Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anticancer Effects of Cinnamaldehyde Through Inhibition of ErbB2/HSF1/LDHA Pathway in 5637 Cell Line of Bladder Cancer

Author(s): Zeynab Aminzadeh, Nasrin Ziamajidi* and Roghayeh Abbasalipourkabir

Volume 22, Issue 6, 2022

Published on: 26 July, 2021

Page: [1139 - 1148] Pages: 10

DOI: 10.2174/1871520621666210726142814

Price: $65

Abstract

Background and Objective: The growing prevalence of bladder cancer worldwide has become a major concern for researchers, and the side effects of chemotherapy drugs have always been a major problem in cancer treatment. Cinnamaldehyde, the active ingredient in the Cinnamon plant, has long been considered with anti-oxidant and anti-inflammatory effects.

Methods: Bladder cancer 5637 cell lines were treated with the different concentrations of Cinnamaldehyde. MTT assay was performed to evaluate cell viability at 24, 48, and 72 hours. The concentration of 0.02, 0.04, and 0.08 mg/ml of Cinnamaldehyde was selected. Apoptosis was assessed with Annexin V-FITC/PI and Hochest33258 staining. Cell migration was performed by the scratch test. To evaluate Cinnamaldehyde effect on glycolysis, the gene expression of epidermal growth factor receptor 2 (ErbB2), Heat Shock Protein Transcription Factor-1 (HSF1) and lactate dehydrogenase A (LDHA), as well as the protein levels of HSF1 and LDHA, LDH activity and finally glucose consumption and lactate production, were measured.

Results: Cinnamaldehyde significantly increased apoptosis rate in the 5637 cells (p<0.05). Furthermore, it significantly reduced the gene expression of ErbB2, HSF1, and LDHA, protein level of HSF1 and LDHA, LDH activity, as well as cell migration, glucose consumption, and lactate production (p<0.05). These changes were dose-dependent.

Conclusion: Thus, Cinnamaldehyde induced apoptosis and decreased growth in 5637 cells by reducing ErbB2-HSF1- LDHA pathway.

Keywords: Cinnamaldehyde, bladder cancer, cancer cell metabolism, LDHA, HSF1, ErbB2.

Graphical Abstract
[1]
Wilson, J.L., Jr; Antoniassi, M.P.; Lopes, P.I.; Azevedo, H. ?Proteomic research and diagnosis in bladder cancer: state of the art review.International Braz j Urol; Official Journal of the Brazilian Society of Urology, 2020, p. 46.
[2]
(a) Zhu, C-Z.; Ting, H-N.; Ng, K-H.; Ong, T-A. A review on the accuracy of bladder cancer detec-tion methods. J. Cancer, 2019, 10(17), 4038-4044.
[http://dx.doi.org/10.7150/jca.28989] [PMID: 31417648]
(b) Prout, G.R., Jr; Barton, B.A.; Griffin, P.P.; Friedell, G.H. Treated history of noninvasive grade 1 tran-sitional cell carcinoma. J. Urol., 1992, 148(5), 1413-1419.
[http://dx.doi.org/10.1016/S0022-5347(17)36924-0] [PMID: 1433540]
(c) dos Santos Silva, I. Cancer epidemiology: principles and methods; IARC, 1999.
(d) Peto, J. Cancer epidemiology in the last century and the next decade. Nature, 2001, 411(6835), 390-395.
[http://dx.doi.org/10.1038/35077256] [PMID: 11357148]
(e) Kaufman, D.S.; Shipley, W.U.; Feldman, A.S. Bladder cancer. Lancet, 2009, 374(9685), 239-249.
[http://dx.doi.org/10.1016/S0140-6736(09)60491-8] [PMID: 19520422]
(f) Fankhauser, C.D.; Mostafid, H. Prevention of bladder cancer incidence and recurrence: nutrition and lifestyle. Curr. Opin. Urol., 2018, 28(1), 88-92.
[http://dx.doi.org/10.1097/MOU.0000000000000452] [PMID: 29211694]
[3]
(a) Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
(b) Kwan, M.L.; Garren, B.; Nielsen, M.E.; Tang, L. Lifestyle and nutritional modifiable factors in the pre-vention and treatment of bladder cancer.Urologic oncology: seminars and original investigations; Elsevier, 2019, pp. 380-386.
[4]
(a) Halliwell, B. Oxidative stress and cancer: have we moved forward? Biochem. J., 2007, 401(1), 1-11.
[http://dx.doi.org/10.1042/BJ20061131] [PMID: 17150040]
(b) Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[5]
(a) Vallejo, M. J.; Salazar, L.; Grijalva, M. Oxidative stress modulation and ROS-mediated toxicity in cancer: a review on in vitro models for plant-derived compounds. Oxidative Medicine and Cellular Longevity, 2017, 2017
[http://dx.doi.org/10.1155/2017/4586068]
(b) Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2018, 24(40), 4771-4778.
[http://dx.doi.org/10.2174/1381612825666190215121712] [PMID: 30767733]
(c) Toyokuni, S.; Okamoto, K.; Yodoi, J.; Hiai, H. Persistent oxidative stress in cancer. FEBS Lett., 1995, 358(1), 1-3.
[http://dx.doi.org/10.1016/0014-5793(94)01368-B] [PMID: 7821417]
(d) Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[6]
Workman, P. Reflections and outlook on targeting HSP90, HSP70 and HSF1 in cancer: A personal perspective.HSF1 and molecular chaperones in biology and cancer; Springer, 2020, pp. 163-179.
[http://dx.doi.org/10.1007/978-3-030-40204-4_11]
(b) Carpenter, R.L.; Gökmen-Polar, Y. HSF1 as a cancer biomarker and therapeutic target. Curr. Cancer Drug Targets, 2019, 19(7), 515-524.
[http://dx.doi.org/10.2174/1568009618666181018162117] [PMID: 30338738]
(c) Wang, G.; Cao, P.; Fan, Y.; Tan, K. Emerging roles of HSF1 in cancer: Cellular and molecular episodes. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2020. 188390
(d) Ciocca, D.R.; Calderwood, S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 2005, 10(2), 86-103.
[http://dx.doi.org/10.1379/CSC-99r.1] [PMID: 16038406]
(e) Jiang, S.; Tu, K.; Fu, Q.; Schmitt, D.C.; Zhou, L.; Lu, N.; Zhao, Y. Multifaceted roles of HSF1 in can-cer. Tumour Biol., 2015, 36(7), 4923-4931.
[http://dx.doi.org/10.1007/s13277-015-3674-x] [PMID: 26108999]
[7]
(a) Mendillo, M.L.; Santagata, S.; Koeva, M.; Bell, G.W.; Hu, R.; Tamimi, R.M.; Fraenkel, E.; Ince, T.A.; Whitesell, L.; Lindquist, S. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell, 2012, 150(3), 549-562.
[http://dx.doi.org/10.1016/j.cell.2012.06.031] [PMID: 22863008]
(b) Vihervaara, A.; Sistonen, L. HSF1 at a glance. J. Cell Sci., 2014, 127(Pt 2), 261-266.
[http://dx.doi.org/10.1242/jcs.132605] [PMID: 24421309]
[8]
(a) Xi, C.; Hu, Y.; Buckhaults, P.; Moskophidis, D.; Mivechi, N.F. Heat shock factor Hsf1 cooper-ates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis. J. Biol. Chem., 2012, 287(42), 35646-35657.
[http://dx.doi.org/10.1074/jbc.M112.377481] [PMID: 22847003]
(b) Meng, L.; Gabai, V.L.; Sherman, M.Y. Heat-shock transcription factor HSF1 has a critical role in hu-man epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene, 2010, 29(37), 5204-5213.
[http://dx.doi.org/10.1038/onc.2010.277] [PMID: 20622894]
(c) Zou, J.; Guo, Y.; Guettouche, T.; Smith, D.F.; Voellmy, R. Repression of heat shock transcription fac-tor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 1998, 94(4), 471-480.
[http://dx.doi.org/10.1016/S0092-8674(00)81588-3] [PMID: 9727490]
[9]
(a) Kim, J.W.; Dang, C.V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res., 2006, 66(18), 8927-8930.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1501] [PMID: 16982728]
(b) Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[10]
(a) Prince, T.L.; Lang, B.J.; Guerrero-Gimenez, M.E.; Fernandez-Muñoz, J.M.; Ackerman, A.; Calderwood, S.K. HSF1: Primary factor in molecular chaperone expression and a major contributor to cancer morbidity. Cells, 2020, 9(4), 1046.
[http://dx.doi.org/10.3390/cells9041046] [PMID: 32331382]
(b) Dai, C.; Whitesell, L.; Rogers, A.B.; Lindquist, S. Heat shock factor 1 is a powerful multifaceted mod-ifier of carcinogenesis. Cell, 2007, 130(6), 1005-1018.
[http://dx.doi.org/10.1016/j.cell.2007.07.020] [PMID: 17889646]
(c) Baler, R.; Dahl, G.; Voellmy, R. Activation of human heat shock genes is accompanied by oligomeriza-tion, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol., 1993, 13(4), 2486-2496.
[http://dx.doi.org/10.1128/MCB.13.4.2486] [PMID: 8455624]
(d) Cigliano, A.; Wang, C.; Pilo, M.G.; Szydlowska, M.; Brozzetti, S.; Latte, G.; Pes, G.M.; Pascale, R.M.; Seddaiu, M.A.; Vidili, G.; Ribback, S.; Dombrowski, F.; Evert, M.; Chen, X.; Calvisi, D.F. Inhibition of HSF1 suppresses the growth of hepatocarcinoma cell lines in vitro and AKT-driven hepatocarcinogenesis in mice. Oncotarget, 2017, 8(33), 54149-54159.
[http://dx.doi.org/10.18632/oncotarget.16927] [PMID: 28903330]
[11]
Chuma, M.; Sakamoto, N.; Nakai, A.; Hige, S.; Nakanishi, M.; Natsuizaka, M.; Suda, G.; Sho, T.; Hatanaka, K.; Matsuno, Y.; Yokoo, H.; Kamiyama, T.; Taketomi, A.; Fujii, G.; Tashiro, K.; Hikiba, Y.; Fujimoto, M.; Asaka, M.; Maeda, S. Heat shock factor 1 accelerates hepatocellular carcinoma development by activating nuclear factor-κB/mitogen-activated protein kinase. Carcinogenesis, 2014, 35(2), 272-281.
[http://dx.doi.org/10.1093/carcin/bgt343] [PMID: 24130164]
[12]
(a) Santagata, S.; Hu, R.; Lin, N.U.; Mendillo, M.L.; Collins, L.C.; Hankinson, S.E.; Schnitt, S.J.; Whitesell, L.; Tamimi, R.M.; Lindquist, S.; Ince, T.A. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc. Natl. Acad. Sci. USA, 2011, 108(45), 18378-18383.
[http://dx.doi.org/10.1073/pnas.1115031108] [PMID: 22042860]
(b) Yang, T.; Ren, C.; Lu, C.; Qiao, P.; Han, X.; Wang, L.; Wang, D.; Lv, S.; Sun, Y.; Yu, Z. Phosphoryla-tion of HSF1 by PIM2 induces PD-L1 expression and promotes tumor growth in breast cancer. Cancer Res., 2019, 79(20), 5233-5244.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0063] [PMID: 31409638]
[13]
(a) Hoang, A.T.; Huang, J.; Rudra-Ganguly, N.; Zheng, J.; Powell, W.C.; Rabindran, S.K.; Wu, C.; Roy-Burman, P. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am. J. Pathol., 2000, 156(3), 857-864.
[http://dx.doi.org/10.1016/S0002-9440(10)64954-1] [PMID: 10702402]
(b) Björk, J.K.; Ahonen, I.; Mirtti, T.; Erickson, A.; Rannikko, A.; Bützow, A.; Nordling, S.; Lundin, J.; Lundin, M.; Sistonen, L.; Nees, M.; Åkerfelt, M. Increased HSF1 expression predicts shorter disease-specific survival of prostate cancer patients following radical prostatectomy. Oncotarget, 2018, 9(58), 31200-31213.
[http://dx.doi.org/10.18632/oncotarget.25756] [PMID: 30131848]
[14]
(a) Cen, H.; Zheng, S.; Fang, Y-M.; Tang, X-P.; Dong, Q. Induction of HSF1 expression is associ-ated with sporadic colorectal cancer. World J. Gastroenterol., 2004, 10(21), 3122-3126.
[http://dx.doi.org/10.3748/wjg.v10.i21.3122] [PMID: 15457556]
(b) Li, J.; Song, P.; Jiang, T.; Dai, D.; Wang, H.; Sun, J.; Zhu, L.; Xu, W.; Feng, L.; Shin, V.Y.; Morrison, H.; Wang, X.; Jin, H. Heat shock factor 1 epigenetically stimulates glutaminase-1-dependent mTOR acti-vation to promote colorectal carcinogenesis. Mol. Ther., 2018, 26(7), 1828-1839.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.014] [PMID: 29730197]
[15]
(a) Zhao, Y.H.; Zhou, M.; Liu, H.; Ding, Y.; Khong, H.T.; Yu, D.; Fodstad, O.; Tan, M. Upregula-tion of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycol-ysis and growth. Oncogene, 2009, 28(42), 3689-3701.
[http://dx.doi.org/10.1038/onc.2009.229] [PMID: 19668225]
(b) Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
(c) Cairns, R.; Harris, I.; McCracken, S.; Mak, T. Cancer cell metabolism, Cold Spring Harbor symposia on quantitative biology; Cold Spring Harbor Laboratory Press, 2011, pp. 299-311.
[16]
(a) DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: meta-bolic reprogramming fuels cell growth and proliferation. Cell Metab., 2008, 7(1), 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
(b) Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: essential part of metabolic reprogram-ming and central contributor to cancer progression. Int. J. Radiat. Biol., 2019, 95(7), 912-919.
[http://dx.doi.org/10.1080/09553002.2019.1589653] [PMID: 30822194]
(c) Kalyanaraman, B. Teaching the basics of cancer metabolism: Developing antitumor strategies by ex-ploiting the differences between normal and cancer cell metabolism. Redox Biol., 2017, 12, 833-842.
[http://dx.doi.org/10.1016/j.redox.2017.04.018] [PMID: 28448945]
[17]
(a) Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. science 2009, 324(5930), 1029-1033s.
(b) Jurisic, V.; Radenkovic, S.; Konjevic, G. The actual role of LDH as tumor marker, biochemical and clinical aspects.Advances in cancer biomarkers; 2015, 115-124.
[http://dx.doi.org/10.1007/978-94-017-7215-0_8]
(c) Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addic-tion. Cell, 2009, 136(5), 823-837.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
(d) Hamanaka, R.B.; Chandel, N.S. Targeting glucose metabolism for cancer therapy. J. Exp. Med., 2012, 209(2), 211-215.
[http://dx.doi.org/10.1084/jem.20120162] [PMID: 22330683]
[18]
Tan, M.; Lan, K-H.; Yao, J.; Lu, C-H.; Sun, M.; Neal, C.L.; Lu, J.; Yu, D. Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Res., 2006, 66(7), 3764-3772.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2747] [PMID: 16585203]
[19]
Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stu-art, S.G.; Udove, J.; Ullrich, A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 1989, 244(4905), 707-712.
[http://dx.doi.org/10.1126/science.2470152] [PMID: 2470152]
[20]
Qie, S.; Chu, C.; Li, W.; Wang, C.; Sang, N. ErbB2 activation upregulates glutaminase 1 expres-sion which promotes breast cancer cell proliferation. J. Cell. Biochem., 2014, 115(3), 498-509.
[http://dx.doi.org/10.1002/jcb.24684] [PMID: 24122876]
[21]
(a) Yu, D.; Hung, M-C. Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene, 2000, 19(53), 6115-6121.
[http://dx.doi.org/10.1038/sj.onc.1203972] [PMID: 11156524]
(b) Jin, L.; Chun, J.; Pan, C.; Alesi, G.N.; Li, D.; Magliocca, K.R.; Kang, Y.; Chen, Z.G.; Shin, D.M.; Khuri, F.R.; Fan, J.; Kang, S. Phosphorylation-mediated activation of LDHA promotes cancer cell inva-sion and tumour metastasis. Oncogene, 2017, 36(27), 3797-3806.
[http://dx.doi.org/10.1038/onc.2017.6] [PMID: 28218905]
(c) Guy, C.T.; Webster, M.A.; Schaller, M.; Parsons, T.J.; Cardiff, R.D.; Muller, W.J. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. USA, 1992, 89(22), 10578-10582.
[http://dx.doi.org/10.1073/pnas.89.22.10578] [PMID: 1359541]
[22]
(a) Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and health. Crit. Rev. Food Sci. Nutr., 2010, 50(9), 822-834.
[http://dx.doi.org/10.1080/10408390902773052] [PMID: 20924865]
(b) Rao, P. V.; Gan, S. H. Cinnamon: a multifaceted medicinal plant. Evidence-based complementary and alternative medicine, 2014, 2014
[http://dx.doi.org/10.1155/2014/642942]
[23]
Gowder, S.J.; Devaraj, H. Effect of the food flavour cinnamaldehyde on the antioxidant status of rat kidney. Basic Clin. Pharmacol. Toxicol., 2006, 99(5), 379-382.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_560.x] [PMID: 17076691]
[24]
Kim, M.E.; Na, J.Y.; Lee, J.S. Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysac-charide-stimulated macrophage activation via MAPKs pathway regulation. Immunopharmacol. Immunotoxicol., 2018, 40(3), 219-224.
[http://dx.doi.org/10.1080/08923973.2018.1424902] [PMID: 29355056]
[25]
Subash Babu, P.; Prabuseenivasan, S.; Ignacimuthu, S. Cinnamaldehyde--a potential antidiabetic agent. Phytomedicine, 2007, 14(1), 15-22.
[http://dx.doi.org/10.1016/j.phymed.2006.11.005] [PMID: 17140783]
[26]
He, Z.; Huang, Z.; Jiang, W.; Zhou, W. Antimicrobial activity of Cinnamaldehyde on Streptococ-cus mutans biofilms. Front. Microbiol., 2019, 10, 2241.
[http://dx.doi.org/10.3389/fmicb.2019.02241] [PMID: 31608045]
[27]
George, R.C.; Lew, J.; Graves, D.J. Interaction of cinnamaldehyde and epicatechin with tau: impli-cations of beneficial effects in modulating Alzheimer’s disease pathogenesis. J. Alzheimers Dis., 2013, 36(1), 21-40.
[http://dx.doi.org/10.3233/JAD-122113] [PMID: 23531502]
[28]
Singh, R.; Koppikar, S.J.; Paul, P.; Gilda, S.; Paradkar, A.R.; Kaul-Ghanekar, R. Comparative analysis of cytotoxic effect of aqueous cinnamon extract from Cinnamomum zeylanicum bark with com-mercial cinnamaldehyde on various cell lines. Pharm. Biol., 2009, 47(12), 1174-1179.
[http://dx.doi.org/10.3109/13880200903019242]
[29]
(a) Horecker, B.L.; Hiatt, H.H. Pathways of carbohydrate metabolism in normal and neoplastic cells. N. Engl. J. Med., 1958, 258(5), 225-232.
[http://dx.doi.org/10.1056/NEJM195801302580506] [PMID: 13504449]
(b) Goetzman, E.S.; Prochownik, E.V. The role for Myc in coordinating glycolysis, oxidative phosphoryla-tion, glutaminolysis, and fatty acid metabolism in normal and neoplastic tissues. Front. Endocrinol. (Lausanne), 2018, 9, 129.
[http://dx.doi.org/10.3389/fendo.2018.00129] [PMID: 29706933]
(c) Sciacovelli, M.; Gaude, E.; Hilvo, M.; Frezza, C. The metabolic alterations of cancer cells. Methods Enzymol., 2014, 542, 1-23.
[http://dx.doi.org/10.1016/B978-0-12-416618-9.00001-7] [PMID: 24862258]
[30]
(a) Annibaldi, A.; Widmann, C. Glucose metabolism in cancer cells. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(4), 466-470.
[http://dx.doi.org/10.1097/MCO.0b013e32833a5577] [PMID: 20473153]
(b) Hay, N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer, 2016, 16(10), 635-649.
[http://dx.doi.org/10.1038/nrc.2016.77] [PMID: 27634447]
(c) Li, Z.; Zhang, H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progres-sion. Cell. Mol. Life Sci., 2016, 73(2), 377-392.
[http://dx.doi.org/10.1007/s00018-015-2070-4] [PMID: 26499846]
[31]
(a) Schulz, R.; Streller, F.; Scheel, A.H.; Rüschoff, J.; Reinert, M.C.; Dobbelstein, M.; Marchenko, N.D.; Moll, U.M. HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis., 2014, 5(1), e980-e980.
[http://dx.doi.org/10.1038/cddis.2013.508] [PMID: 24384723]
(b) Groenendijk, F.H.; de Jong, J.; Fransen van de Putte, E.E.; Michaut, M.; Schlicker, A.; Peters, D.; Velds, A.; Nieuwland, M.; van den Heuvel, M.M.; Kerkhoven, R.M.; Wessels, L.F.; Broeks, A.; van Rhijn, B.W.; Bernards, R.; van der Heijden, M.S. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur. Urol., 2016, 69(3), 384-388.
[http://dx.doi.org/10.1016/j.eururo.2015.01.014] [PMID: 25636205]
[32]
Zhang, W.; Gao, J.; Cheng, C.; Zhang, M.; Liu, W.; Ma, X.; Lei, W.; Hao, E.; Hou, X.; Hou, Y.; Bai, G. Cinnamaldehyde enhances antimelanoma activity through covalently binding ENO1 and exhibits a promoting effect with dacarbazine. Cancers (Basel), 2020, 12(2), 311.
[http://dx.doi.org/10.3390/cancers12020311] [PMID: 32013122]
[33]
Karimi, P.; Pourgheysari, B.; Soltani, A. The anti-proliferative effects of Ferulago angulata on hu-man promyelocytic leukemia cell line (HL-60). Trends Pharmacol. Sci., 2019, 5(3), 123-130.
[34]
Wu, C.; Zhuang, Y.; Jiang, S.; Tian, F.; Teng, Y.; Chen, X.; Zheng, P.; Liu, S.; Zhou, J.; Wu, J.; Wang, R.; Zou, X. Cinnamaldehyde induces apoptosis and reverses epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in non-small cell lung cancer. Int. J. Biochem. Cell Biol., 2017, 84, 58-74.
[http://dx.doi.org/10.1016/j.biocel.2017.01.005] [PMID: 28093328]
[35]
Han, L.; Mei, J.; Ma, J.; Wang, F.; Gu, Z.; Li, J.; Zhang, Z.; Zeng, Y.; Lou, X.; Yao, X.; Tao, N.; Qin, Z. Cinnamaldehyde induces endogenous apoptosis of the prostate cancer-associated fibroblasts via interfering the Glutathione-associated mitochondria function. Med. Oncol., 2020, 37(10), 91.
[http://dx.doi.org/10.1007/s12032-020-01417-2] [PMID: 2960365]
[36]
Jaisamak, K.; Iawsipo, P.; Ponglikitmongkol, M. Anti-invasion activity of trans-4-methoxy-cinnamaldehyde (4-MCA) in cervical cancer cells. Proceedings of the 6th International Conference on Biochemistry and Molecular Biology (BMB 2018) 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy