Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-Proliferative and Anti-Telomerase Effects of Blackberry Juice and Berry- Derived Polyphenols on HepG2 Liver Cancer Cells and Normal Human Blood Mononuclear Cells

Author(s): Delaram Moghadam, Reza Zarei, Mohsen Tatar, Zahra Khoshdel, Farideh Jalali Mashayekhi and Fakhraddin Naghibalhossaini*

Volume 22, Issue 2, 2022

Published on: 15 March, 2021

Page: [395 - 403] Pages: 9

DOI: 10.2174/1871520621666210315092503

Price: $65

Abstract

Background: Previous studies have provided strong evidence for the anticancer activity of berry fruits.

Objective: In this study, we investigated the effects of blackberry juice and three berry- polyphenolic compounds on cell proliferation and telomerase activity in human hepatoma HepG2 and normal peripheral blood mononuclear cells (PBMCs).

Methods: The cell viability and telomerase activity were measured by MTT and TRAP assay, respectively. Berry effects on the expression of genes were determined by quantitative RT-PCR assay.

Results: Blackberry, gallic acid, and resveratrol inhibited proliferation of both HepG2 and PBMC cells in a dosedependent manner. Resveratrol was more effective than gallic acid for reducing the viability of HepG2 cells, but both showed the same level of growth inhibition in PBMC cells. Berry, resveratrol, and gallic acid significantly inhibited telomerase activity in HepG2 cells. The antiproliferative effect of berry was associated with apoptotic DNA fragmentation. Gallic acid was more effective for reducing telomerase activity than resveratrol, but anthocyanin moderately increased telomerase activity in cancer cells. Telomerase activity was induced by all three polyphenols in PBMCs. Overall, Krumanin chloride was more effective to induce telomerase than gallic acid and resveratrol in PBMC cells. There was no significant difference in hTERT, hTR, and Dnmts expressions between berry treated and the control untreated HepG2 cells. But, a significant downregulation of HDAC1 and HDAC2 and upregulation of SIRT1 were observed in berry-treated cells.

Conclusion: These data indicate that the berry anticancer effect is associated with antitelomerase activity and changes in HDACs expression. The data also suggest that berry antitelomerase activity is mainly related to its gallic acid and resveratrol, but not anthocyanin content.

Keywords: Blackberry, polyphenols, anthocyanin, resveratrol, gallic acid, anticancer, telomerase.

« Previous
Graphical Abstract
[1]
Baby, B.; Antony, P.; Vijayan, R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. Nutr., 2018, 58(15), 2491-2507.
[http://dx.doi.org/10.1080/10408398.2017.1329198] [PMID: 28609132]
[2]
Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal., 2010, 23, 554-560.
[http://dx.doi.org/10.1016/j.jfca.2009.08.012]
[3]
Oruganti, L.; Meriga, B. Plant Polyphenolic Compounds Potentiates Therapeutic Efficiency of Anticancer Chemotherapeutic Drugs: A Review. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(2), 246-252.
[http://dx.doi.org/10.2174/1871530320666200807115647] [PMID: 32767950]
[4]
Colomer, R.; Sarrats, A.; Lupu, R.; Puig, T. Natural Polyphenols and their Synthetic Analogs as Emerging Anticancer Agents. Curr. Drug Targets, 2017, 18(2), 147-159.
[http://dx.doi.org/10.2174/1389450117666160112113930] [PMID: 26758667]
[5]
Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Berries: anti-inflammatory effects in humans. J. Agric. Food Chem., 2014, 62(18), 3886-3903.
[http://dx.doi.org/10.1021/jf4044056] [PMID: 24512603]
[6]
Mantzorou, M.; Zarros, A.; Vasios, G.; Theocharis, S.; Pavlidou, E.; Giaginis, C. Cranberry: A Promising Natural Source of Potential Nutraceuticals with Anticancer Activity. Anticancer. Agents Med. Chem., 2019, 19(14), 1672-1686.
[http://dx.doi.org/10.2174/1871520619666190704163301] [PMID: 31272361]
[7]
Stoner, G.D. Foodstuffs for preventing cancer: the preclinical and clinical development of berries. Cancer Prev. Res. (Phila.), 2009, 2(3), 187-194.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0226] [PMID: 19258544]
[8]
Zhao, X.; Feng, P.; He, W.; Du, X.; Chen, C.; Suo, L.; Liang, M.; Zhang, N.; Na, A.; Zhang, Y. The Prevention and Inhibition Effect of Anthocyanins on Colorectal Cancer. Curr. Pharm. Des., 2019, 25(46), 4919-4927.
[http://dx.doi.org/10.2174/1381612825666191212105145] [PMID: 31830892]
[9]
Dini, C.; Zaro, M.J.; Viña, S.Z. Bioactivity and Functionality of Anthocyanins: A Review. Curr. Bioact. Compd., 2019, 15, 507-523.
[http://dx.doi.org/10.2174/1573407214666180821115312]
[10]
Del Rio, D.; Borges, G.; Crozier, A. Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Br. J. Nutr., 2010, 104(Suppl. 3), S67-S90.
[http://dx.doi.org/10.1017/S0007114510003958] [PMID: 20955651]
[11]
Bonesi, M.; Leporini, M.; Tenuta, M.C.; Tundis, R. The Role of Anthocyanins in Drug Discovery: Recent Developments. Curr. Drug Discov. Technol., 2020, 17(3), 286-298.
[http://dx.doi.org/10.2174/1570163816666190125152931] [PMID: 30686260]
[12]
Bártíková, H.; Skálová, L.; Dršata, J.; Boušová, I. Interaction of anthocyanins with drug-metabolizing and antioxidant enzymes. Curr. Med. Chem., 2013, 20(37), 4665-4679.
[http://dx.doi.org/10.2174/09298673113209990153] [PMID: 23834170]
[13]
Yi, W.; Fischer, J.; Krewer, G.; Akoh, C.C. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J. Agric. Food Chem., 2005, 53(18), 7320-7329.
[http://dx.doi.org/10.1021/jf051333o] [PMID: 16131149]
[14]
Usuwanthim, K.; Wisitpongpun, P.; Luetragoon, T. Molecular Identification of Phytochemical for Anticancer Treatment. Anticancer. Agents Med. Chem., 2020, 20(6), 651-666.
[http://dx.doi.org/10.2174/1871520620666200213110016] [PMID: 32053086]
[15]
Dutt, R.; Garg, V.; Khatri, N.; Madan, A.K. Phytochemicals in Anticancer Drug Development. Anticancer. Agents Med. Chem., 2019, 19(2), 172-183.
[http://dx.doi.org/10.2174/1871520618666181106115802] [PMID: 30398123]
[16]
Ding, M.; Feng, R.; Wang, S.Y.; Bowman, L.; Lu, Y.; Qian, Y.; Castranova, V.; Jiang, B-H.; Shi, X. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J. Biol. Chem., 2006, 281(25), 17359-17368.
[http://dx.doi.org/10.1074/jbc.M600861200] [PMID: 16618699]
[17]
Feng, R.; Bowman, L.L.; Lu, Y.; Leonard, S.S.; Shi, X.; Jiang, B.H.; Castranova, V.; Vallyathan, V.; Ding, M. Blackberry extracts inhibit activating protein 1 activation and cell transformation by perturbing the mitogenic signaling pathway. Nutr. Cancer, 2004, 50(1), 80-89.
[http://dx.doi.org/10.1207/s15327914nc5001_11] [PMID: 15572301]
[18]
Hribar, U.; Ulrih, N.P. The metabolism of anthocyanins. Curr. Drug Metab., 2014, 15(1), 3-13.
[http://dx.doi.org/10.2174/1389200214666131211160308] [PMID: 24329109]
[19]
Esselen, M.; Boettler, U.; Teller, N.; Bächler, S.; Hutter, M.; Rufer, C.E.; Skrbek, S.; Marko, D. Anthocyanin-rich blackberry extract suppresses the DNA-damaging properties of topoisomerase I and II poisons in colon carcinoma cells. J. Agric. Food Chem., 2011, 59(13), 6966-6973.
[http://dx.doi.org/10.1021/jf200379c] [PMID: 21599019]
[20]
Wang, L.S.; Kuo, C.T.; Cho, S.J.; Seguin, C.; Siddiqui, J.; Stoner, K.; Weng, Y.I.; Huang, T.H.M.; Tichelaar, J.; Yearsley, M.; Stoner, G.D.; Huang, Y.W. Black raspberry-derived anthocyanins demethylate tumor suppressor genes through the inhibition of DNMT1 and DNMT3B in colon cancer cells. Nutr. Cancer, 2013, 65(1), 118-125.
[http://dx.doi.org/10.1080/01635581.2013.741759] [PMID: 23368921]
[21]
Majid, S.; Kikuno, N.; Nelles, J.; Noonan, E.; Tanaka, Y.; Kawamoto, K.; Hirata, H.; Li, L.C.; Zhao, H.; Okino, S.T.; Place, R.F.; Pookot, D.; Dahiya, R. Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res., 2008, 68(8), 2736-2744.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2290] [PMID: 18413741]
[22]
Vaid, M.; Prasad, R.; Singh, T.; Jones, V.; Katiyar, S.K. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators. Toxicol. Appl. Pharmacol., 2012, 263(1), 122-130.
[http://dx.doi.org/10.1016/j.taap.2012.06.013] [PMID: 22749965]
[23]
Pandey, M.; Kaur, P.; Shukla, S.; Abbas, A.; Fu, P.; Gupta, S. Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol. Carcinog., 2012, 51(12), 952-962.
[http://dx.doi.org/10.1002/mc.20866] [PMID: 22006862]
[24]
Zohreh, B.; Masoumeh, V.; Fakhraddin, N.; Omrani, G.H.R. Apigenin-mediated Alterations in Viability and Senescence of SW480 Colorectal Cancer Cells Persist in The Presence of L-thyroxine. Anticancer. Agents Med. Chem., 2019, 19(12), 1535-1542.
[http://dx.doi.org/10.2174/1871520619666190704102708] [PMID: 31272364]
[25]
Samad, N.; Javed, A. Therapeutic Effects of Gallic Acid. Current Scenario. J. Phytochemistry Biochem., 2018, 2, 113.
[26]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The Role of Resveratrol in Cancer Therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[27]
Ceci, C.; Tentori, L.; Atzori, M.G.; Lacal, P.M.; Bonanno, E.; Scimeca, M.; Cicconi, R.; Mattei, M.; de Martino, M.G.; Vespasiani, G.; Miano, R.; Graziani, G. Ellagic Acid Inhibits Bladder Cancer Invasiveness and In Vivo Tumor Growth. Nutrients, 2016, 8(11), 744.
[http://dx.doi.org/10.3390/nu8110744] [PMID: 27879653]
[28]
Vanella, L.; Di Giacomo, C.; Acquaviva, R.; Barbagallo, I.; Cardile, V.; Kim, D.H.; Abraham, N.G.; Sorrenti, V. Apoptotic markers in a prostate cancer cell line: effect of ellagic acid. Oncol. Rep., 2013, 30(6), 2804-2810.
[http://dx.doi.org/10.3892/or.2013.2757] [PMID: 24085108]
[29]
Shay, J.W.; Wright, W.E. Role of telomeres and telomerase in cancer. Semin. Cancer Biol., 2011, 21(6), 349-353.
[http://dx.doi.org/10.1016/j.semcancer.2011.10.001] [PMID: 22015685]
[30]
Relitti, N.; Saraswati, A.P.; Federico, S.; Khan, T.; Brindisi, M.; Zisterer, D.; Brogi, S.; Gemma, S.; Butini, S.; Campiani, G. Telomerase-based Cancer Therapeutics: A Review on their Clinical Trials. Curr. Top. Med. Chem., 2020, 20(6), 433-457.
[http://dx.doi.org/10.2174/1568026620666200102104930] [PMID: 31894749]
[31]
Celtikci, B.; Erkmen, G.K.; Dikmen, Z.G. Regulation and Effect of Telomerase and Telomeric Length in Stem Cells. Curr. Stem Cell Res. Ther., 2020, 15(7), 809-823.
[http://dx.doi.org/10.2174/1574888X15666200422104423] [PMID: 32321410]
[32]
Mittal, A.; Pate, M.S.; Wylie, R.C.; Tollefsbol, T.O.; Katiyar, S.K. EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis. Int. J. Oncol., 2004, 24(3), 703-710.
[http://dx.doi.org/10.3892/ijo.24.3.703] [PMID: 14767556]
[33]
Yokoyama, M.; Noguchi, M.; Nakao, Y.; Pater, A.; Iwasaka, T. The tea polyphenol, (-)-epigallocatechin gallate effects on growth, apoptosis, and telomerase activity in cervical cell lines. Gynecol. Oncol., 2004, 92(1), 197-204.
[http://dx.doi.org/10.1016/j.ygyno.2003.09.023] [PMID: 14751158]
[34]
Naasani, I.; Seimiya, H.; Tsuruo, T. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem. Biophys. Res. Commun., 1998, 249(2), 391-396.
[http://dx.doi.org/10.1006/bbrc.1998.9075] [PMID: 9712707]
[35]
Tatar, M.; Bagheri, Z.; Varedi, M.; Naghibalhossaini, F. Blackberry Extract Inhibits Telomerase Activity in Human Colorectal Cancer Cells. Nutr. Cancer, 2019, 71(3), 461-471.
[http://dx.doi.org/10.1080/01635581.2018.1506491] [PMID: 30372130]
[36]
Eftekhar, E.; Jaberie, H.; Naghibalhossaini, F. Carcinoembryonic Antigen Expression and Resistance to Radiation and 5-Fluorouracil-Induced Apoptosis and Autophagy. Int. J. Mol. Cell. Med., 2016, 5(2), 80-89.
[PMID: 27478804]
[37]
Sarabi, M.M.; Naghibalhossaini, F. Association of DNA methyltransferases expression with global and gene-specific DNA methylation in colorectal cancer cells. Cell Biochem. Funct., 2015, 33(7), 427-433.
[http://dx.doi.org/10.1002/cbf.3126] [PMID: 26416384]
[38]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[39]
Khan, H.; Saeedi, M.; Nabavi, S.M.; Mubarak, M.S.; Bishayee, A. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends Towards Future Drugs. Curr. Med. Chem., 2019, 26(13), 2389-2406.
[http://dx.doi.org/10.2174/0929867325666180403145137] [PMID: 29611474]
[40]
Hu, X.Y.; Deng, J.G.; Wang, L.; Yuan, Y.F. Synthesis and anti-tumor activity evaluation of gallic acid-mangiferin hybrid molecule. Med. Chem., 2013, 9(8), 1058-1062.
[http://dx.doi.org/10.2174/1573406411309080007] [PMID: 23627273]
[41]
Oszmiański, J.; Nowicka, P.; Teleszko, M.; Wojdyło, A.; Cebulak, T.; Oklejewicz, K. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits. Int. J. Mol. Sci., 2015, 16(7), 14540-14553.
[http://dx.doi.org/10.3390/ijms160714540] [PMID: 26132562]
[42]
Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, 266(5193), 2011-2015.
[http://dx.doi.org/10.1126/science.7605428] [PMID: 7605428]
[43]
Thompson, C.A.H.; Wong, J.M.Y. Non-canonical Functions of Telomerase Reverse Transcriptase: Emerging Roles and Biological Relevance. Curr. Top. Med. Chem., 2020, 20(6), 498-507.
[http://dx.doi.org/10.2174/1568026620666200131125110] [PMID: 32003692]
[44]
Smith-Sonneborn, J. Telomerase Biology Associations Offer Keys to Cancer and Aging Therapeutics. Curr. Aging Sci., 2020, 13(1), 11-21.
[http://dx.doi.org/10.2174/1874609812666190620124324] [PMID: 31544708]
[45]
Simone, F. Regulation of Apoptosis and Cell Survival by Resveratrol. Mini Rev. Org. Chem., 2010, 7(4), 262-266.
[46]
Naasani, I.; Oh-Hashi, F.; Oh-Hara, T.; Feng, W.Y.; Johnston, J.; Chan, K.; Tsuruo, T. Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Res., 2003, 63(4), 824-830.
[PMID: 12591733]
[47]
Moseley, V.R.; Morris, J.; Knackstedt, R.W.; Wargovich, M.J. Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells. Anticancer Res., 2013, 33(12), 5325-5333.
[PMID: 24324066]
[48]
Kataria, R.; Khatkar, A. Resveratrol in Various Pockets: A Review. Curr. Top. Med. Chem., 2019, 19(2), 116-122.
[http://dx.doi.org/10.2174/1568026619666190301173958] [PMID: 30834833]
[49]
Charytoniuk, T.; Harasim-Symbor, E.; Polak, A.; Drygalski, K.; Berk, K.; Chabowski, A.; Konstantynowicz-Nowicka, K. Influence of Resveratrol on Sphingolipid Metabolism in Hepatocellular Carcinoma Cells in Lipid Overload State. Anticancer. Agents Med. Chem., 2019, 19(1), 121-129.
[http://dx.doi.org/10.2174/1871520619666181224161255] [PMID: 30585550]
[50]
Song, X.; Du, J.; Zhao, W.; Guo, Z. Epigallocatechin-3-gallate(EGCG): mechanisms and the combined applications. Comb. Chem. High Throughput Screen., 2017, 20(10), 872-885.
[http://dx.doi.org/10.2174/1386207321666171218115850] [PMID: 29256345]
[51]
Zhang, G.; Wang, Y.; Zhang, Y.; Wan, X.; Li, J.; Liu, K.; Wang, F.; Liu, K.; Liu, Q.; Yang, C.; Yu, P.; Huang, Y.; Wang, S.; Jiang, P.; Qu, Z.; Luan, J.; Duan, H.; Zhang, L.; Hou, A.; Jin, S.; Hsieh, T.C.; Wu, E. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr. Mol. Med., 2012, 12(2), 163-176.
[http://dx.doi.org/10.2174/156652412798889063] [PMID: 22280355]
[52]
Lanzilli, G.; Fuggetta, M.P.; Tricarico, M.; Cottarelli, A.; Serafino, A.; Falchetti, R.; Ravagnan, G.; Turriziani, M.; Adamo, R.; Franzese, O.; Bonmassar, E. Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro. Int. J. Oncol., 2006, 28(3), 641-648.
[http://dx.doi.org/10.3892/ijo.28.3.641] [PMID: 16465368]
[53]
Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 2017, 61(1)1361779
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[54]
Kapoor, B.; Gulati, M.; Gupta, R.; Singh, S.K.; Gupta, M.; Nabi, A.; Chawla, P.A. A Review on Plant Flavonoids as Potential Anticancer Agents. Curr. Org. Chem., 2020, 25(6), 737-747.
[55]
Ahmad, R.; Khan, M.A.; Srivastava, A.N.; Gupta, A.; Srivastava, A.; Jafri, T.R.; Siddiqui, Z.; Chaubey, S.; Khan, T.; Srivastava, A.K. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer. Agents Med. Chem., 2020, 20(2), 122-236.
[http://dx.doi.org/10.2174/1871520619666191015103712] [PMID: 31749433]
[56]
Hussain, M.; Khera, R.A.; Iqbal, J.; Khalid, M.; Hanif, M.A. Phytochemicals: Key to Effective Anticancer Drugs. Mini Rev. Org. Chem., 2019, 16, 141-158.
[http://dx.doi.org/10.2174/1570193X15666180626113026]
[57]
Xu, L.; Zaky, M.Y.; Yousuf, W.; Ullah, A.; Abdelbaset, G.R.; Zhang, Y.; Ahmed, O.M.; Liu, S.; Liu, H. The Anticancer Potential of Apigenin via Immunoregulation. Curr. Pharm. Des., 2020, 26, 1-15.
[http://dx.doi.org/10.2174/1381612826666200713171137] [PMID: 32660399]
[58]
Wang, X.B.; Zhu, L.; Huang, J.; Yin, Y.G.; Kong, X.Q.; Rong, Q.F.; Shi, A.W.; Cao, K.J. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells. Chin. Med. J. (Engl.), 2011, 124(24), 4310-4315.
[PMID: 22340406]
[59]
Tsoukalas, D.; Fragkiadaki, P.; Docea, A.O.; Alegakis, A.K.; Sarandi, E.; Thanasoula, M.; Spandidos, D.A.; Tsatsakis, A.; Razgonova, M.P.; Calina, D. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol. Med. Rep., 2019, 20(4), 3701-3708.
[http://dx.doi.org/10.3892/mmr.2019.10614] [PMID: 31485647]
[60]
Kyo, S.; Inoue, M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy? Oncogene, 2002, 21(4), 688-697.
[http://dx.doi.org/10.1038/sj.onc.1205163] [PMID: 11850797]
[61]
Lewis, K.A.; Tollefsbol, T.O. Regulation of the Telomerase Reverse Transcriptase Subunit through Epigenetic Mechanisms. Front. Genet., 2016, 7, 83.
[http://dx.doi.org/10.3389/fgene.2016.00083] [PMID: 27242892]
[62]
Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem. Pharmacol., 2010, 80(12), 1771-1792.
[http://dx.doi.org/10.1016/j.bcp.2010.06.036] [PMID: 20599773]
[63]
Yang, L.; Zhang, W.; Chopra, S.; Kaur, D.; Wang, H.; Li, M.; Chen, P.; Zhang, W. The Epigenetic Modification of Epigallocatechin Gallate (EGCG) on Cancer. Curr. Drug Targets, 2020, 21(11), 1099-1104.
[http://dx.doi.org/10.2174/1389450121666200504080112] [PMID: 32364072]
[64]
Chao, S.C.; Chen, Y.J.; Huang, K.H.; Kuo, K.L.; Yang, T.H.; Huang, K.Y.; Wang, C.C.; Tang, C.H.; Yang, R.S.; Liu, S.H. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci. Rep., 2017, 7(1), 3180.
[http://dx.doi.org/10.1038/s41598-017-03635-7] [PMID: 28600541]
[65]
Yun, J.M.; Chien, A.; Jialal, I.; Devaraj, S. Resveratrol up-regulates SIRT1 and inhibits cellular oxidative stress in the diabetic milieu: mechanistic insights. J. Nutr. Biochem., 2012, 23(7), 699-705.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.012] [PMID: 21813271]
[66]
Shakeri, A.; Zirak, M.R.; Sahebkar, A. Ellagic Acid: A Logical Lead for Drug Development? Curr. Pharm. Des., 2018, 24(2), 106-122.
[http://dx.doi.org/10.2174/1381612823666171115094557] [PMID: 29141541]
[67]
Ray, S.; Samanta, T.; Mitra, A.; De, B. Effect of extracts and components of black tea on the activity of α--glucuronidase, lipase, α--amylase, α--glucosidase: an in vitro study. Curr. Nutr. Food Sci., 2014, 10, 181-186.
[http://dx.doi.org/10.2174/1573401310666140529205646]
[68]
Rasool, M.; Malik, A.; Manan, A.; Arooj, M.; Qazi, M.H.; Kamal, M.A.; Sheikh, I.A.; Gan, S.H.; Asif, M.; Naseer, M.I. Roles of Natural Compounds from Medicinal Plants in Cancer Treatment: Structure and Mode of Action at Molecular Level. Med. Chem., 2015, 11(7), 618-628.
[http://dx.doi.org/10.2174/1573406411666150430120038] [PMID: 25925559]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy