Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Mitochondrial Dysfunction in Alzheimer’s Disease: Opportunities for Drug Development

Author(s): Shiveena Bhatia, Rishi Rawal, Pratibha Sharma, Tanveer Singh, Manjinder Singh* and Varinder Singh*

Volume 20, Issue 4, 2022

Published on: 24 February, 2022

Page: [675 - 692] Pages: 18

DOI: 10.2174/1570159X19666210517114016

Price: $65

Abstract

Alzheimer’s disease (AD) is one of the major reasons for 60-80% cases of senile dementia occurring as a result of the accumulation of plaques and tangles in the hippocampal and cortical neurons of the brain leading to neurodegeneration and cell death. The other pathological features of AD comprise abnormal microvasculature, network abnormalities, interneuronal dysfunction, increased β-amyloid production and reduced clearance, increased inflammatory response, elevated production of reactive oxygen species, impaired brain metabolism, hyperphosphorylation of tau, and disruption of acetylcholine signaling. Among all these pathologies, Mitochondrial Dysfunction (MD), regardless of it being an inciting insult or a consequence of the alterations, is related to all the associated AD pathologies. Observed altered mitochondrial morphology, distribution and movement, increased oxidative stress, dysregulation of enzymes involved in mitochondrial functioning, impaired brain metabolism, and impaired mitochondrial biogenesis in AD subjects suggest the involvement of mitochondrial malfunction in the progression of AD. Here, various pre-clinical and clinical evidence establishing MD as a key mediator in the progression of neurodegeneration in AD are reviewed and discussed with an aim to foster future MD based drug development research for the management of AD.

Keywords: Alzheimer’s disease, apoptosis, β-amyloid plaques, mitochondrial dysfunction, oxidative stress, tau proteins.

Graphical Abstract
[1]
Alzheimer’s_Association. Alzheimer’s Association 2020 Facts and Figures Report. Alzheimer’s Assoc. 2020, 1.
[2]
Geri, T. Basics of Alzheimer’s disease: What it is and what you can do; Alzheimer’s Assoc., 2016, p. 26.
[3]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1) ,a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[4]
Palop, J.J.; Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci., 2016, 17(12), 777-792.
[http://dx.doi.org/10.1038/nrn.2016.141] [PMID: 27829687]
[5]
Palop, J.J.; Chin, J.; Mucke, L. A network dysfunction perspective on neurodegenerative diseases. Nature, 2006, 443(7113), 768-773.
[http://dx.doi.org/10.1038/nature05289] [PMID: 17051202]
[6]
Huang, Y.; Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell, 2012, 148(6), 1204-1222.
[http://dx.doi.org/10.1016/j.cell.2012.02.040] [PMID: 22424230]
[7]
Anticevic, A.; Cole, M.W.; Murray, J.D.; Corlett, P.R.; Wang, X-J.; Krystal, J.H. The role of default network deactivation in cognition and disease. Trends Cogn. Sci., 2012, 16(12), 584-592.
[http://dx.doi.org/10.1016/j.tics.2012.10.008] [PMID: 23142417]
[8]
Sperling, R.A.; Laviolette, P.S.; O’Keefe, K.; O’Brien, J.; Rentz, D.M.; Pihlajamaki, M.; Marshall, G.; Hyman, B.T.; Selkoe, D.J.; Hedden, T.; Buckner, R.L.; Becker, J.A.; Johnson, K.A. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 2009, 63(2), 178-188.
[http://dx.doi.org/10.1016/j.neuron.2009.07.003] [PMID: 19640477]
[9]
Reiman, E.M.; Quiroz, Y.T.; Fleisher, A.S.; Chen, K.; Velez-Pardo, C.; Jimenez-Del-Rio, M.; Fagan, A.M.; Shah, A.R.; Alvarez, S.; Arbelaez, A.; Giraldo, M.; Acosta-Baena, N.; Sperling, R.A.; Dickerson, B.; Stern, C.E.; Tirado, V.; Munoz, C.; Reiman, R.A.; Huentelman, M.J.; Alexander, G.E.; Langbaum, J.B.; Kosik, K.S.; Tariot, P.N.; Lopera, F. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol., 2012, 11(12), 1048-1056.
[http://dx.doi.org/10.1016/S1474-4422(12)70228-4] [PMID: 23137948]
[10]
Mondadori, C.R.A.; Buchmann, A.; Mustovic, H.; Schmidt, C.F.; Boesiger, P.; Nitsch, R.M.; Hock, C.; Streffer, J.; Henke, K. Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain, 2006, 129(Pt 11), 2908-2922.
[http://dx.doi.org/10.1093/brain/awl266] [PMID: 17012294]
[11]
Filippini, N.; MacIntosh, BJ; Hough, MG; Goodwin, GM; Frisoni, GB; Smith, SM Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc. Natl. Acad. Sci. USA, 2009, 106(17), 7209-7214.
[12]
Higashi, S.; Iseki, E.; Yamamoto, R.; Minegishi, M.; Hino, H.; Fujisawa, K.; Togo, T.; Katsuse, O.; Uchikado, H.; Furukawa, Y.; Kosaka, K.; Arai, H. Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res., 2007, 1184, 284-294.
[http://dx.doi.org/10.1016/j.brainres.2007.09.048] [PMID: 17963732]
[13]
Sanabria-Castro, A.; Alvarado-Echeverría, I.; Monge-Bonilla, C. Molecular Pathogenesis of Alzheimer’s Disease: An Update. Ann. Neurosci., 2017, 24(1), 46-54.
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[14]
Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[15]
Mattson, M.P.; Chan, S.L. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium, 2003, 34(4-5), 385-397.
[http://dx.doi.org/10.1016/S0143-4160(03)00128-3] [PMID: 12909083]
[16]
Bezprozvanny, I.; Mattson, M.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci., 2008, 31(9), 454-463.
[http://dx.doi.org/10.1016/j.tins.2008.06.005] [PMID: 18675468]
[17]
Supnet, C.; Bezprozvanny, I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium, 2010, 47(2), 183-189.
[http://dx.doi.org/10.1016/j.ceca.2009.12.014] [PMID: 20080301]
[18]
Calvo-Rodriguez, M.; Hou, S.S.; Snyder, A.C.; Kharitonova, E.K.; Russ, A.N.; Das, S.; Fan, Z.; Muzikansky, A.; Garcia-Alloza, M.; Serrano-Pozo, A.; Hudry, E.; Bacskai, B.J. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 2146.
[http://dx.doi.org/10.1038/s41467-020-16074-2] [PMID: 32358564]
[19]
Calvo-Rodriguez, M.; Bacskai, B.J. High mitochondrial calcium levels precede neuronal death in vivo in Alzheimer’s disease. Cell Stress, 2020, 4(7), 187-190.
[http://dx.doi.org/10.15698/cst2020.07.226] [PMID: 32656500]
[20]
Jadiya, P.; Kolmetzky, D.W.; Tomar, D.; Di Meco, A.; Lombardi, A.A.; Lambert, J.P.; Luongo, T.S.; Ludtmann, M.H.; Praticò, D.; Elrod, J.W. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nat. Commun., 2019, 10(1), 3885.
[http://dx.doi.org/10.1038/s41467-019-11813-6] [PMID: 31467276]
[21]
Obulesu, M.; Lakshmi, M.J. Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem. Res., 2014, 39(12), 2301-2312.
[http://dx.doi.org/10.1007/s11064-014-1454-4] [PMID: 25322820]
[22]
Behl, C. Apoptosis and Alzheimer’s disease. J. Neural Transm. (Vienna), 2000, 107(11), 1325-1344.
[http://dx.doi.org/10.1007/s007020070021] [PMID: 11145007]
[23]
Takuma, K.; Yan, S.S.; Stern, D.M.; Yamada, K. Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease. J. Pharmacol. Sci., 2005, 97(3), 312-316.
[http://dx.doi.org/10.1254/jphs.CPJ04006X] [PMID: 15750290]
[24]
Guerreiro, R.; Hardy, J. Genetics of Alzheimer’s disease. Neurotherapeutics, 2014, 11(4), 732-737.
[http://dx.doi.org/10.1007/s13311-014-0295-9] [PMID: 25113539]
[25]
Chouliaras, L.; Rutten, B.P.F.; Kenis, G.; Peerbooms, O.; Visser, P.J.; Verhey, F.; van Os, J.; Steinbusch, H.W.; van den Hove, D.L. Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog. Neurobiol., 2010, 90(4), 498-510.
[http://dx.doi.org/10.1016/j.pneurobio.2010.01.002] [PMID: 20097254]
[26]
Zhang, S.; Zhang, M.; Cai, F.; Song, W. Biological function of Presenilin and its role in AD pathogenesis. Transl. Neurodegener., 2013, 2(1), 15.
[http://dx.doi.org/10.1186/2047-9158-2-15] [PMID: 23866842]
[27]
Chen, W-T.; Hsieh, Y-F.; Huang, Y-J.; Lin, C-C.; Lin, Y-T.; Liu, Y-C.; Lien, C.C.; Cheng, I.H. G206D Mutation of Presenilin-1 Reduces Pen2 Interaction, Increases Aβ42/Aβ40 Ratio and Elevates ER Ca(2+). Accumulation. Mol. Neurobiol., 2015, 52(3), 1835-1849.
[http://dx.doi.org/10.1007/s12035-014-8969-1] [PMID: 25394380]
[28]
Nixon, R.A.; Yang, D-S. Autophagy failure in Alzheimer’s disease--locating the primary defect. Neurobiol. Dis., 2011, 43(1), 38-45.
[http://dx.doi.org/10.1016/j.nbd.2011.01.021] [PMID: 21296668]
[29]
Shimohama, S. Apoptosis in Alzheimer ’ s disease — an update. 2000, 5(1), 9-16.
[30]
Nuriel, T.; Angulo, S.L.; Khan, U.; Ashok, A.; Chen, Q.; Figueroa, H.Y.; Emrani, S.; Liu, L.; Herman, M.; Barrett, G.; Savage, V.; Buitrago, L.; Cepeda-Prado, E.; Fung, C.; Goldberg, E.; Gross, S.S.; Hussaini, S.A.; Moreno, H.; Small, S.A.; Duff, K.E. Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer’s disease-like pathology. Nat. Commun., 2017, 8(1), 1464.
[http://dx.doi.org/10.1038/s41467-017-01444-0] [PMID: 29133888]
[31]
Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; Eckert, A.; Harvey, J.; Jeggo, R.; Jhamandas, J.H.; Kann, O.; la Cour, C.M.; Martin, W.F.; Mithieux, G.; Moreira, P.I.; Murphy, M.P.; Nave, K.A.; Nuriel, T.; Oliet, S.H.R.; Saudou, F.; Mattson, M.P.; Swerdlow, R.H.; Millan, M.J. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov., 2020, 19(9), 609-633.
[http://dx.doi.org/10.1038/s41573-020-0072-x] [PMID: 32709961]
[32]
Andrews-Zwilling, Y.; Bien-Ly, N.; Xu, Q.; Li, G.; Bernardo, A.; Yoon, S.Y.; Zwilling, D.; Yan, T.X.; Chen, L.; Huang, Y. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci., 2010, 30(41), 13707-13717.
[http://dx.doi.org/10.1523/JNEUROSCI.4040-10.2010] [PMID: 20943911]
[33]
Shi, Y.; Yamada, K.; Liddelow, S.A.; Smith, S.T.; Zhao, L.; Luo, W.; Tsai, R.M.; Spina, S.; Grinberg, L.T.; Rojas, J.C.; Gallardo, G.; Wang, K.; Roh, J.; Robinson, G.; Finn, M.B.; Jiang, H.; Sullivan, P.M.; Baufeld, C.; Wood, M.W.; Sutphen, C.; McCue, L.; Xiong, C.; Del-Aguila, J.L.; Morris, J.C.; Cruchaga, C.; Fagan, A.M.; Miller, B.L.; Boxer, A.L.; Seeley, W.W.; Butovsky, O.; Barres, B.A.; Paul, S.M.; Holtzman, D.M. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature, 2017, 549(7673), 523-527.
[http://dx.doi.org/10.1038/nature24016] [PMID: 28959956]
[34]
Wu, L.; Zhang, X.; Zhao, L. Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: Implications for Alzheimer’s disease risk reduction and early intervention. J. Neurosci., 2018, 38(30), 6665-6681.
[35]
Crean, S.; Ward, A.; Mercaldi, C.J.; Collins, J.M.; Cook, M.N.; Baker, N.L.; Arrighi, H.M. Apolipoprotein E ε4 prevalence in Alzheimer’s disease patients varies across global populations: A systematic literature review and meta-analysis. Dement. Geriatr. Cogn. Disord., 2011, 31(1), 20-30.
[http://dx.doi.org/10.1159/000321984] [PMID: 21124030]
[36]
Gureje, O.; Ogunniyi, A.; Baiyewu, O.; Price, B.; Unverzagt, F.W.; Evans, R.M.; Smith-Gamble, V.; Lane, K.A.; Gao, S.; Hall, K.S.; Hendrie, H.C.; Murrell, J.R. APOE ε4 is not associated with Alzheimer’s disease in elderly Nigerians. Ann. Neurol., 2006, 59(1), 182-185.
[http://dx.doi.org/10.1002/ana.20694] [PMID: 16278853]
[37]
de la T. J.C. Alzheimer Disease as a Vascular Disorder. Stroke, 2002, 33(4), 1152-1162.
[http://dx.doi.org/10.1161/01.STR.0000014421.15948.67] [PMID: 11935076]
[38]
Farkas, E.; Luiten, P.G.M. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog. Neurobiol., 2001, 64(6), 575-611.
[http://dx.doi.org/10.1016/S0301-0082(00)00068-X] [PMID: 11311463]
[39]
de la Torre, J.C. Pathophysiology of neuronal energy crisis in Alzheimer’s disease. Neurodegener. Dis., 2008, 5(3-4), 126-132.
[http://dx.doi.org/10.1159/000113681] [PMID: 18322369]
[40]
Štěpán-Buksakowska, I.; Szabó, N.; Hořínek, D.; Tóth, E.; Hort, J.; Warner, J.; Charvát, F.; Vécsei, L.; Roček, M.; Kincses, Z.T. Cortical and subcortical atrophy in Alzheimer disease: Parallel atrophy of thalamus and hippocampus. Alzheimer Dis. Assoc. Disord., 2014, 28(1), 65-72.
[http://dx.doi.org/10.1097/WAD.0b013e318299d3d6] [PMID: 23751371]
[41]
Heslegrave, A.; Heywood, W.; Paterson, R.; Magdalinou, N.; Svensson, J.; Johansson, P.; Öhrfelt, A.; Blennow, K.; Hardy, J.; Schott, J.; Mills, K.; Zetterberg, H. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol. Neurodegener., 2016, 11(1), 3.
[http://dx.doi.org/10.1186/s13024-016-0071-x] [PMID: 26754172]
[42]
Kaur, D.; Sharma, V.; Deshmukh, R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology, 2019, 27(4), 663-677.
[http://dx.doi.org/10.1007/s10787-019-00580-x] [PMID: 30874945]
[43]
Lee, C.Y.D.; Landreth, G.E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. (Vienna), 2010, 117(8), 949-960.
[http://dx.doi.org/10.1007/s00702-010-0433-4] [PMID: 20552234]
[44]
Medeiros, R.; LaFerla, F.M. Astrocytes: Conductors of the Alzheimer disease neuroinflammatory symphony. Exp. Neurol., 2013, 239, 133-138.
[http://dx.doi.org/10.1016/j.expneurol.2012.10.007] [PMID: 23063604]
[45]
Ismail, R.; Parbo, P.; Madsen, L.S.; Hansen, A.K.; Hansen, K.V.; Schaldemose, J.L.; Kjeldsen, P.L.; Stokholm, M.G.; Gottrup, H.; Eskildsen, S.F.; Brooks, D.J. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: A longitudinal PET study. J. Neuroinflammation, 2020, 17(1), 151.
[http://dx.doi.org/10.1186/s12974-020-01820-6] [PMID: 32375809]
[46]
Varma, V.R.; Oommen, A.M.; Varma, S.; Casanova, R.; An, Y.; Andrews, R.M.; O’Brien, R.; Pletnikova, O.; Troncoso, J.C.; Toledo, J.; Baillie, R.; Arnold, M.; Kastenmueller, G.; Nho, K.; Doraiswamy, P.M.; Saykin, A.J.; Kaddurah-Daouk, R.; Legido-Quigley, C.; Thambisetty, M. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med., 2018, 15(1) ,e1002482.
[http://dx.doi.org/10.1371/journal.pmed.1002482] [PMID: 29370177]
[47]
Swerdlow, R.H.; Khan, S.M.A.A. “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses, 2004, 63(1), 8-20.
[http://dx.doi.org/10.1016/j.mehy.2003.12.045] [PMID: 15193340]
[48]
Swerdlow, RH; Parks, JK; Cassarino, DS; Maguire, DJ; Maguire, RS Bennett, JP Cybrids in Alzheimer’s disease: A cellular model of the disease? Neurology, 1997, 49(4), 918-925.
[http://dx.doi.org/10.1212/WNL.49.4.918]
[49]
Picone, P.; Nuzzo, D.; Caruana, L.; Scafidi, V.; Di Carlo, M. Mitochondrial dysfunction: Different routes to Alzheimer’s disease therapy. Oxid. Med. Cell. Longev., 2014, 2014 ,780179.
[http://dx.doi.org/10.1155/2014/780179] [PMID: 25221640]
[50]
Swerdlow, R.H.; Khan, S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: An update. Exp. Neurol., 2009, 218(2), 308-315.
[http://dx.doi.org/10.1016/j.expneurol.2009.01.011] [PMID: 19416677]
[51]
Aliev, G.; Seyidova, D.; Lamb, B.T.; Obrenovich, M.E.; Siedlak, S.L.; Vinters, H.V.; Friedland, R.P.; LaManna, J.C.; Smith, M.A.; Perry, G. Mitochondria and vascular lesions as a central target for the development of Alzheimer’s disease and Alzheimer disease-like pathology in transgenic mice. Neurol. Res., 2003, 25(6), 665-674.
[http://dx.doi.org/10.1179/016164103101201977] [PMID: 14503022]
[52]
Weidling, I.W.; Swerdlow, R.H. Mitochondria in Alzheimer’s disease and their potential role in Alzheimer’s proteostasis. Exp. Neurol., 2020, 330 ,113321.
[http://dx.doi.org/10.1016/j.expneurol.2020.113321] [PMID: 32339611]
[53]
Swerdlow, R.H.; Burns, J.M.; Khan, S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim. Biophys. Acta, 2014, 1842(8), 1219-1231.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.010] [PMID: 24071439]
[54]
McBride, H.M.; Neuspiel, M.; Wasiak, S. Mitochondria: More than just a powerhouse. Curr. Biol., 2006, 16(14), R551-R560.
[http://dx.doi.org/10.1016/j.cub.2006.06.054] [PMID: 16860735]
[55]
Knott, A.B.; Perkins, G.; Schwarzenbacher, R.; Bossy-Wetzel, E. Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci., 2008, 9(7), 505-518.
[http://dx.doi.org/10.1038/nrn2417] [PMID: 18568013]
[56]
Reddy, P.H.; Reddy, T.P.; Manczak, M.; Calkins, M.J.; Shirendeb, U.; Mao, P. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res. Brain Res. Rev., 2011, 67(1-2), 103-118.
[http://dx.doi.org/10.1016/j.brainresrev.2010.11.004] [PMID: 21145355]
[57]
Wang, X.; Su, B.; Lee, H.; Li, X.; Perry, G. Smith, MA Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer’s Disease. J. Neurosci., 2009, 29(28), 9090-9103.
[58]
Wang, X.; Su, B.; Fujioka, H.; Zhu, X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am. J. Pathol., 2008, 173(2), 470-482.
[http://dx.doi.org/10.2353/ajpath.2008.071208] [PMID: 18599615]
[59]
Trimmer, P.A.; Swerdlow, R.H.; Parks, J.K.; Keeney, P.; Bennett, J.P., Jr; Miller, S.W.; Davis, R.E.; Parker, W.D. Jr Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp. Neurol., 2000, 162(1), 37-50.
[http://dx.doi.org/10.1006/exnr.2000.7333] [PMID: 10716887]
[60]
Saxton, WM; Hollenbeck, PJ The axonal transport of mitochondria. J Cell Sci., 2012, 125(9), 2095-2104.
[61]
Hollenbeck, P.J.; Saxton, W.M. The axonal transport of mitochondria. J Cell Sci., 2005, 118(23), 5411-5419.
[62]
Calkins, M.J.; Reddy, P.H. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim. Biophys. Acta, 2011, 1812(4), 507-513.
[http://dx.doi.org/10.1016/j.bbadis.2011.01.007] [PMID: 21241801]
[63]
Kerr, J.S.; Adriaanse, B.A.; Greig, N.H.; Mattson, M.P.; Cader, M.Z.; Bohr, V.A.; Fang, E.F. Mitophagy and Alzheimer’s Disease: Cellular and Molecular Mechanisms. Trends Neurosci., 2017, 40(3), 151-166.
[http://dx.doi.org/10.1016/j.tins.2017.01.002] [PMID: 28190529]
[64]
Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; Rocktäschel, P.; Croteau, D.L.; Akbari, M.; Greig, N.H.; Fladby, T.; Nilsen, H.; Cader, M.Z.; Mattson, M.P.; Tavernarakis, N.; Bohr, V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci., 2019, 22(3), 401-412.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[65]
Atamna, H.; Frey, W.H., II Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion, 2007, 7(5), 297-310.
[http://dx.doi.org/10.1016/j.mito.2007.06.001] [PMID: 17625988]
[66]
Aldana, B.I. Microglia-specific metabolic changes in neurodegeneration. J. Mol. Biol., 2019, 431(9), 1830-1842.
[http://dx.doi.org/10.1016/j.jmb.2019.03.006] [PMID: 30878483]
[67]
Wang, A.; Luan, HH; Medzhitov, R. An evolutionary perspective on immunometabolism. Science, 2019, 363(6423) ,eaar3932.
[http://dx.doi.org/10.1126/science.aar3932]
[68]
Deczkowska, A.; Keren-Shaul, H.; Weiner, A.; Colonna, M.; Schwartz, M.; Amit, I. Disease-associated microglia: A universal immune sensor of neurodegeneration. Cell, 2018, 173(5), 1073-1081.
[http://dx.doi.org/10.1016/j.cell.2018.05.003] [PMID: 29775591]
[69]
Frere, S.; Slutsky, I. Alzheimer’s Disease: From Firing Instability to Homeostasis Network Collapse. Neuron, 2018, 97(1), 32-58.
[http://dx.doi.org/10.1016/j.neuron.2017.11.028] [PMID: 29301104]
[70]
Kann, O. The interneuron energy hypothesis: Implications for brain disease. Neurobiol. Dis., 2016, 90, 75-85.
[http://dx.doi.org/10.1016/j.nbd.2015.08.005] [PMID: 26284893]
[71]
An, Y.; Varma, V.R.; Varma, S.; Casanova, R.; Dammer, E.; Pletnikova, O.; Chia, C.W.; Egan, J.M.; Ferrucci, L.; Troncoso, J.; Levey, A.I.; Lah, J.; Seyfried, N.T.; Legido-Quigley, C.; O’Brien, R.; Thambisetty, M. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement., 2018, 14(3), 318-329.
[http://dx.doi.org/10.1016/j.jalz.2017.09.011] [PMID: 29055815]
[72]
Reiman, EM; Caselli, RJ; Chen, K; Alexander, GE; Bandy, D; Frost, J Declining brain activity in cognitively normal apolipoprotein E ɛ4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc. Natl. Acad. Sci., 2001, 98(6), 3334-3339.
[73]
de Leon, MJ; Convit, A; Wolf, OT; Tarshish, CY; DeSanti, S; Rusinek, H Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10966-10971.
[74]
Croteau, E.; Castellano, C.A.; Fortier, M.; Bocti, C.; Fulop, T.; Paquet, N.; Cunnane, S.C. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp. Gerontol., 2018, 107, 18-26.
[http://dx.doi.org/10.1016/j.exger.2017.07.004] [PMID: 28709938]
[75]
Liguori, C.; Chiaravalloti, A.; Sancesario, G.; Stefani, A.; Sancesario, G.M.; Mercuri, N.B.; Schillaci, O.; Pierantozzi, M. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(11), 2040-2049.
[http://dx.doi.org/10.1007/s00259-016-3417-2] [PMID: 27221635]
[76]
Fan, W.; Evans, R. PPARs and ERRs: Molecular mediators of mitochondrial metabolism. Curr. Opin. Cell Biol., 2015, 33, 49-54.
[http://dx.doi.org/10.1016/j.ceb.2014.11.002] [PMID: 25486445]
[77]
Eichner, L.J.; Giguère, V. Estrogen related receptors (ERRs): A new dawn in transcriptional control of mitochondrial gene networks. Mitochondrion, 2011, 11(4), 544-552.
[http://dx.doi.org/10.1016/j.mito.2011.03.121] [PMID: 21497207]
[78]
Klinge, C.M. Estrogenic control of mitochondrial function and biogenesis. J. Cell. Biochem., 2008, 105(6), 1342-1351.
[http://dx.doi.org/10.1002/jcb.21936] [PMID: 18846505]
[79]
Fernandez-Marcos, P.J.; Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr., 2011, 93(4), 884S-90.
[http://dx.doi.org/10.3945/ajcn.110.001917] [PMID: 21289221]
[80]
Li, P.A.; Hou, X.; Hao, S. Mitochondrial biogenesis in neurodegeneration. J. Neurosci. Res., 2017, 95(10), 2025-2029.
[http://dx.doi.org/10.1002/jnr.24042] [PMID: 28301064]
[81]
Singulani, M.P.; Pereira, C.P.M.; Ferreira, A.F.F.; Garcia, P.C.; Ferrari, G.D.; Alberici, L.C.; Britto, L.R. Impairment of PGC-1α-mediated mitochondrial biogenesis precedes mitochondrial dysfunction and Alzheimer’s pathology in the 3xTg mouse model of Alzheimer’s disease. Exp. Gerontol., 2020, 133 ,110882.
[http://dx.doi.org/10.1016/j.exger.2020.110882] [PMID: 32084533]
[82]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[83]
Kim, T-S.; Pae, C-U.; Yoon, S-J.; Jang, W-Y.; Lee, N.J.; Kim, J-J.; Lee, S.J.; Lee, C.; Paik, I.H.; Lee, C.U. Decreased plasma antioxidants in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2006, 21(4), 344-348.
[http://dx.doi.org/10.1002/gps.1469] [PMID: 16534775]
[84]
Markesbery, W.R. The role of oxidative stress in Alzheimer disease. Arch. Neurol., 1999, 56(12), 1449-1452.
[http://dx.doi.org/10.1001/archneur.56.12.1449] [PMID: 10593298]
[85]
Praticò, D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: Lights and shadows. Ann. N. Y. Acad. Sci., 2008, 1147(1), 70-78.
[http://dx.doi.org/10.1196/annals.1427.010] [PMID: 19076432]
[86]
Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta, 2014, 1842(8), 1240-1247.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[87]
Wang, J.; Xiong, S.; Xie, C.; Markesbery, W.R.; Lovell, M.A. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J. Neurochem., 2005, 93(4), 953-962.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03053.x] [PMID: 15857398]
[88]
Bubber, P.; Haroutunian, V.; Fisch, G.; Blass, J.P.; Gibson, G.E. Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Ann. Neurol., 2005, 57(5), 695-703.
[http://dx.doi.org/10.1002/ana.20474] [PMID: 15852400]
[89]
Mastrogiacoma, F.; Lindsay, J.G.; Bettendorff, L.; Rice, J.; Kish, S.J. Brain protein and α-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. Ann. Neurol., 1996, 39(5), 592-598.
[http://dx.doi.org/10.1002/ana.410390508] [PMID: 8619544]
[90]
KISH SJ. Brain Energy Metabolizing Enzymes in Alzheimer’s Disease: α-Ketoglutarate Dehydrogenase Complex and Cytochrome Oxidase. Ann N Y Acad Sci., 1997, 826(1 Cerebrovascul), 218-228..
[91]
Sheu, K-F.R.; Cooper, A.J.L.; Koike, K.; Koike, M.; Lindsay, J.G.; Blass, J.P. Abnormality of the α-ketoglutarate dehydrogenase complex in fibroblasts from familial Alzheimer’s disease. Ann. Neurol., 1994, 35(3), 312-318.
[http://dx.doi.org/10.1002/ana.410350311] [PMID: 8122883]
[92]
Parker, WD; Filley, CM; Parks, JK Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology, 1990, 40(8), 1302.
[http://dx.doi.org/10.1212/WNL.40.8.1302]
[93]
Sorbi, S.; Bird, E.D.; Blass, J.P. Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann. Neurol., 1983, 13(1), 72-78.
[http://dx.doi.org/10.1002/ana.410130116] [PMID: 6219611]
[94]
Sheu, K.F.; Kim, Y-T.; Blass, J.P.; Weksler, M.E. An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain. Ann. Neurol., 1985, 17(5), 444-449.
[http://dx.doi.org/10.1002/ana.410170505] [PMID: 4004169]
[95]
Canevari, L.; Clark, J.B.; Bates, T.E. β-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett., 1999, 457(1), 131-134.
[http://dx.doi.org/10.1016/S0014-5793(99)01028-5] [PMID: 10486579]
[96]
Chen, J.X.; Yan, S.D. Amyloid-β-induced mitochondrial dysfunction. J. Alzheimers Dis., 2007, 12(2), 177-184.
[http://dx.doi.org/10.3233/JAD-2007-12208] [PMID: 17917162]
[97]
Novak, G.; Streffer, J.R.; Timmers, M.; Henley, D.; Brashear, H.R.; Bogert, J.; Russu, A.; Janssens, L.; Tesseur, I.; Tritsmans, L.; Van Nueten, L.; Engelborghs, S. Long-term safety and tolerability of atabecestat (JNJ-54861911), an oral BACE1 inhibitor, in early Alzheimer’s disease spectrum patients: A randomized, double-blind, placebo-controlled study and a two-period extension study. Alzheimers Res. Ther., 2020, 12(1), 58.
[http://dx.doi.org/10.1186/s13195-020-00614-5] [PMID: 32410694]
[98]
Wessels, A.M.; Tariot, P.N.; Zimmer, J.A.; Selzler, K.J.; Bragg, S.M.; Andersen, S.W.; Landry, J.; Krull, J.H.; Downing, A.M.; Willis, B.A.; Shcherbinin, S.; Mullen, J.; Barker, P.; Schumi, J.; Shering, C.; Matthews, B.R.; Stern, R.A.; Vellas, B.; Cohen, S.; MacSweeney, E.; Boada, M.; Sims, J.R. Efficacy and Safety of Lanabecestat for Treatment of Early and Mild Alzheimer Disease: The AMARANTH and DAYBREAK-ALZ Randomized Clinical Trials. JAMA Neurol., 2020, 77(2), 199-209.
[http://dx.doi.org/10.1001/jamaneurol.2019.3988] [PMID: 31764959]
[99]
Perez Ortiz, J.M.; Swerdlow, R.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol., 2019, 176(18), 3489-3507.
[http://dx.doi.org/10.1111/bph.14585] [PMID: 30675901]
[100]
Pinto, M.; Pickrell, A.M.; Wang, X.; Bacman, S.R.; Yu, A.; Hida, A.; Dillon, L.M.; Morton, P.D.; Malek, T.R.; Williams, S.L.; Moraes, C.T. Transient mitochondrial DNA double strand breaks in mice cause accelerated aging phenotypes in a ROS-dependent but p53/p21-independent manner. Cell Death Differ., 2017, 24(2), 288-299.
[http://dx.doi.org/10.1038/cdd.2016.123] [PMID: 27911443]
[101]
Leuner, K.; Müller, W.E.; Reichert, A.S. From mitochondrial dysfunction to amyloid beta formation: Novel insights into the pathogenesis of Alzheimer’s disease. Mol. Neurobiol., 2012, 46(1), 186-193.
[http://dx.doi.org/10.1007/s12035-012-8307-4] [PMID: 22833458]
[102]
Walls, K.C.; Coskun, P.; Gallegos-Perez, J.L.; Zadourian, N.; Freude, K.; Rasool, S.; Blurton-Jones, M.; Green, K.N.; LaFerla, F.M. Swedish Alzheimer mutation induces mitochondrial dysfunction mediated by HSP60 mislocalization of amyloid precursor protein (APP) and beta-amyloid. J. Biol. Chem., 2012, 287(36), 30317-30327.
[http://dx.doi.org/10.1074/jbc.M112.365890] [PMID: 22753410]
[103]
Manczak, M.; Reddy, P.H. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum. Mol. Genet., 2012, 21(23), 5131-5146.
[http://dx.doi.org/10.1093/hmg/dds360] [PMID: 22926141]
[104]
Lasagna-Reeves, C.A.; Castillo-Carranza, D.L.; Sengupta, U.; Clos, A.L.; Jackson, G.R.; Kayed, R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol. Neurodegener., 2011, 6(1), 39.
[http://dx.doi.org/10.1186/1750-1326-6-39] [PMID: 21645391]
[105]
Ebneth, A.; Godemann, R.; Stamer, K.; Illenberger, S.; Trinczek, B.; Mandelkow, E. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J. Cell Biol., 1998, 143(3), 777-794.
[http://dx.doi.org/10.1083/jcb.143.3.777] [PMID: 9813097]
[106]
Kopeikina, K.J.; Carlson, G.A.; Pitstick, R.; Ludvigson, A.E.; Peters, A.; Luebke, J.I.; Koffie, R.M.; Frosch, M.P.; Hyman, B.T.; Spires-Jones, T.L. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am. J. Pathol., 2011, 179(4), 2071-2082.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.004] [PMID: 21854751]
[107]
Su, B.; Wang, X.; Lee, H.G.; Tabaton, M.; Perry, G.; Smith, M.A.; Zhu, X. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci. Lett., 2010, 468(3), 267-271.
[http://dx.doi.org/10.1016/j.neulet.2009.11.010] [PMID: 19914335]
[108]
Dias-Santagata, D.; Fulga, T.A.; Duttaroy, A.; Feany, M.B. Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J. Clin. Invest., 2007, 117(1), 236-245.
[http://dx.doi.org/10.1172/JCI28769] [PMID: 17173140]
[109]
Orr, A.L.; Kim, C.; Jimenez-Morales, D.; Newton, B.W.; Johnson, J.R.; Krogan, N.J.; Swaney, D.L.; Mahley, R.W. Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. J. Alzheimers Dis., 2019, 68(3), 991-1011.
[http://dx.doi.org/10.3233/JAD-181184] [PMID: 30883359]
[110]
Nakamura, T.; Watanabe, A.; Fujino, T.; Hosono, T.; Michikawa, M. Apolipoprotein E4 (1-272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells. Mol. Neurodegener., 2009, 4(1), 35.
[http://dx.doi.org/10.1186/1750-1326-4-35] [PMID: 19695092]
[111]
Chen, H-K.; Ji, Z-S.; Dodson, S.E.; Miranda, R.D.; Rosenblum, C.I.; Reynolds, I.J.; Freedman, S.B.; Weisgraber, K.H.; Huang, Y.; Mahley, R.W. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J. Biol. Chem., 2011, 286(7), 5215-5221.
[http://dx.doi.org/10.1074/jbc.M110.151084] [PMID: 21118811]
[112]
Valla, J.; Yaari, R.; Wolf, A.B.; Kusne, Y.; Beach, T.G.; Roher, A.E.; Corneveaux, J.J.; Huentelman, M.J.; Caselli, R.J.; Reiman, E.M. Reduced posterior cingulate mitochondrial activity in expired young adult carriers of the APOE ε4 allele, the major late-onset Alzheimer’s susceptibility gene. J. Alzheimers Dis., 2010, 22(1), 307-313.
[http://dx.doi.org/10.3233/JAD-2010-100129] [PMID: 20847408]
[113]
Moreira, P.I.; Santos, M.S.; Oliveira, C.R. Alzheimer’s disease: A lesson from mitochondrial dysfunction. Antioxid. Redox Signal., 2007, 9(10), 1621-1630.
[http://dx.doi.org/10.1089/ars.2007.1703] [PMID: 17678440]
[114]
Mullane, K.; Williams, M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem. Pharmacol., 2020, 177 ,113945.
[http://dx.doi.org/10.1016/j.bcp.2020.113945] [PMID: 32247851]
[115]
Doig, A.J.; Del Castillo-Frias, M.P.; Berthoumieu, O.; Tarus, B.; Nasica-Labouze, J.; Sterpone, F.; Nguyen, P.H.; Hooper, N.M.; Faller, P.; Derreumaux, P. Why Is Research on Amyloid-β Failing to Give New Drugs for Alzheimer’s Disease? ACS Chem. Neurosci., 2017, 8(7), 1435-1437.
[http://dx.doi.org/10.1021/acschemneuro.7b00188] [PMID: 28586203]
[116]
Citron, M. Alzheimer’s disease: Strategies for disease modification. Nat. Rev. Drug Discov., 2010, 9(5), 387-398.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]
[117]
Golde, T.E.; Schneider, L.S.; Koo, E.H. Anti-aβ therapeutics in Alzheimer’s disease: The need for a paradigm shift. Neuron, 2011, 69(2), 203-213.
[http://dx.doi.org/10.1016/j.neuron.2011.01.002] [PMID: 21262461]
[118]
Brunden, K.R.; Trojanowski, J.Q.; Lee, V.M-Y. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat. Rev. Drug Discov., 2009, 8(10), 783-793.
[http://dx.doi.org/10.1038/nrd2959] [PMID: 19794442]
[119]
Giacobini, E.; Gold, G. Alzheimer disease therapy--moving from amyloid-β to tau. Nat. Rev. Neurol., 2013, 9(12), 677-686.
[http://dx.doi.org/10.1038/nrneurol.2013.223] [PMID: 24217510]
[120]
Iturria-Medina, Y.; Carbonell, F.M.; Sotero, R.C.; Chouinard-Decorte, F.; Evans, A.C. Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer’s disease. Neuroimage, 2017, 152, 60-77.
[http://dx.doi.org/10.1016/j.neuroimage.2017.02.058] [PMID: 28257929]
[121]
Iturria-Medina, Y.; Sotero, R.C.; Toussaint, P.J.; Mateos-Pérez, J.M.; Evans, A.C.; Weiner, M.W. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun., 2016, 7(1), 11934.
[http://dx.doi.org/10.1038/ncomms11934] [PMID: 27327500]
[122]
McManus, MJ; Murphy, MP; Franklin, JL The Mitochondria-Targeted Antioxidant MitoQ Prevents Loss of Spatial Memory Retention and Early Neuropathology in a Transgenic Mouse Model of Alzheimer’s Disease. J. Neurosci., 2011, 31(44), 15703-15715.
[123]
Ng, L.F.; Gruber, J.; Cheah, I.K.; Goo, C.K.; Cheong, W.F.; Shui, G.; Sit, K.P.; Wenk, M.R.; Halliwell, B. The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease. Free Radic. Biol. Med., 2014, 71, 390-401.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.003] [PMID: 24637264]
[124]
Manczak, M.; Mao, P.; Calkins, M.J.; Cornea, A.; Reddy, A.P.; Murphy, M.P.; Szeto, H.H.; Park, B.; Reddy, P.H. Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J. Alzheimers Dis., 2010, 20(s2)(Suppl. 2), S609-S631.
[http://dx.doi.org/10.3233/JAD-2010-100564] [PMID: 20463406]
[125]
Porquet, D.; Casadesús, G.; Bayod, S.; Vicente, A.; Canudas, A.M.; Vilaplana, J.; Pelegrí, C.; Sanfeliu, C.; Camins, A.; Pallàs, M.; del Valle, J. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr.), 2013, 35(5), 1851-1865.
[http://dx.doi.org/10.1007/s11357-012-9489-4] [PMID: 23129026]
[126]
Zhu, C.W.; Grossman, H.; Neugroschl, J.; Parker, S.; Burden, A.; Luo, X.; Sano, M. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement. (N. Y.), 2018, 4(1), 609-616.
[http://dx.doi.org/10.1016/j.trci.2018.09.009] [PMID: 30480082]
[127]
Yao, J.; Zhao, L.; Mao, Z.; Chen, S.; Wong, K.C.; To, J.; Brinton, R.D. Potentiation of brain mitochondrial function by S-equol and R/S-equol estrogen receptor β-selective phytoSERM treatments. Brain Res., 2013, 1514, 128-141.
[http://dx.doi.org/10.1016/j.brainres.2013.02.021] [PMID: 23428542]
[128]
Sorrentino, V.; Romani, M.; Mouchiroud, L.; Beck, J.S.; Zhang, H.; D’Amico, D.; Moullan, N.; Potenza, F.; Schmid, A.W.; Rietsch, S.; Counts, S.E.; Auwerx, J. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature, 2017, 552(7684), 187-193.
[http://dx.doi.org/10.1038/nature25143] [PMID: 29211722]
[129]
Gong, B.; Pan, Y.; Vempati, P.; Zhao, W.; Knable, L.; Ho, L.; Wang, J.; Sastre, M.; Ono, K.; Sauve, A.A.; Pasinetti, G.M. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging, 2013, 34(6), 1581-1588.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.005] [PMID: 23312803]
[130]
Steele, J.W.; Gandy, S. Latrepirdine (Dimebon®), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model. Autophagy, 2013, 9(4), 617-618.
[http://dx.doi.org/10.4161/auto.23487] [PMID: 23380933]
[131]
Zhang, L.; Zhang, S.; Maezawa, I.; Trushin, S.; Minhas, P.; Pinto, M.; Jin, L.W.; Prasain, K.; Nguyen, T.D.; Yamazaki, Y.; Kanekiyo, T.; Bu, G.; Gateno, B.; Chang, K.O.; Nath, K.A.; Nemutlu, E.; Dzeja, P.; Pang, Y.P.; Hua, D.H.; Trushina, E. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer’s Disease. EBioMedicine, 2015, 2(4), 294-305.
[http://dx.doi.org/10.1016/j.ebiom.2015.03.009] [PMID: 26086035]
[132]
Zhao, F.; Fang, F.; Qiao, P.; Yan, N.; Gao, D.; Yan, Y. AP39, a Mitochondria-Targeted Hydrogen Sulfide Donor, Supports Cellular Bioenergetics and Protects against Alzheimer’s Disease by Preserving Mitochondrial Function in APP/PS1 Mice and Neurons.In: Oxid Med Cell Longev; Sebastián, D., Ed.; , 2016, p. 8360738.
[133]
Baek, SH; Park, SJ; Jeong, JI; Kim, SH; Han, J Kyung, JW Inhibition of Drp1 Ameliorates Synaptic Depression, Aβ Deposition, and Cognitive Impairment in an Alzheimer’s Disease Model. J. Neurosci., 2017, 37(20), 5099-5110.
[134]
Edeas, M.; Weissig, V. Targeting mitochondria: Strategies, innovations and challenges: The future of medicine will come through mitochondria. Mitochondrion, 2013, 13(5), 389-390.
[http://dx.doi.org/10.1016/j.mito.2013.03.009] [PMID: 23562877]
[135]
Steele, H.E.; Horvath, R.; Lyon, J.J.; Chinnery, P.F. Monitoring clinical progression with mitochondrial disease biomarkers. Brain, 2017, 140(10), 2530-2540.
[http://dx.doi.org/10.1093/brain/awx168] [PMID: 28969370]
[136]
Murphy, M.P.; Hartley, R.C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov., 2018, 17(12), 865-886.
[http://dx.doi.org/10.1038/nrd.2018.174] [PMID: 30393373]
[137]
Bell, S.M.; Barnes, K.; De Marco, M.; Shaw, P.J.; Ferraiuolo, L.; Blackburn, D.J.; Venneri, A.; Mortiboys, H. Mitochondrial Dysfunction in Alzheimer’s Disease: A Biomarker of the Future? Biomedicines, 2021, 9(1), 63.
[http://dx.doi.org/10.3390/biomedicines9010063] [PMID: 33440662]
[138]
Wojsiat, J.; Laskowska-Kaszub, K.; Mietelska-Porowska, A.; Wojda, U. Search for Alzheimer’s disease biomarkers in blood cells: Hypotheses-driven approach. Biomarkers Med., 2017, 11(10), 917-931.
[http://dx.doi.org/10.2217/bmm-2017-0041] [PMID: 28976776]
[139]
Ruan, Q.; D’Onofrio, G.; Sancarlo, D.; Greco, A.; Yu, Z. Potential fluid biomarkers for pathological brain changes in Alzheimer’s disease: Implication for the screening of cognitive frailty. Mol. Med. Rep., 2016, 14(4), 3184-3198.
[http://dx.doi.org/10.3892/mmr.2016.5618] [PMID: 27511317]
[140]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Feldman, H.H.; Frisoni, G.B.; Hampel, H.; Jagust, W.J.; Johnson, K.A.; Knopman, D.S.; Petersen, R.C.; Scheltens, P.; Sperling, R.A.; Dubois, B. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 2016, 87(5), 539-547.
[http://dx.doi.org/10.1212/WNL.0000000000002923] [PMID: 27371494]
[141]
Yousif, L.F.; Stewart, K.M.; Kelley, S.O. Targeting mitochondria with organelle-specific compounds: Strategies and applications. ChemBioChem, 2009, 10(12), 1939-1950.
[http://dx.doi.org/10.1002/cbic.200900185] [PMID: 19637148]
[142]
Logan, A.; Pell, V.R.; Shaffer, K.J.; Evans, C.; Stanley, N.J.; Robb, E.L.; Prime, T.A.; Chouchani, E.T.; Cochemé, H.M.; Fearnley, I.M.; Vidoni, S.; James, A.M.; Porteous, C.M.; Partridge, L.; Krieg, T.; Smith, R.A.; Murphy, M.P. Assessing the mitochondrial membrane potential in cells and in vivo using targeted click chemistry and mass spectrometry. Cell Metab., 2016, 23(2), 379-385.
[http://dx.doi.org/10.1016/j.cmet.2015.11.014] [PMID: 26712463]
[143]
Chalmers, S.; Caldwell, S.T.; Quin, C.; Prime, T.A.; James, A.M.; Cairns, A.G.; Murphy, M.P.; McCarron, J.G.; Hartley, R.C. Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore. J. Am. Chem. Soc., 2012, 134(2), 758-761.
[http://dx.doi.org/10.1021/ja2077922] [PMID: 22239373]
[144]
Scearce-Levie, K.; Sanchez, P.E.; Lewcock, J.W. Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat. Rev. Drug Discov., 2020, 19(7), 447-462.
[http://dx.doi.org/10.1038/s41573-020-0065-9] [PMID: 32612262]
[145]
Mullane, K.; Williams, M. Preclinical Models of Alzheimer’s Disease: Relevance and Translational Validity. Curr. Protocols Pharmacol., 2019, 84(1) ,e57.
[http://dx.doi.org/10.1002/cpph.57] [PMID: 30802363]
[146]
Bousquet, J.; Anto, J.M.; Sterk, P.J.; Adcock, I.M.; Chung, K.F.; Roca, J.; Agusti, A.; Brightling, C.; Cambon-Thomsen, A.; Cesario, A.; Abdelhak, S.; Antonarakis, S.E.; Avignon, A.; Ballabio, A.; Baraldi, E.; Baranov, A.; Bieber, T.; Bockaert, J.; Brahmachari, S.; Brambilla, C.; Bringer, J.; Dauzat, M.; Ernberg, I.; Fabbri, L.; Froguel, P.; Galas, D.; Gojobori, T.; Hunter, P.; Jorgensen, C.; Kauffmann, F.; Kourilsky, P.; Kowalski, M.L.; Lancet, D.; Pen, C.L.; Mallet, J.; Mayosi, B.; Mercier, J.; Metspalu, A.; Nadeau, J.H.; Ninot, G.; Noble, D.; Oztürk, M.; Palkonen, S.; Préfaut, C.; Rabe, K.; Renard, E.; Roberts, R.G.; Samolinski, B.; Schünemann, H.J.; Simon, H.U.; Soares, M.B.; Superti-Furga, G.; Tegner, J.; Verjovski-Almeida, S.; Wellstead, P.; Wolkenhauer, O.; Wouters, E.; Balling, R.; Brookes, A.J.; Charron, D.; Pison, C.; Chen, Z.; Hood, L.; Auffray, C. Systems medicine and integrated care to combat chronic noncommunicable diseases. Genome Med., 2011, 3(7), 43.
[http://dx.doi.org/10.1186/gm259] [PMID: 21745417]
[147]
Israel, M.A.; Yuan, S.H.; Bardy, C.; Reyna, S.M.; Mu, Y.; Herrera, C.; Hefferan, M.P.; Van Gorp, S.; Nazor, K.L.; Boscolo, F.S.; Carson, C.T.; Laurent, L.C.; Marsala, M.; Gage, F.H.; Remes, A.M.; Koo, E.H.; Goldstein, L.S. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature, 2012, 482(7384), 216-220.
[http://dx.doi.org/10.1038/nature10821] [PMID: 22278060]
[148]
Brennand, K.J.; Simone, A.; Jou, J.; Gelboin-Burkhart, C.; Tran, N.; Sangar, S.; Li, Y.; Mu, Y.; Chen, G.; Yu, D.; McCarthy, S.; Sebat, J.; Gage, F.H. Modelling schizophrenia using human induced pluripotent stem cells. Nature, 2011, 473(7346), 221-225.
[http://dx.doi.org/10.1038/nature09915] [PMID: 21490598]
[149]
Barnes, D.E.; Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol., 2011, 10(9), 819-828.
[http://dx.doi.org/10.1016/S1474-4422(11)70072-2] [PMID: 21775213]
[150]
Rosendorff, C.; Beeri, M.S.; Silverman, J.M. Cardiovascular risk factors for Alzheimer’s disease. Am. J. Geriatr. Cardiol., 2007, 16(3), 143-149.
[http://dx.doi.org/10.1111/j.1076-7460.2007.06696.x] [PMID: 17483665]
[151]
Van Den Heuvel, C.; Thornton, E.; Vink, R. Traumatic brain injury and Alzheimer’s disease: A review. In: Prog. Brain Res.,; , 2007; 161, pp. 303-316.
[http://dx.doi.org/10.1016/S0079-6123(06)61021-2] [PMID: 17618986]
[152]
Wilkins, H.M.; Mahnken, J.D.; Welch, P.; Bothwell, R.; Koppel, S.; Jackson, R.L.; Burns, J.M.; Swerdlow, R.H. A Mitochondrial Biomarker-Based Study of S-Equol in Alzheimer’s Disease Subjects: Results of a Single-Arm. Pilot Trial. J. Alzheimers Dis., 2017, 59(1), 291-300.
[http://dx.doi.org/10.3233/JAD-170077] [PMID: 28598847]
[153]
Loera-Valencia, R.; Cedazo-Minguez, A.; Kenigsberg, P.A.; Page, G.; Duarte, A.I.; Giusti, P.; Zusso, M.; Robert, P.; Frisoni, G.B.; Cattaneo, A.; Zille, M.; Boltze, J.; Cartier, N.; Buee, L.; Johansson, G.; Winblad, B. Current and emerging avenues for Alzheimer’s disease drug targets. J. Intern. Med., 2019, 286(4), 398-437.
[http://dx.doi.org/10.1111/joim.12959] [PMID: 31286586]
[154]
Van Eldik, L.J.; Carrillo, M.C.; Cole, P.E.; Feuerbach, D.; Greenberg, B.D.; Hendrix, J.A.; Kennedy, M.; Kozauer, N.; Margolin, R.A.; Molinuevo, J.L.; Mueller, R.; Ransohoff, R.M.; Wilcock, D.M.; Bain, L.; Bales, K. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2016, 2(2), 99-109.
[http://dx.doi.org/10.1016/j.trci.2016.05.001] [PMID: 29067297]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy