimuli-responsive, A. Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure. J. Phys. Chem. B, 2011, 115(19), 5913-5922.
[http://dx.doi.org/10.1021/jp200659u] [PMID: 21520977]
[39]
Guo, Y.; Zhao, Y.; Zhao, J.; Han, M.; Zhang, A.; Wang, X. Codendrimer from polyamidoamine (PAMAM) and oligoethylene dendron as a thermosensitive drug carrier. Bioconjug. Chem., 2014, 25(1), 24-31.
[http://dx.doi.org/10.1021/bc300560p] [PMID: 24295126]
[40]
Agut, W.; Brûlet, A.; Schatz, C.; Taton, D.; Lecommandoux, S. pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly[2-(dimethylamino)ethyl methacrylate]-b-poly(glutamic acid) double hydrophilic block copolymers. Langmuir, 2010, 26(13), 10546-10554.
[http://dx.doi.org/10.1021/la1005693] [PMID: 20491497]
[41]
Porsch, C.; Zhang, Y.; Montañez, M.I.; Malho, J.M.; Kostiainen, M.A.; Nyström, A.M.; Malmström, E. Disulfide-functionalized unimolecular micelles as selective redox-responsive nanocarriers. Biomacromolecules, 2015, 16(9), 2872-2883.
[http://dx.doi.org/10.1021/acs.biomac.5b00809] [PMID: 26200248]
[42]
Yin, T.; Wang, L.; Yin, L.; Zhou, J.; Huo, M. Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer. Biomaterials, 2015, 61, 10-25.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.022] [PMID: 25996409]
[43]
Li, J.; Yin, T.; Wang, L.; Yin, L.; Zhou, J.; Huo, M. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel. Int. J. Pharm., 2015, 483(1-2), 38-48.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.002] [PMID: 25655715]
[44]
Schellekens, H.; Hennink, W.E.; Brinks, V. The immunogenicity of polyethylene glycol: facts and fiction. Pharm. Res., 2013, 30(7), 1729-1734.
[http://dx.doi.org/10.1007/s11095-013-1067-7] [PMID: 23673554]
[45]
Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today, 2005, 10(21), 1451-1458.
[http://dx.doi.org/10.1016/S1359-6446(05)03575-0] [PMID: 16243265]
[46]
Núñez, C.; Capelo, J.L.; Igrejas, G.; Alfonso, A.; Botana, L.M.; Lodeiro, C. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials, 2016, 97, 34-50.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.027] [PMID: 27162073]
[47]
Razazan, A.; Behravan, J.; Arab, A.; Barati, N.; Arabi, L.; Gholizadeh, Z.; Hatamipour, M.; Reza Nikpoor, A.; Momtazi-Borojeni, A.A.; Mosaffa, F.; Ghahremani, M.H.; Jaafari, M.R. Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PLoS One, 2017, 12(10), e0185099.
[http://dx.doi.org/10.1371/journal.pone.0185099] [PMID: 29045460]
[48]
Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 2014, 15(6), 1955-1969.
[http://dx.doi.org/10.1021/bm5003009] [PMID: 24798476]
[49]
Shi, M. Ho, K.; Keating A.; Molly S. Shoichet. Doxorubicin-conjugated immuno-nanoparticles for intracellular anticancer drug delivery. Adv. Funct. Mat., 2009, 19(11), 1689-1696.
[50]
Wilson, A.; Gasparini, G.; Matile, S. Functional systems with orthogonal dynamic covalent bonds. Chem. Soc. Rev., 2014, 43(6), 1948-1962.
[http://dx.doi.org/10.1039/C3CS60342C] [PMID: 24287608]
[51]
Gou, P.; Liu, W.; Mao, W.; Tang, J.; Shen, Y.; Sui, M. Self-assembling doxorubicinprodrug forming nanoparticles for cancer chemotherapy: synthesis and anticancer study in vitro and in vivo. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(3), 284-292.
[http://dx.doi.org/10.1039/C2TB00004K]
[52]
Chen, X.; Parelkar, S.S.; Henchey, E.; Schneider, S.; Emrick, T. PolyMPC-doxorubicin prodrugs. Bioconjug. Chem., 2012, 23(9), 1753-1763.
[http://dx.doi.org/10.1021/bc200667s] [PMID: 22881479]
[53]
Bae, Y.; Nishiyama, N.; Fukushima, S.; Koyama, H.; Yasuhiro, M.; Kataoka, K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem., 2005, 16(1), 122-130.
[http://dx.doi.org/10.1021/bc0498166] [PMID: 15656583]
[54]
Du, J.Z.; Du, X.J.; Mao, C.Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc., 2011, 133(44), 17560-17563.
[http://dx.doi.org/10.1021/ja207150n] [PMID: 21985458]
[55]
del Rosario, L.S.; Demirdirek, B.; Harmon, A.; Orban, D.; Uhrich, K.E. Micellar nanocarriers assembled from doxorubicin-conjugated amphiphilic macromolecules (DOX-AM). Macromol. Biosci., 2010, 10(4), 415-423.
[http://dx.doi.org/10.1002/mabi.200900335] [PMID: 20127669]
[56]
Howard, M.D.; Ponta, A.; Eckman, A.; Jay, M.; Bae, Y. Polymer micelles with hydrazone-ester dual linkers for tunable release of dexamethasone. Pharm. Res., 2011, 28(10), 2435-2446.
[http://dx.doi.org/10.1007/s11095-011-0470-1] [PMID: 21614636]
[57]
Zhang, X.; Huang, Y.; Ghazwani, M.; Zhang, P.; Li, J.; Thorne, S.H.; Li, S. Tunable PH-responsive polymeric micelle for cancer treatment. ACS Macro Lett., 2015, 4(6), 620-623.
[http://dx.doi.org/10.1021/acsmacrolett.5b00165]
[58]
Kinoh, H.; Kataoka, K.; Cabral, H.; Miura, Y.; Fukushima, S.; Nishiyama, N.; Chida, T. micelle containing epirubicin-complexed block copolymer and anti-cancer agent, and pharmaceutical composition containing said micelle applicable to treatment of cancer, resistant cancer or metastatic cancer. us patent 10220026b2, 2019 5 march.
[59]
Shi, M.; Ho, K.; Keating, A.; Shoichet, M.S. Doxorubicin-conjugated immuno-nanoparticles for intracellular anticancer drug delivery. Adv. Funct. Mater., 2009, 19(11), 1689-1696.
[http://dx.doi.org/10.1002/adfm.200801271]
[60]
Ulbrich, K.; Etrych, T.; Chytil, P.; Jelínková, M.; Ríhová, B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J. Drug Target., 2004, 12(8), 477-489.
[http://dx.doi.org/10.1080/10611860400011869] [PMID: 15621674]
[61]
Sirova, M.; Strohalm, J.; Subr, V.; Plocova, D.; Rossmann, P.; Mrkvan, T.; Ulbrich, K.; Rihova, B. Treatment with HPMA copolymer-based doxorubicin conjugate containing human immunoglobulin induces long-lasting systemic anti-tumour immunity in mice. Cancer Immunol. Immunother., 2007, 56(1), 35-47.
[http://dx.doi.org/10.1007/s00262-006-0168-0] [PMID: 16636810]
[62]
Betz, S.F. Disulfide bonds and the stability of globular proteins. Protein Sci., 1993, 2(10), 1551-1558.
[http://dx.doi.org/10.1002/pro.5560021002] [PMID: 8251931]
[63]
Zhou, N.E.; Kay, C.M.; Hodges, R.S. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded α-helical coiled-coil. Biochemistry, 1993, 32(12), 3178-3187.
[http://dx.doi.org/10.1021/bi00063a033] [PMID: 8457578]
[64]
Abkevich, V.I.; Shakhnovich, E.I. What can disulfide bonds tell us about protein energetics, function and folding: simulations and bioinformatics analysis. J. Mol. Biol., 2000, 300(4), 975-985.
[http://dx.doi.org/10.1006/jmbi.2000.3893] [PMID: 10891282]
[65]
Hogg, P.J. Disulfide bonds as switches for protein function. Trends Biochem. Sci., 2003, 28(4), 210-214.
[http://dx.doi.org/10.1016/S0968-0004(03)00057-4] [PMID: 12713905]
[66]
Schmidt, B.; Ho, L.; Hogg, P.J. Allosteric disulfide bonds. Biochemistry, 2006, 45(24), 7429-7433.
[http://dx.doi.org/10.1021/bi0603064] [PMID: 16768438]
[67]
Purposes, A.; Identification, F.; Army, U.S.; Scientific, A.C. The scission of the sulfur-sulfur bond. Chem. Rev., 1959, 59, 583-628.
[http://dx.doi.org/10.1021/cr50028a003]
[68]
Fernandes, P.A.; Ramos, M.J. Theoretical insights into the mechanism for thiol/disulfide exchange. Chemistry, 2004, 10(1), 257-266.
[http://dx.doi.org/10.1002/chem.200305343] [PMID: 14695571]
[69]
Cleland, W.W. Dithiothreitol, a new protective reagent for SH groups. Biochemistry, 1964, 3, 480-482.
[http://dx.doi.org/10.1021/bi00892a002] [PMID: 14192894]
[70]
Hu, X.; Hu, J.; Tian, J.; Ge, Z.; Zhang, G.; Luo, K.; Liu, S. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc., 2013, 135(46), 17617-17629.
[http://dx.doi.org/10.1021/ja409686x] [PMID: 24160840]
[71]
Hu, X.; Liu, G.; Li, Y.; Wang, X.; Liu, S. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc., 2015, 137(1), 362-368.
[http://dx.doi.org/10.1021/ja5105848] [PMID: 25495130]
[72]
Sun, J.; Liu, Y.; Chen, Y.; Zhao, W.; Zhai, Q.; Rathod, S.; Huang, Y.; Tang, S.; Kwon, Y.T.; Fernandez, C.; Venkataramanan, R.; Li, S. Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. J. Control. Release, 2017, 258(258), 43-55.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.006] [PMID: 28501705]
[73]
Chen, W.; Yuan, Y.; Cheng, D.; Chen, J.; Wang, L.; Shuai, X. Co-delivery of doxorubicin and siRNA with reduction and pH dually sensitive nanocarrier for synergistic cancer therapy. Small, 2014, 10(13), 2678-2687.
[http://dx.doi.org/10.1002/smll.201303951] [PMID: 24668891]
[74]
Nishiyabu, R.; Kubo, Y.; James, T.D.; Fossey, J.S. Boronic acid building blocks: tools for sensing and separation. Chem. Commun. (Camb.), 2011, 47(4), 1106-1123.
[http://dx.doi.org/10.1039/c0cc02920c] [PMID: 21116582]
[75]
Lascano, S.; Zhang, K.D.; Wehlauch, R.; Gademann, K.; Sakai, N.; Matile, S. The third orthogonal dynamic covalent bond. Chem. Sci. (Camb.), 2016, 7(7), 4720-4724.
[http://dx.doi.org/10.1039/C6SC01133K] [PMID: 30155121]
[76]
Aguirre-Chagala, Y.E.; Santos, J.L.; Huang, Y.; Herrera-Alonso, M. Phenylboronic acid-installed polycarbonates for the PH-dependent release of diol-containing molecules. ACS Macro Lett., 2014, 3(12), 1249-1253.
[http://dx.doi.org/10.1021/mz500594m]
[77]
Li, D.; Han, J.; Ding, J.; Chen, L.; Chen, X. Acid-sensitive dextran prodrug: a higher molecular weight makes a better efficacy. Carbohydr. Polym., 2017, 161, 33-41.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.070] [PMID: 28189244]
[78]
Feng, X.; Li, D.; Han, J.; Zhuang, X.; Ding, J. Schiff base bond-linked polysaccharide-doxorubicin conjugate for upregulated cancer therapy. Mater. Sci. Eng. C, 2017, 76, 1121-1128.
[http://dx.doi.org/10.1016/j.msec.2017.03.201] [PMID: 28482476]
[79]
Jin, R.; Guo, X.; Dong, L.; Xie, E.; Cao, A.; Settanni, G.; Zhou, J.; Suo, T.; Schöttler, S.; Landfester, K. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy. Colloids Surf. B Biointerfaces, 2017, 158, 47-56.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.023] [PMID: 28667893]
[80]
Zhao, K.; Li, D.; Xu, W.; Ding, J.; Jiang, W.; Li, M.; Wang, C.; Chen, X. Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials, 2017, 116, 82-94.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.030] [PMID: 27914269]
[81]
Zhang, X.; Li, C.; Zheng, H.; Song, H.; Li, L.; Xiong, F.; Yang, J.; Qiu, T. Glutathione-dependent micelles based on carboxymethyl chitosan for delivery of doxorubicin. J. Biomater. Sci. Polym. Ed., 2016, 27(18), 1824-1840. [72].
[http://dx.doi.org/10.1080/09205063.2016.1238128] [PMID: 27707353]
[82]
Du, J.; Choi, B.; Liu, Y.; Feng, A.C.; Thang, S.H. Degradable pH and redox dual responsive nanoparticles for efficient covalent drug delivery. Polym. Chem., 2019, 10, 1291-1298.
[http://dx.doi.org/10.1039/C8PY01583J]
[83]
Sun, B.; Luo, C.; Yu, H.; Zhang, X.; Chen, Q.; Yang, W.; Wang, M.; Kan, Q.; Zhang, H.; Wang, Y.; He, Z.; Sun, J. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett., 2018, 18(6), 3643-3650.
[http://dx.doi.org/10.1021/acs.nanolett.8b00737] [PMID: 29726685]
[84]
Wang, D.; Zhao, T.; Zhu, X.; Yan, D.; Wang, W. Bioapplications of hyperbranched polymers. Chem. Soc. Rev., 2015, 44(12), 4023-4071.
[http://dx.doi.org/10.1039/C4CS00229F] [PMID: 25176339]
[85]
Lee, E.S.; Gao, Z.; Kim, D.; Park, K.; Kwon, I.C.; Bae, Y.H. Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J. Control. Release, 2008, 129(3), 228-236.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.024] [PMID: 18539355]
[86]
Abdullah, N.; Bhujade, P.G.; Wane, T.P.; Nagpurkar, Y.R.; Chanekar, P.D.; Jain, R.G.; Naka, K.; Budan, A.; Bellenot, D.; Freuze, I. Hypocholesterolemic property of yucca schidigera and quillaja saponaria extracts in human body. Afr. J. Agric. Res., 2014, 5(3), 2068-2071.
[87]
Li, Y.L.; Zhu, L.; Liu, Z.; Cheng, R.; Meng, F.; Cui, J.H.; Ji, S.J.; Zhong, Z. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew. Chem. Int. Ed. Engl., 2009, 48(52), 9914-9918.
[http://dx.doi.org/10.1002/anie.200904260] [PMID: 19937876]
[88]
Chen, F.; Li, Y.; Fu, Y.; Hou, Y.; Chen, Y.; Luo, X. The synthesis and co-micellization of PCL-P(HEMA/HEMA-LA) and PCL-P(HEMA/HEMA-FA) as shell cross-linked drug carriers with target/redox properties. J. Biomater. Sci. Polym. Ed., 2019, 30(4), 276-294.
[http://dx.doi.org/10.1080/09205063.2018.1558486] [PMID: 30556773]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy