Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Biological Evaluation of Novel 2-imino-4-thiazolidinones as Potential Antitumor Agents for Glioblastoma

Author(s): José Coan Campos*, Patrick Teixeira Campos, Nathalia Pontes Bona, Mayara Sandrielly Soares, Priscila Oliveira Souza, Elizandra Braganhol, Wilson Cunico and Geonir Machado Siqueira

Volume 18, Issue 4, 2022

Published on: 06 August, 2021

Page: [452 - 462] Pages: 11

DOI: 10.2174/1573406417666210806094543

Price: $65

Abstract

Aims: The purpose of our study was to explore the molecular hybridization between 2- imino-4-thizolidione and piridinic scaffolds and its potential antitumor activity.

Background: Glioblastoma is the most aggressive glioma tumor clinically diagnosed malignant and highly recurrent primary brain tumor type. The standard of treatment for a glioblastoma is surgery, followed by radiation and chemotherapy using temozolomide. However, the chemoresistance has become the main barrier to treatment success. 2-imino-4-thiazolidinones are an important class of heterocyclic compounds that feature anticancer activity; however the antiglioblastoma activity is yet to be explored.

Objective: To synthesize and characterize a series of novel 2-imino-4-thiazolidinones and evaluate their antiglioblastoma activity.

Methods: The 2-imino-4-thiazolidinone (5a-p) was synthesized according to the literature with modifications. Compounds were identified and characterized using spectroscopic analysis and X-ray diffraction. The antitumor activity was analyzed by 3-(4,5- dimethyl)-2,5-diphenyltetrazolium bromide (MTT) assay both in primary astrocyte and glioma (C6). Apoptosis and cell cycle phase were determined by flow cytometry analysis. The expression of caspase-3/7 was measured by luminescence assay. Oxidative stress parameters as: Determination of Reactive Oxygen Species (ROS), Superoxide Dismutase (SOD) activity, Catalase (CAT) activity and total sulfhydryl content quantification were analyzed by colorimetric assays according to literature.

Results: Among sixteen synthesized compounds, three displayed potent antitumor activities against tested glioblastoma cell line showed IC50 values well below the standard drug temozolomide. Therefore, compounds 5a, 5l and 5p were evaluated using cell cycle and death analysis, due to potent toxicity (2.17±1.17, 6.24±0.59, 2.93±1.12μM, respectively) in C6 cell line. The mechanism of action studies demonstrated that 5a and 5l induced apoptosis significantly increase the percentage of cells in Sub-G1 phase in the absence of necrosis. Consistent with these results, caspase-3/7 assay revealed that 5l presents pro-apoptotic activity due to the significant stimulation of caspases-3/7. Moreover, 5a, 5l and 5p increased antioxidant defense and decreased reactive oxygen species (ROS) production.

Conclusion: The compounds were synthesized with good yield and three of these presented (5a, 5l and 5p) good cytotoxicity against C6 cell line. Both affected cell cycle distribution via arresting more C6 cell line at Sub-G1 phase promoting apoptosis. Furthermore, 5a, 5l and 5p modulated redox status. These findings suggest that these compounds can be considered as promising lead molecules for further development of potential antitumor agents.

Keywords: 2-imino-4-thiazolidinone, glioblastoma, flow cytometry, apoptosis, caspase-3/7 assay, antioxidant.

Graphical Abstract
[1]
Davis, M.E.B.T. Glioblastoma: Overview of disease and treatment. Clin. J. Oncol. Nurs., 2016, 20(5)(Suppl.), S2-S8.
[http://dx.doi.org/10.1188/16.CJON.S1.2-8] [PMID: 27668386]
[2]
Ostrom, Q. T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J. S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2011-2015. Neuro. Oncol., 2018, 20(suppl_4), iv1-iv86.
[3]
Cantanhede, I.G.; de Oliveira, J.R.M. PDGF family expression in glioblastoma multiforme: Data compilation from ivy glioblastoma atlas project database. Sci. Rep., 2017, 7(1), 15271.
[http://dx.doi.org/10.1038/s41598-017-15045-w] [PMID: 29127351]
[4]
Lim, M.; Xia, Y.; Bettegowda, C.; Weller, M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol., 2018, 15(7), 422-442.
[http://dx.doi.org/10.1038/s41571-018-0003-5] [PMID: 29643471]
[5]
Lin, J.; Zuo, J.; Cui, Y.; Song, C.; Wu, X.; Feng, H.; Li, J.; Li, S.; Xu, Q.; Wei, W.; Qiu, G.; He, H. Characterizing the molecular mechanisms of acquired temozolomide resistance in the U251 glioblastoma cell line by protein microarray. Oncol. Rep., 2018, 39(5), 2333-2341.
[http://dx.doi.org/10.3892/or.2018.6322] [PMID: 29565460]
[6]
Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem., 2020, 188, 112016.
[http://dx.doi.org/10.1016/j.ejmech.2019.112016] [PMID: 31926469]
[7]
Avdieiev, S.; Gera, L.; Havrylyuk, D.; Hodges, R.S.; Lesyk, R.; Ribrag, V.; Vassetzky, Y.; Kavsan, V. Bradykinin antagonists and thiazolidinone derivatives as new potential anti-cancer compounds. Bioorg. Med. Chem., 2014, 22(15), 3815-3823.
[http://dx.doi.org/10.1016/j.bmc.2014.06.046] [PMID: 25012567]
[8]
de Vasconcelos, A.; Boeira, A.J.Z.; Drawanz, B.B.; Pedra, N.S.; Bona, N.P. Cunico*, F. M. S.; W. 2,4-thiazolidinedione as precursor to the synthesis of compounds with antiglioma activities in c6 and gl261 cells. Med. Chem., 2020, 1-10.
[9]
Appalanaidu, K.; Kotcherlakota, R.; Dadmal, T.L.; Bollu, V.S.; Kumbhare, R.M.; Patra, C.R. Synthesis and biological evaluation of novel 2-imino-4-thiazolidinone derivatives as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(21), 5361-5368.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.013] [PMID: 27546293]
[10]
Dofe, V.S.; Sarkate, A.P.; Azad, R.; Gill, C.H. Green synthesis and inhibitory effect of novel quinoline based thiazolidinones on the growth of mcf-7 human breast cancer cell line by g2/m cell cycle arrest. Res. Chem. Intermed., 2018, 44(2), 1149-1160.
[http://dx.doi.org/10.1007/s11164-017-3157-3]
[11]
da Silveira, E.F.; Ferreira, L.M.; Gehrcke, M.; Cruz, L.; Pedra, N.S.; Ramos, P.T.; Bona, N.P.; Soares, M.S.P.; Rodrigues, R.; Spanevello, R.M.; Cunico, W.; Stefanello, F.M.; Azambuja, J.H.; Horn, A.P.; Braganhol, E. 2-(2-methoxyphenyl)-3-((piperidin-1-yl)ethyl)thiazolidin-4-one-loaded polymeric nanocapsules: In vitro antiglioma activity and in vivo toxicity evaluation. Cell. Mol. Neurobiol., 2019, 39(6), 783-797.
[http://dx.doi.org/10.1007/s10571-019-00678-4] [PMID: 31115733]
[12]
da Silva, D.S.; da Silva, C.E.H.; Soares, M.S.P.; Azambuja, J.H.; de Carvalho, T.R.; Zimmer, G.C.; Frizzo, C.P.; Braganhol, E.; Spanevello, R.M.; Cunico, W. Thiazolidin-4-ones from 4-(methylthio)benzaldehyde and 4-(methylsulfonyl)benzaldehyde: Synthesis, antiglioma activity and cytotoxicity. Eur. J. Med. Chem., 2016, 124, 574-582.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.057] [PMID: 27614406]
[13]
Wan, Y.; Wu, S.; Xiao, G.; Liu, T.; Hou, X.; Chen, C.; Guan, P.; Yang, X.; Fang, H. Design, synthesis and preliminary bioactivity studies of 2-thioxo-4-thiazolidinone derivatives as Bcl-2 inhibitors. Bioorg. Med. Chem., 2015, 23(9), 1994-2003.
[http://dx.doi.org/10.1016/j.bmc.2015.03.024] [PMID: 25818766]
[14]
Omar, Y.M.; Abdu-Allah, H.H.M.; Abdel-Moty, S.G. Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as anti-inflammatory agents with dual inhibition of COX-2 and 15-LOX. Bioorg. Chem., 2018, 80(July), 461-471.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.036] [PMID: 29986191]
[15]
Azzam, R.A.; Mohareb, R.M.; Helal, M.H.; Eisa, K.K. Cytotoxicity, tyrosine kinase inhibition of novel pyran, pyridine, thiophene, and imidazole derivatives. J. Heterocycl. Chem., 2020, 57(8), 3037-3055.
[http://dx.doi.org/10.1002/jhet.4010]
[16]
Kokkiligadda, S.B.; Musunuri, S.; Maiti, B.; Rao, M.V.B.; Sridhar, G. Synthesis and anticancer activity of 1,3,4-oxadiazole-oxazolo[4,5-b]pyridine derivatives. Russ. J. Gen. Chem., 2020, 90(7), 1331-1335.
[http://dx.doi.org/10.1134/S107036322007021X]
[17]
Phoa, A.F.; Browne, S.; Gurgis, F.M.S.; Åkerfeldt, M.C.; Döbber, A.; Renn, C.; Peifer, C.; Stringer, B.W.; Day, B.W.; Wong, C.; Chircop, M.; Johns, T.G.; Kassiou, M.; Munoz, L. Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling. Biochem. Pharmacol., 2015, 98(4), 587-601.
[http://dx.doi.org/10.1016/j.bcp.2015.10.014] [PMID: 26519552]
[18]
Khan, K.M.; Naz, F.; Taha, M.; Khan, A.; Perveen, S.; Choudhary, M.I.; Voelter, W. Synthesis and in vitro urease inhibitory activity of N,N′-disubstituted thioureas. Eur. J. Med. Chem., 2014, 74, 314-323.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.001] [PMID: 24486414]
[19]
Chawla, P.; Kalra, S.; Kumar, R.; Singh, R.; Saraf, S.K. Novel 2-(substituted phenyl imino)-5-benzylidene-4-thiazolidinones as possible non-ulcerogenic tri-action drug candidates: Synthesis, characterization, biological evaluation and docking studies. Med. Chem. Res., 2019, 28(3), 340-359.
[http://dx.doi.org/10.1007/s00044-018-02288-z]
[20]
St. Laurent, D.R.; Gao, Q.; Wu, D.; Serrano-Wu, M.H. Regioselective synthesis of 3-(heteroaryl)-iminothiazolidin-4-ones. Tetrahedron Lett., 2004, 45(9), 1907-1910.
[http://dx.doi.org/10.1016/j.tetlet.2004.01.001]
[21]
da Frota, M.L.C., Jr; Braganhol, E.; Canedo, A.D.; Klamt, F.; Apel, M.A.; Mothes, B.; Lerner, C.; Battastini, A.M.O.; Henriques, A.T.; Moreira, J.C.F. Brazilian marine sponge Polymastia janeirensis induces apoptotic cell death in human U138MG glioma cell line, but not in a normal cell culture. Invest. New Drugs, 2009, 27(1), 13-20.
[http://dx.doi.org/10.1007/s10637-008-9134-3] [PMID: 18454276]
[22]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[23]
Dos Santos, L.M.; da Silva, T.M.; Azambuja, J.H.; Ramos, P.T.; Oliveira, P.S.; da Silveira, E.F.; Pedra, N.S.; Galdino, K.; do Couto, C.A.T.; Soares, M.S.P.; Tavares, R.G.; Spanevello, R.M.; Stefanello, F.M.; Braganhol, E. Methionine and methionine sulfoxide treatment induces M1/classical macrophage polarization and modulates oxidative stress and purinergic signaling parameters. Mol. Cell. Biochem., 2017, 424(1-2), 69-78.
[http://dx.doi.org/10.1007/s11010-016-2843-6] [PMID: 27752805]
[24]
Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 1972, 247(10), 3170-3175.
[http://dx.doi.org/10.1016/S0021-9258(19)45228-9] [PMID: 4623845]
[25]
Aebi, H.B.T-M. Catalase in vitro.Oxygen radicals in biological systems; Academic Press, 1984, 105, pp. 121-126.
[26]
Aksenov, M.Y.; Markesbery, W.R. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci. Lett., 2001, 302(2-3), 141-145.
[http://dx.doi.org/10.1016/S0304-3940(01)01636-6] [PMID: 11290407]
[27]
Amin, S.A.; Adhikari, N.; Jha, T.; Gayen, S. Exploring structural requirements of unconventional knoevenagel-type indole derivatives as anticancer agents through comparative qsar modeling approaches. Can. J. Chem., 2016, 94(7), 637-644.
[http://dx.doi.org/10.1139/cjc-2016-0050]
[28]
Mphahlele, M.J.; Makhafola, T.J.; Mmonwa, M.M. In vitro cytotoxicity of novel 2,5,7-tricarbo-substituted indoles derived from 2-amino-5-bromo-3-iodoacetophenone. Bioorg. Med. Chem., 2016, 24(19), 4576-4586.
[http://dx.doi.org/10.1016/j.bmc.2016.07.056] [PMID: 27499368]
[29]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[30]
Huang, X-J.; Li, C-T.; Zhang, W-P.; Lu, Y-B.; Fang, S-H.; Wei, E-Q. Dihydroartemisinin potentiates the cytotoxic effect of temozolomide in rat C6 glioma cells. Pharmacology, 2008, 82(1), 1-9.
[http://dx.doi.org/10.1159/000125673] [PMID: 18408414]
[31]
Ghosh, C.; Nandi, A.; Basu, S. Supramolecular self-assembly of triazine-based small molecules: Targeting the endoplasmic reticulum in cancer cells. Nanoscale, 2019, 11(7), 3326-3335.
[http://dx.doi.org/10.1039/C8NR08682F] [PMID: 30724283]
[32]
Mobaraki, R.N.; Karimi, M.; Alikarami, F.; Farhadi, E.; Amini, A.; Bashash, D.; Paridar, M.; Kokhaei, P.; Rezvani, M.R.; Kazemi, A.; Safa, M. RITA induces apoptosis in p53-null K562 leukemia cells by inhibiting STAT5, Akt, and NF-κB signaling pathways. Anticancer Drugs, 2018, 29(9), 847-853.
[http://dx.doi.org/10.1097/CAD.0000000000000651] [PMID: 30157040]
[33]
Patil, S.; Ghosh, D.; Radhakrishna, M.; Basu, S. Mitochondrial impairment by cyanine-based small molecules induces apoptosis in cancer cells. ACS Med. Chem. Lett., 2019, 11(1), 23-28.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00304] [PMID: 31938458]
[34]
Nirmala, J.G.; Lopus, M. Cell death mechanisms in eukaryotes. Cell Biol. Toxicol., 2020, 36(2), 145-164.
[http://dx.doi.org/10.1007/s10565-019-09496-2] [PMID: 31820165]
[35]
Proskuryakov, S.Y.; Konoplyannikov, A.G.; Gabai, V.L. Necrosis: A specific form of programmed cell death? Exp. Cell Res., 2003, 283(1), 1-16.
[http://dx.doi.org/10.1016/S0014-4827(02)00027-7] [PMID: 12565815]
[36]
Persad, R.; Liu, C.; Wu, T.T.; Houlihan, P.S.; Hamilton, S.R.; Diehl, A.M.; Rashid, A. Overexpression of caspase-3 in hepatocellular carcinomas. Mod. Pathol., 2004, 17(7), 861-867.
[http://dx.doi.org/10.1038/modpathol.3800146] [PMID: 15098015]
[37]
Panieri, E.; Santoro, M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis., 2016, 7(6), e2253-e12.
[http://dx.doi.org/10.1038/cddis.2016.105] [PMID: 27277675]
[38]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[http://dx.doi.org/10.1038/nrd4002] [PMID: 24287781]
[39]
Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol., 2007, 17(9), 422-427.
[http://dx.doi.org/10.1016/j.tcb.2007.07.009] [PMID: 17804237]
[40]
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (sod), catalase (cat) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med., 2018, 54(4), 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[41]
Huber, W.W.; Parzefall, W. Thiols and the chemoprevention of cancer. Curr. Opin. Pharmacol., 2007, 7(4), 404-409.
[http://dx.doi.org/10.1016/j.coph.2007.05.005] [PMID: 17644484]
[42]
Bonner, M.Y.; Arbiser, J.L. The antioxidant paradox: What are antioxidants and how should they be used in a therapeutic context for cancer. Future Med. Chem., 2014, 6(12), 1413-1422.
[http://dx.doi.org/10.4155/fmc.14.86] [PMID: 25329197]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy