Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Association Between Total Bilirubin Levels and Cardio-Metabolic Risk Factors Related to Obesity

Author(s): Mervat M. El-Eshmawy*, Nancy Mahsoub, Mohamed Asar and Ibrahim Elsehely

Volume 22, Issue 1, 2022

Published on: 28 January, 2021

Page: [64 - 70] Pages: 7

DOI: 10.2174/1871530321999210128201259

Price: $65

Abstract

Background: The link between bilirubin and cardiometabolic outcomes has been previously identified with positive health effects of mild hyperbilirubinaemia. On the other hand, recent evidence has suggested an association between low circulating bilirubin levels and obesity. This study was conducted to assess the association of total bilirubin levels with metabolic and cardiovascular risk factors related to obesity.

Methods: A total of 50 obese adults and 50 healthy controls matched for age and sex were enrolled in this study. Anthropometric measurements, fasting glucose, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), HOMA- β (%), lipids profile, monocyte to lymphocyte ratio (MLR), neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), uric acid, gamma glutamyl transpeptidase (GGT), AST/ALT ratio and total bilirubin were assessed.

Results: Total bilirubin, high density lipoprotein cholesterol (HDL-C) and AST/ALT ratio were significantly lower, whereas fasting insulin, HOMA-IR, total cholesterol, triglycerides, low density lipoprotein cholesterol, NLR, uric acid and GGT were significantly higher in obese adults than in healthy controls. Bilirubin was negatively associated with body mass index, waist circumference, fasting insulin, HOMA-IR, NLR, PLR, uric acid, and positively associated with HDL-C. HDL-C and NLR were the independent predictor variables of total bilirubin.

Conclusion: Among all the studied cardio-metabolic risk factors, HDL-C and NRL are the most closely associated variables with total bilirubin levels in obese adults.

Keywords: Bilirubin, HDL-C, HOMA-IR, NRL, uric acid, obesity.

Graphical Abstract
[1]
Lee, J.M.; Okumura, M.J.; Davis, M.M.; Herman, W.H.; Gurney, J.G. Prevalence and determinants of insulin resistance among U.S. adolescents: a population-based study. Diabetes Care, 2006, 29(11), 2427-2432.
[http://dx.doi.org/10.2337/dc06-0709] [PMID: 17065679]
[2]
Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA, 2014, 311(8), 806-814.
[http://dx.doi.org/10.1001/jama.2014.732] [PMID: 24570244]
[3]
Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract., 2013, 7(5), e330-e341.
[http://dx.doi.org/10.1016/j.orcp.2013.05.004] [PMID: 24455761]
[4]
Suzuki, K.; Ito, Y.; Ochiai, J.; Kusuhara, Y.; Hashimoto, S.; Tokudome, S.; Kojima, M.; Wakai, K.; Toyoshima, H.; Tamakoshi, K.; Watanabe, Y.; Hayakawa, N.; Maruta, M.; Watanabe, M.; Kato, K.; Ohta, Y.; Tamakoshi, A. JACC Study Group. Relationship between obesity and serum markers of oxidative stress and inflammation in Japanese. Asian Pac. J. Cancer Prev., 2003, 4(3), 259-266.
[PMID: 14507248]
[5]
Fevery, J. Bilirubin in clinical practice: a review. Liver Int., 2008, 28(5), 592-605.
[http://dx.doi.org/10.1111/j.1478-3231.2008.01716.x] [PMID: 18433389]
[6]
Newborn jaundice technologies: unbound bilirubin and bilirubin binding capacity in neonates.Seminars in perinatology; Amin, S.B.; Lamola, A.A., Eds.; Elsevier, , 2011.
[7]
Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin is an antioxidant of possible physiological importance. Science, 1987, 235(4792), 1043-1046.
[http://dx.doi.org/10.1126/science.3029864] [PMID: 3029864]
[8]
Baranano, D.E.; Rao, M.; Ferris, C.D.; Snyder, S.H. Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16093-16098.
[http://dx.doi.org/10.1073/pnas.252626999] [PMID: 12456881]
[9]
Vítek, L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front. Pharmacol., 2012, 3, 55.
[http://dx.doi.org/10.3389/fphar.2012.00055] [PMID: 22493581]
[10]
Torgerson, J.S.; Lindroos, A.K.; Sjöström, C.D.; Olsson, R.; Lissner, L.; Sjöström, L. Are elevated aminotransferases and decreased bilirubin additional characteristics of the metabolic syndrome? Obes. Res., 1997, 5(2), 105-114.
[http://dx.doi.org/10.1002/j.1550-8528.1997.tb00650.x] [PMID: 9112245]
[11]
Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985, 28(7), 412-419.
[http://dx.doi.org/10.1007/BF00280883] [PMID: 3899825]
[12]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[13]
Jenko-Pražnikar, Z.; Petelin, A.; Jurdana, M.; Žiberna, L. Serum bilirubin levels are lower in overweight asymptomatic middle-aged adults: an early indicator of metabolic syndrome? Metabolism, 2013, 62(7), 976-985.
[http://dx.doi.org/10.1016/j.metabol.2013.01.011] [PMID: 23414908]
[14]
Takei, R.; Inoue, T.; Sonoda, N.; Kohjima, M.; Okamoto, M.; Sakamoto, R.; Inoguchi, T.; Ogawa, Y. Bilirubin reduces visceral obesity and insulin resistance by suppression of inflammatory cytokines. PLoS One, 2019, 14(10), e0223302.
[http://dx.doi.org/10.1371/journal.pone.0223302] [PMID: 31577826]
[15]
Choi, S.H.; Yun, K.E.; Choi, H.J. Relationships between serum total bilirubin levels and metabolic syndrome in Korean adults. Nutr. Metab. Cardiovasc. Dis., 2013, 23(1), 31-37.
[http://dx.doi.org/10.1016/j.numecd.2011.03.001] [PMID: 21703835]
[16]
Belo, L.; Nascimento, H.; Kohlova, M.; Bronze-da-Rocha, E.; Fernandes, J.; Costa, E.; Catarino, C.; Aires, L.; Mansilha, H.F.; Rocha-Pereira, P.; Quintanilha, A.; Rêgo, C.; Santos-Silva, A. Body fat percentage is a major determinant of total bilirubin independently of UGT1A1*28 polymorphism in young obese. PLoS One, 2014, 9(6), , e98467..
[http://dx.doi.org/10.1371/journal.pone.0098467] [PMID: 24901842]
[17]
Dong, H.; Huang, H.; Yun, X.; Kim, D.S.; Yue, Y.; Wu, H.; Sutter, A.; Chavin, K.D.; Otterbein, L.E.; Adams, D.B.; Kim, Y.B.; Wang, H. Bilirubin increases insulin sensitivity in leptin-receptor deficient and diet-induced obese mice through suppression of ER stress and chronic inflammation. Endocrinology, 2014, 155(3), 818-828.
[http://dx.doi.org/10.1210/en.2013-1667] [PMID: 24424052]
[18]
Vincent, H.K.; Innes, K.E.; Vincent, K.R. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes. Metab., 2007, 9(6), 813-839.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00692.x] [PMID: 17924865]
[19]
Chang, C.L.; Au, L.C.; Huang, S.W.; Fai Kwok, C.; Ho, L.T.; Juan, C.C. Insulin up-regulates heme oxygenase-1 expression in 3T3-L1 adipocytes via PI3-kinase- and PKC-dependent pathways and heme oxygenase-1-associated microRNA downregulation. Endocrinology, 2011, 152(2), 384-393.
[http://dx.doi.org/10.1210/en.2010-0493] [PMID: 21147878]
[20]
Abraham, N.G.; Tsenovoy, P.L.; McClung, J.; Drummond, G.S. Heme oxygenase: a target gene for anti-diabetic and obesity. Curr. Pharm. Des., 2008, 14(5), 412-421.
[http://dx.doi.org/10.2174/138161208783597371] [PMID: 18289068]
[21]
Stec, D.E.; John, K.; Trabbic, C.J.; Luniwal, A.; Hankins, M.W.; Baum, J.; Hinds, T.D., Jr Bilirubin binding to PPARα inhibits lipid accumulation. PLoS One, 2016, 11(4), e0153427.
[http://dx.doi.org/10.1371/journal.pone.0153427] [PMID: 27071062]
[22]
Lanone, S.; Bloc, S.; Foresti, R.; Almolki, A.; Taillé, C.; Callebert, J.; Conti, M.; Goven, D.; Aubier, M.; Dureuil, B.; El-Benna, J.; Motterlini, R.; Boczkowski, J. Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB J., 2005, 19(13), 1890-1892.
[http://dx.doi.org/10.1096/fj.04-2368fje] [PMID: 16129699]
[23]
Lin, L.; Pang, W.; Chen, K.; Wang, F.; Gengler, J.; Sun, Y.; Tong, Q. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am. J. Physiol. Endocrinol. Metab., 2012, 302(12), E1550-E1559.
[http://dx.doi.org/10.1152/ajpendo.00462.2011] [PMID: 22454293]
[24]
Den Hartigh, L.J.; Omer, M.; Goodspeed, L.; Wang, S.; Wietecha, T.; O’Brien, K.D.; Han, C.Y. Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arterioscler. Thromb. Vasc. Biol., 2017, 37(3), 466-475.
[http://dx.doi.org/10.1161/ATVBAHA.116.308749] [PMID: 28062496]
[25]
Faghihimani, Z.; Mirmiran, P.; Sohrab, G.; Iraj, B.; Faghihimani, E. Effects of pomegranate seed oil on metabolic state of patients with Type 2 diabetes mellitus. Int. J. Prev. Med., 2016, 7, 124.
[http://dx.doi.org/10.4103/2008-7802.194883] [PMID: 27994825]
[26]
Chehade, J.M.; Gladysz, M.; Mooradian, A.D. Dyslipidemia in type 2 diabetes: prevalence, pathophysiology, and management. Drugs, 2013, 73(4), 327-339.
[http://dx.doi.org/10.1007/s40265-013-0023-5] [PMID: 23479408]
[27]
Madhavan, M.; Wattigney, W.A.; Srinivasan, S.R.; Berenson, G.S. Serum bilirubin distribution and its relation to cardiovascular risk in children and young adults. Atherosclerosis, 1997, 131(1), 107-113.
[http://dx.doi.org/10.1016/S0021-9150(97)06088-7] [PMID: 9180251]
[28]
Galili, O.; Versari, D.; Sattler, K.J.; Olson, M.L.; Mannheim, D.; McConnell, J.P.; Chade, A.R.; Lerman, L.O.; Lerman, A. Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(2), H904-H911.
[http://dx.doi.org/10.1152/ajpheart.00628.2006] [PMID: 17012356]
[29]
Zhao, M.M.; Krebs, J.; Cao, X.; Cui, J.; Chen, D.N.; Li, Y.; Hua, L.; Mann, J.; Yang, J.K. Helicobacter pylori infection as a risk factor for serum bilirubin change and less favorable lipid profiles: a hospital-based health examination survey. BMC Infect. Dis., 2019, 14, (19), 157..
[30]
Yoshino, S.; Hamasaki, S.; Ishida, S.; Kataoka, T.; Yoshikawa, A.; Oketani, N.; Saihara, K.; Okui, H.; Shinsato, T.; Ichiki, H.; Kubozono, T.; Kuwahata, S.; Fujita, S.; Kanda, D.; Nakazaki, M.; Miyata, M.; Tei, C. Relationship between bilirubin concentration, coronary endothelial function, and inflammatory stress in overweight patients. J. Atheroscler. Thromb., 2011, 18(5), 403-412.
[http://dx.doi.org/10.5551/jat.6346] [PMID: 21350306]
[31]
Kontush, A. HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc. Res., 2014, 103(3), 341-349.
[http://dx.doi.org/10.1093/cvr/cvu147] [PMID: 24935434]
[32]
McDonagh, A.F. The biliverdin-bilirubin antioxidant cycle of cellular protection: Missing a wheel? Free Radic. Biol. Med., 2010, 49(5), 814-820.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.06.001] [PMID: 20547221]
[33]
Bulmer, A.C.; Verkade, H.J.; Wagner, K.H. Bilirubin and beyond: a review of lipid status in Gilbert’s syndrome and its relevance to cardiovascular disease protection. Prog. Lipid Res., 2013, 52(2), 193-205.
[http://dx.doi.org/10.1016/j.plipres.2012.11.001] [PMID: 23201182]
[34]
Fluiter, K.; Sattler, W.; De Beer, M.C.; Connell, P.M.; van der Westhuyzen, D.R.; van Berkel, T.J. Scavenger receptor BI mediates the selective uptake of oxidized cholesterol esters by rat liver. J. Biol. Chem., 1999, 274(13), 8893-8899.
[http://dx.doi.org/10.1074/jbc.274.13.8893] [PMID: 10085133]
[35]
Mayer, M. Association of serum bilirubin concentration with risk of coronary artery disease. Clin. Chem., 2000, 46(11), 1723-1727.
[http://dx.doi.org/10.1093/clinchem/46.11.1723] [PMID: 11067805]
[36]
Liu, J.; Dong, H.; Zhang, Y.; Cao, M.; Song, L.; Pan, Q.; Bulmer, A.; Adams, D.B.; Dong, X.; Wang, H. Corrigendum: bilirubin increases insulin sensitivity by regulating cholesterol metabolism, Adipokines and PPARγ levels. Sci. Rep., 2016, 6, 19170.
[http://dx.doi.org/10.1038/srep19170] [PMID: 26786206]
[37]
Bulmer, A.C.; Verkade, H.J.; Wagner, K.H. Bilirubin and beyond: a review of lipid status in Gilbert's syndrome and its relevance to cardiovascular disease protection. Prog. Lipid. Res., 2013, 52, 193-205.
[http://dx.doi.org/10.1016/j.plipres.2012.11.001]
[38]
Yilmaz, H.; Ucan, B.; Sayki, M.; Unsal, I.; Sahin, M.; Ozbek, M.; Delibasi, T. Usefulness of the neutrophil-to-lymphocyte ratio to prediction of type 2 diabetes mellitus in morbid obesity. Diabetes Metab. Syndr., 2015, 9(4), 299-304.
[http://dx.doi.org/10.1016/j.dsx.2014.04.009] [PMID: 25470646]
[39]
Rodríguez-Rodríguez, E.; López-Sobaler, A.M.; Ortega, R.M.; Delgado-Losada, M.L.; López-Parra, A.M.; Aparicio, A. Association between neutrophil-to-lymphocyte ratio with abdominal obesity and healthy eating index in a representative older spanish population. Nutrients, 2020, 12(3), 855.
[http://dx.doi.org/10.3390/nu12030855] [PMID: 32210070]
[40]
Syauqy, A.; Hsu, C.Y.; Rau, H.H.; Chao, J.C. Association of Dietary Patterns with Components of Metabolic Syndrome and Inflammation among Middle-Aged and Older Adults with Metabolic Syndrome in Taiwan. Nutrients, 2018, 10(2), 143.
[http://dx.doi.org/10.3390/nu10020143] [PMID: 29382113]
[41]
Bahadır, A.; Baltacı, D.; Türker, Y.; Türker, Y.; Iliev, D.; Öztürk, S.; Deler, M.H.; Sarıgüzel, Y.C. Is the neutrophil-to-lymphocyte ratio indicative of inflammatory state in patients with obesity and metabolic syndrome? Anatol. J. Cardiol., 2015, 15(10), 816-822.
[http://dx.doi.org/10.5152/akd.2014.5787] [PMID: 25592102]
[42]
Azab, B.; Camacho-Rivera, M.; Taioli, E. Average values and racial differences of neutrophil lymphocyte ratio among a nationally representative sample of United States subjects. PLoS One, 2014, 9(11), e112361.
[http://dx.doi.org/10.1371/journal.pone.0112361] [PMID: 25375150]
[43]
Zahorec, R. Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek Listy, 2001, 102(1), 5-14.
[PMID: 11723675]
[44]
Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol., 2013, 13(3), 159-175.
[http://dx.doi.org/10.1038/nri3399] [PMID: 23435331]
[45]
Lolmède, K.; Duffaut, C.; Zakaroff-Girard, A.; Bouloumié, A. Immune cells in adipose tissue: key players in metabolic disorders. Diabetes Metab., 2011, 37(4), 283-290.
[http://dx.doi.org/10.1016/j.diabet.2011.03.002] [PMID: 21507694]
[46]
Stock, W.; Hoffman, R. White blood cells 1: non-malignant disorders. Lancet, 2000, 355(9212), 1351-1357.
[http://dx.doi.org/10.1016/S0140-6736(00)02125-5] [PMID: 10776761]
[47]
Lois, K.; McTeman, P.; Kumar, S. Pathophysiology of obesity-induced T2DM. In: Obesity and diabetes; Barnett, H.A.; Kumar, S., Eds.; Wiley-Blackwell: Chichester, UK; Hobokenm, NJ, 2009; pp. 47-67.
[http://dx.doi.org/10.1002/9780470741474.ch4]
[48]
Hinds, T.D.Jr.; Stec, D.E. Bilirubin, a Cardiometabolic signaling molecule. Hypertension, 2018, 72(4), 788-795.
[http://dx.doi.org/10.1161/hypertensionaha.118.11130] [PMID: 30354722]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy