Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Subcellular Proteomic Analysis Reveals Dysregulation in the Organization of Human A549 Cells Infected with Influenza Virus H7N9

Author(s): Lin Yin, Siyuan Liu, Huichun Shi, Yanling Feng, Yujiao Zhang, Dage Wu, Zhigang Song* and Lijun Zhang*

Volume 19, Issue 3, 2022

Published on: 01 April, 2022

Page: [232 - 242] Pages: 11

DOI: 10.2174/1570164619666211222145450

Price: $65

Abstract

Background: H7N9 influenza virus poses a high risk to human beings, and proteomic evaluations of this virus may help better understand its pathogenic mechanisms in human systems.

Objective: This study aimed at determining membrane proteins related to H7N9 infection.

Methods: In this study, we infected primary human alveolar adenocarcinoma epithelial cells (A549) with H7N9 (including wild and mutant strains) and then produced enriched cellular membrane isolations, which were then evaluated by western blot. The proteins in these cell membrane fractions were analyzed using the isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteome technologies.

Results: Differentially expressed proteins (n = 32) were identified following liquid chromatography- tandem mass spectrometry, including 20 down-regulated proteins, such as CD44 antigen and CD151 antigen, and 12 up-regulated proteins, such as tight junction protein ZO-1 and prostaglandin reductase 1. Gene Ontology database searching revealed that 20 out of the 32 differentially expressed proteins were localized to the plasma membrane. These proteins were primarily associated with the cellular component organization (n = 20) and enriched in the reactome pathway of extracellular matrix organization (n = 4).

Conclusion: These findings indicate that H7N9 may dysregulate cellular organization via specific alterations to the protein profile of the plasma membrane.

Keywords: Proteomics, H7N9, plasma membrane, bioinformatics, iTRAQ, R software.

Graphical Abstract
[1]
Hu, Y.; Lu, S.; Song, Z.; Wang, W.; Hao, P.; Li, J.; Zhang, X.; Yen, H.L.; Shi, B.; Li, T.; Guan, W.; Xu, L.; Liu, Y.; Wang, S.; Zhang, X.; Tian, D.; Zhu, Z.; He, J.; Huang, K.; Chen, H.; Zheng, L.; Li, X.; Ping, J.; Kang, B.; Xi, X.; Zha, L.; Li, Y.; Zhang, Z.; Peiris, M.; Yuan, Z. Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. Lancet, 2013, 381(9885), 2273-2279.
[http://dx.doi.org/10.1016/S0140-6736(13)61125-3] [PMID: 23726392]
[2]
Gao, R.; Cao, B.; Hu, Y.; Feng, Z.; Wang, D.; Hu, W.; Chen, J.; Jie, Z.; Qiu, H.; Xu, K.; Xu, X.; Lu, H.; Zhu, W.; Gao, Z.; Xiang, N.; Shen, Y.; He, Z.; Gu, Y.; Zhang, Z.; Yang, Y.; Zhao, X.; Zhou, L.; Li, X.; Zou, S.; Zhang, Y.; Li, X.; Yang, L.; Guo, J.; Dong, J.; Li, Q.; Dong, L.; Zhu, Y.; Bai, T.; Wang, S.; Hao, P.; Yang, W.; Zhang, Y.; Han, J.; Yu, H.; Li, D.; Gao, G.F.; Wu, G.; Wang, Y.; Yuan, Z.; Shu, Y. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med., 2013, 368(20), 1888-1897.
[http://dx.doi.org/10.1056/NEJMoa1304459] [PMID: 23577628]
[3]
Li, Q.; Zhou, L.; Zhou, M.; Chen, Z.; Li, F.; Wu, H.; Xiang, N.; Chen, E.; Tang, F.; Wang, D.; Meng, L.; Hong, Z.; Tu, W.; Cao, Y.; Li, L.; Ding, F.; Liu, B.; Wang, M.; Xie, R.; Gao, R.; Li, X.; Bai, T.; Zou, S.; He, J.; Hu, J.; Xu, Y.; Chai, C.; Wang, S.; Gao, Y.; Jin, L.; Zhang, Y.; Luo, H.; Yu, H.; He, J.; Li, Q.; Wang, X.; Gao, L.; Pang, X.; Liu, G.; Yan, Y.; Yuan, H.; Shu, Y.; Yang, W.; Wang, Y.; Wu, F.; Uyeki, T.M.; Feng, Z. Epidemiology of human infections with avian influenza A(H7N9) virus in China. N. Engl. J. Med., 2014, 370(6), 520-532.
[http://dx.doi.org/10.1056/NEJMoa1304617] [PMID: 23614499]
[4]
Gao, H.N.; Lu, H.Z.; Cao, B.; Du, B.; Shang, H.; Gan, J.H.; Lu, S.H.; Yang, Y.D.; Fang, Q.; Shen, Y.Z.; Xi, X.M.; Gu, Q.; Zhou, X.M.; Qu, H.P.; Yan, Z.; Li, F.M.; Zhao, W.; Gao, Z.C.; Wang, G.F.; Ruan, L.X.; Wang, W.H.; Ye, J.; Cao, H.F.; Li, X.W.; Zhang, W.H.; Fang, X.C.; He, J.; Liang, W.F.; Xie, J.; Zeng, M.; Wu, X.Z.; Li, J.; Xia, Q.; Jin, Z.C.; Chen, Q.; Tang, C.; Zhang, Z.Y.; Hou, B.M.; Feng, Z.X.; Sheng, J.F.; Zhong, N.S.; Li, L.J. Clinical findings in 111 cases of influenza A (H7N9) virus infection. N. Engl. J. Med., 2013, 368(24), 2277-2285.
[http://dx.doi.org/10.1056/NEJMoa1305584] [PMID: 23697469]
[5]
Feng, Y.; Mao, H.; Xu, C.; Jiang, J.; Chen, Y.; Yan, J.; Gao, J.; Li, Z.; Xia, S.; Lu, Y. Origin and characteristics of internal genes affect infectivity of the novel avian-origin influenza A (H7N9) virus. PLoS One, 2013, 8(11), e81136.
[http://dx.doi.org/10.1371/journal.pone.0081136] [PMID: 24278391]
[6]
Lam, T.T.; Wang, J.; Shen, Y.; Zhou, B.; Duan, L.; Cheung, C.L.; Ma, C.; Lycett, S.J.; Leung, C.Y.; Chen, X.; Li, L.; Hong, W.; Chai, Y.; Zhou, L.; Liang, H.; Ou, Z.; Liu, Y.; Farooqui, A.; Kelvin, D.J.; Poon, L.L.; Smith, D.K.; Pybus, O.G.; Leung, G.M.; Shu, Y.; Webster, R.G.; Webby, R.J.; Peiris, J.S.; Rambaut, A.; Zhu, H.; Guan, Y. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature, 2013, 502(7470), 241-244.
[http://dx.doi.org/10.1038/nature12515] [PMID: 23965623]
[7]
Gao, G.F. Influenza and the live poultry trade. Science, 2014, 344(6181), 235.
[http://dx.doi.org/10.1126/science.1254664] [PMID: 24744345]
[8]
Dudley, J.P.; Mackay, I.M. Age-specific and sex-specific morbidity and mortality from avian influenza A(H7N9). J. Clin. Virol., 2013, 58(3), 568-570.
[http://dx.doi.org/10.1016/j.jcv.2013.09.004] [PMID: 24091087]
[9]
Zhu, H.; Lam, T.T.; Smith, D.K.; Guan, Y. Emergence and development of H7N9 influenza viruses in China. Curr. Opin. Virol., 2016, 16, 106-113.
[http://dx.doi.org/10.1016/j.coviro.2016.01.020] [PMID: 26922715]
[10]
Tanner, W.D.; Toth, D.J.; Gundlapalli, A.V. The pandemic potential of avian influenza A(H7N9) virus: A review. Epidemiol. Infect., 2015, 143(16), 3359-3374.
[http://dx.doi.org/10.1017/S0950268815001570] [PMID: 26205078]
[11]
Su, S.; Gu, M.; Liu, D.; Cui, J.; Gao, G.F.; Zhou, J.; Liu, X. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol., 2017, 25(9), 713-728.
[http://dx.doi.org/10.1016/j.tim.2017.06.008] [PMID: 28734617]
[12]
Husain, M. Avian influenza A (H7N9) virus infection in humans: Epidemiology, evolution, and pathogenesis. Infect. Genet. Evol., 2014, 28, 304-312.
[http://dx.doi.org/10.1016/j.meegid.2014.10.016] [PMID: 25446940]
[13]
Lee, D.H.; Bertran, K.; Kwon, J.H.; Swayne, D.E. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J. Vet. Sci., 2017, 18(S1), 269-280.
[http://dx.doi.org/10.4142/jvs.2017.18.S1.269] [PMID: 28859267]
[14]
Ding, X.; Luo, J.; Quan, L.; Wu, A.; Jiang, T. Evolutionary genotypes of influenza A (H7N9) viruses over five epidemic waves in China. Infect. Genet. Evol., 2017, 55, 269-276.
[http://dx.doi.org/10.1016/j.meegid.2017.09.027] [PMID: 28943407]
[15]
Wang, Y.; Dai, Z.; Cheng, H.; Liu, Z.; Pan, Z.; Deng, W.; Gao, T.; Li, X.; Yao, Y.; Ren, J.; Xue, Y. Towards a better understanding of the novel avian-origin H7N9 influenza A virus in China. Sci. Rep., 2013, 3, 2318.
[http://dx.doi.org/10.1038/srep02318] [PMID: 23897131]
[16]
Jones, J.C.; Sonnberg, S.; Koçer, Z.A.; Shanmuganatham, K.; Seiler, P.; Shu, Y.; Zhu, H.; Guan, Y.; Peiris, M.; Webby, R.J.; Webster, R.G. Possible role of songbirds and parakeets in transmission of influenza A(H7N9) virus to humans. Emerg. Infect. Dis., 2014, 20(3), 380-385.
[http://dx.doi.org/10.3201/eid2003.131271] [PMID: 24572739]
[17]
Li, C.; Chen, H. H7N9 influenza virus in China. Cold Spring Harb. Perspect. Med., 2021, 11(8), a038349.
[http://dx.doi.org/10.1101/cshperspect.a038349] [PMID: 32205415]
[18]
He, D.; Gu, J.; Gu, M.; Wu, H.; Li, J.; Zhan, T.; Chen, Y.; Xu, N.; Ge, Z.; Wang, G.; Hao, X.; Wang, X.; Hu, J.; Hu, Z.; Hu, S.; Liu, X.; Liu, X. Genetic and antigenic diversity of H7N9 highly pathogenic avian influenza virus in China. Infect. Genet. Evol., 2021, 93, 104993.
[http://dx.doi.org/10.1016/j.meegid.2021.104993] [PMID: 34242774]
[19]
Zhang, T.; Du, H.; Guo, L.; Liu, F.; Su, H.; Yang, F. Identifying novel amino acid substitutions of hemagglutinin involved in virulence enhancement in H7N9 virus strains. Virol. J., 2021, 18(1), 14.
[http://dx.doi.org/10.1186/s12985-020-01464-1] [PMID: 33430903]
[20]
Liu, W.J.; Xiao, H.; Dai, L.; Liu, D.; Chen, J.; Qi, X.; Bi, Y.; Shi, Y.; Gao, G.F.; Liu, Y. Avian influenza A (H7N9) virus: From low pathogenic to highly pathogenic. Front. Med., 2021, 15(4), 507-527.https://www.ncbi.nlm.nih.gov/pubmed/33860875
[http://dx.doi.org/10.1007/s11684-020-0814-5] [PMID: 33860875]
[21]
Li, S.W.; Yang, T.C.; Lai, C.C.; Huang, S.H.; Liao, J.M.; Wan, L.; Lin, Y.J.; Lin, C.W. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur. J. Pharmacol., 2014, 738, 125-132.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.028] [PMID: 24877694]
[22]
Sassaki, G.L.; Elli, S.; Rudd, T.R.; Macchi, E.; Yates, E.A.; Naggi, A.; Shriver, Z.; Raman, R.; Sasisekharan, R.; Torri, G.; Guerrini, M. Human (α2→6) and avian (α2→3) sialylated receptors of influenza A virus show distinct conformations and dynamics in solution. Biochemistry, 2013, 52(41), 7217-7230.
[http://dx.doi.org/10.1021/bi400677n] [PMID: 24015903]
[23]
Meineke, R.; Rimmelzwaan, G.F.; Elbahesh, H. Influenza virus infections and cellular kinases. Viruses, 2019, 11(2), 171.
[http://dx.doi.org/10.3390/v11020171] [PMID: 30791550]
[24]
McKellar, J.; Rebendenne, A.; Wencker, M.; Moncorgé, O.; Goujon, C. Mammalian and avian host cell influenza A restriction factors. Viruses, 2021, 13(3), 522.
[http://dx.doi.org/10.3390/v13030522] [PMID: 33810083]
[25]
Ge, S.; Wang, Z. An overview of influenza A virus receptors. Crit. Rev. Microbiol., 2011, 37(2), 157-165.
[http://dx.doi.org/10.3109/1040841X.2010.536523] [PMID: 21438845]
[26]
Tripathi, S.; Batra, J.; Lal, S.K. Interplay between influenza A virus and host factors: Targets for antiviral intervention. Arch. Virol., 2015, 160(8), 1877-1891.
[http://dx.doi.org/10.1007/s00705-015-2452-9] [PMID: 26016443]
[27]
Zhang, H.; Hale, B.G.; Xu, K.; Sun, B. Viral and host factors required for avian H5N1 influenza A virus replication in mammalian cells. Viruses, 2013, 5(6), 1431-1446.
[http://dx.doi.org/10.3390/v5061431] [PMID: 23752648]
[28]
Kormuth, K.A.; Lin, K.; Qian, Z.; Myerburg, M.M.; Marr, L.C.; Lakdawala, S.S. Environmental persistence of influenza viruses is dependent upon virus type and host origin. MSphere, 2019, 4(4), e00552-e19.
[http://dx.doi.org/10.1128/mSphere.00552-19] [PMID: 31434749]
[29]
Basler, C.F. Influenza viruses: Basic biology and potential drug targets. Infect. Disord. Drug Targets, 2007, 7(4), 282-293.
[http://dx.doi.org/10.2174/187152607783018745] [PMID: 18220960]
[30]
Horby, P.; Nguyen, N.Y.; Dunstan, S.J.; Baillie, J.K. The role of host genetics in susceptibility to influenza: A systematic review. PLoS One, 2012, 7(3), e33180.
[http://dx.doi.org/10.1371/journal.pone.0033180] [PMID: 22438897]
[31]
Bisset, A.T.; Hoyne, G.F. Evolution and adaptation of the avian H7N9 virus into the human Host. Microorganisms, 2020, 8(5), 778.
[http://dx.doi.org/10.3390/microorganisms8050778] [PMID: 32455845]
[32]
Morrison, J.; Katze, M.G. Gene expression signatures as a therapeutic target for severe H7N9 influenza - what do we know so far? Expert Opin. Ther. Targets, 2015, 19(4), 447-450.
[http://dx.doi.org/10.1517/14728222.2015.1006198] [PMID: 25600759]
[33]
Horman, W.S.J.; Kedzierska, K.; Rootes, C.L.; Bean, A.G.D.; Nguyen, T.H.O.; Layton, D.S. Ferret interferon (IFN)-inducible transmembrane proteins are upregulated by both IFN-α and influenza virus infection. J. Virol., 2021, 95(14), e0011121.
[http://dx.doi.org/10.1128/JVI.00111-21] [PMID: 33952646]
[34]
To, K.K.W.; Zhou, J.; Chan, J.F-W.; Yuen, K-Y. Host genes and influenza pathogenesis in humans: An emerging paradigm. Curr. Opin. Virol., 2015, 14, 7-15.
[http://dx.doi.org/10.1016/j.coviro.2015.04.010] [PMID: 26079652]
[35]
Lee, N.; Cao, B.; Ke, C.; Lu, H.; Hu, Y.; Tam, C.H.T.; Ma, R.C.W.; Guan, D.; Zhu, Z.; Li, H.; Lin, M.; Wong, R.Y.K.; Yung, I.M.H.; Hung, T.N.; Kwok, K.; Horby, P.; Hui, D.S.C.; Chan, M.C.W.; Chan, P.K.S. IFITM3, TLR3, and CD55 gene SNPs and cumulative genetic risks for severe outcomes in Chinese patients with H7N9/H1N1pdm09 influenza. J. Infect. Dis., 2017, 216(1), 97-104.
[http://dx.doi.org/10.1093/infdis/jix235] [PMID: 28510725]
[36]
Yang, X.; Tan, B.; Zhou, X.; Xue, J.; Zhang, X.; Wang, P.; Shao, C.; Li, Y.; Li, C.; Xia, H.; Qiu, J. Interferon-inducible transmembrane protein 3 genetic variant rs12252 and influenza susceptibility and severity: A meta-analysis. PLoS One, 2015, 10(5), e0124985.
[http://dx.doi.org/10.1371/journal.pone.0124985] [PMID: 25942469]
[37]
Zhou, J.; Wang, D.; Wong, B.H.; Li, C.; Poon, V.K.; Wen, L.; Zhao, X.; Chiu, M.C.; Liu, X.; Ye, Z.; Yuan, S.; Sze, K.H.; Chan, J.F.; Chu, H.; To, K.K.; Yuen, K.Y. Identification and characterization of GLDC as host susceptibility gene to severe influenza. EMBO Mol. Med., 2019, 11(1), e9528.
[http://dx.doi.org/10.15252/emmm.201809528] [PMID: 30498026]
[38]
Qi, W.; Tian, J.; Su, S.; Huang, L.; Li, H.; Liao, M. Identification of potential virulence determinants associated H9N2 avian influenza virus PB2 E627K mutation by comparative proteomics. Proteomics, 2015, 15(9), 1512-1524.
[http://dx.doi.org/10.1002/pmic.201400309] [PMID: 25641917]
[39]
Ding, X.; Lu, J.; Yu, R.; Wang, X.; Wang, T.; Dong, F.; Peng, B.; Wu, W.; Liu, H.; Geng, Y.; Zhang, R.; Ma, H.; Cheng, J.; Yu, M.; Fang, S. Preliminary proteomic analysis of A549 cells infected with avian influenza virus H7N9 and influenza A virus H1N1. PLoS One, 2016, 11(5), e0156017.https://www.ncbi.nlm.nih.gov/pubmed/27223893
[http://dx.doi.org/10.1371/journal.pone.0156017] [PMID: 27223893]
[40]
Sun, N.; Sun, W.; Li, S.; Yang, J.; Yang, L.; Quan, G.; Gao, X.; Wang, Z.; Cheng, X.; Li, Z.; Peng, Q.; Liu, N. Proteomics analysis of cellular proteins co-immunoprecipitated with nucleoprotein of influenza A Virus (H7N9). Int. J. Mol. Sci., 2015, 16(11), 25982-25998.
[http://dx.doi.org/10.3390/ijms161125934] [PMID: 26528969]
[41]
Simon, P.F.; McCorrister, S.; Hu, P.; Chong, P.; Silaghi, A.; Westmacott, G.; Coombs, K.M.; Kobasa, D. Highly pathogenic H5N1 and novel H7N9 influenza a viruses induce more profound proteomic host responses than seasonal and pandemic H1N1 Strains. J. Proteome Res., 2015, 14(11), 4511-4523.
[http://dx.doi.org/10.1021/acs.jproteome.5b00196] [PMID: 26381135]
[42]
Samji, T. Influenza A: understanding the viral life cycle. Yale J. Biol. Med., 2009, 82(4), 153-159.
[PMID: 20027280]
[43]
Si, Y.; Li, J.; Niu, Y.; Liu, X.; Ren, L.; Guo, L.; Cheng, M.; Zhou, H.; Wang, J.; Jin, Q.; Yang, W. Entry properties and entry inhibitors of a human H7N9 influenza virus. PLoS One, 2014, 9(9), e107235.
[http://dx.doi.org/10.1371/journal.pone.0107235] [PMID: 25222852]
[44]
Yan, Y.; Du, Y.; Wang, G.; Deng, Y.; Li, R.; Li, K. The novel H7N9 influenza A virus NS1 induces p53-mediated apoptosis of A549 Cells. Cell. Physiol. Biochem., 2016, 38(4), 1447-1458.
[http://dx.doi.org/10.1159/000443087] [PMID: 27035671]
[45]
Rossman, J.S.; Lamb, R.A. Influenza virus assembly and budding. Virology, 2011, 411(2), 229-236.
[http://dx.doi.org/10.1016/j.virol.2010.12.003] [PMID: 21237476]
[46]
Liu, C.; Zhang, A.; Guo, J.; Yang, J.; Zhou, H.; Chen, H.; Jin, M. Identification of human host proteins contributing to H5N1 influenza virus propagation by membrane proteomics. J. Proteome Res., 2012, 11(11), 5396-5405.
[http://dx.doi.org/10.1021/pr3006342] [PMID: 22985253]
[47]
Zhang, X.; Song, Z.; He, J.; Yen, H.L.; Li, J.; Zhu, Z.; Tian, D.; Wang, W.; Xu, L.; Guan, W.; Liu, Y.; Wang, S.; Shi, B.; Zhang, W.; Qin, B.; Cai, J.; Wan, Y.; Xu, C.; Ren, X.; Chen, H.; Liu, L.; Yang, Y.; Zhou, X.; Zhou, W.; Xu, J.; Zhang, X.; Peiris, M.; Hu, Y.; Yuan, Z. Drug susceptibility profile and pathogenicity of H7N9 influenza virus (Anhui1 lineage) with R292K substitution. Emerg. Microbes Infect., 2014, 3(11), e78.
[http://dx.doi.org/10.1038/emi.2014.80] [PMID: 26038501]
[48]
Lee, K.; Byun, K.; Hong, W.; Chuang, H.Y.; Pack, C.G.; Bayarsaikhan, E.; Paek, S.H.; Kim, H.; Shin, H.Y.; Ideker, T.; Lee, B. Proteome-wide discovery of mislocated proteins in cancer. Genome Res., 2013, 23(8), 1283-1294.
[http://dx.doi.org/10.1101/gr.155499.113] [PMID: 23674306]
[49]
Zhang, Y.; Shen, Y.; Yin, L.; Qi, T.; Jia, X.; Lu, H.; Zhang, L. Plasma membrane proteomic profile discovers macrophage-capping protein related to latent HIV-1. Curr. HIV Res., 2019, 17(1), 42-52.
[http://dx.doi.org/10.2174/1570162X17666190506155222] [PMID: 31057110]
[50]
Zhang, L.; Jia, X.; Zhang, X.; Sun, J.; Peng, X.; Qi, T.; Ma, F.; Yin, L.; Yao, Y.; Qiu, C.; Lu, H. Proteomic analysis of PBMCs: Characterization of potential HIV-associated proteins. Proteome Sci., 2010, 8, 12.
[http://dx.doi.org/10.1186/1477-5956-8-12] [PMID: 20222986]
[51]
Jia, X.; Liu, L.; Liu, X.; Wu, D.; Yin, L.; Liu, X.; Zhang, J.; Yang, P.; Lu, H.; Zhang, L. Vimentin-a potential biomarker for therapeutic efficiency of HAART. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(11), 1001-1006.
[http://dx.doi.org/10.1093/abbs/gmu075] [PMID: 25187410]
[52]
Sun, T.; Liu, L.; Wu, A.; Zhang, Y.; Jia, X.; Yin, L.; Lu, H.; Zhang, L. iTRAQ based investigation of plasma proteins in HIV infected and HIV/HBV coinfected patients - C9 and KLK are related to HIV/HBV coinfection. Int. J. Infect. Dis., 2017, 63, 64-71.
[http://dx.doi.org/10.1016/j.ijid.2017.08.006] [PMID: 28823846]
[53]
Zhang, Z.; Zhang, L.; Hua, Y.; Jia, X.; Li, J.; Hu, S.; Peng, X.; Yang, P.; Sun, M.; Ma, F.; Cai, Z. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines. BMC Cancer, 2010, 10, 206.
[http://dx.doi.org/10.1186/1471-2407-10-206] [PMID: 20470422]
[54]
Yin, X.; Zhang, Y.; Guo, S.; Jin, H.; Wang, W.; Yang, P. Large scale systematic proteomic quantification from non-metastatic to metastatic colorectal cancer. Sci. Rep., 2015, 5, 12120.
[http://dx.doi.org/10.1038/srep12120] [PMID: 26175278]
[55]
Jiang, Y.; Guo, L.; Xie, L.Q.; Zhang, Y.Y.; Liu, X.H.; Zhang, Y.; Zhu, H.; Yang, P.Y.; Lu, H.J.; Tang, Q.Q. Proteome profiling of mitotic clonal expansion during 3T3-L1 adipocyte differentiation using iTRAQ-2DLC-MS/MS. J. Proteome Res., 2014, 13(3), 1307-1314.
[http://dx.doi.org/10.1021/pr401292p] [PMID: 24450392]
[56]
Jones, K.A.; Kim, P.D.; Patel, B.B.; Kelsen, S.G.; Braverman, A.; Swinton, D.J.; Gafken, P.R.; Jones, L.A.; Lane, W.S.; Neveu, J.M.; Leung, H.E.; Shaffer, S.A.; Leszyk, J.D.; Stanley, B.A.; Fox, T.E.; Stanley, A.; Hall, M.J.; Hampel, H.; South, C.D.; de la Chapelle, A.; Burt, R.W.; Jones, D.A.; Kopelovich, L.; Yeung, A.T. Immunodepletion plasma proteomics by tripleTOF 5600 and Orbitrap elite/LTQ-Orbitrap Velos/Q exactive mass spectrometers. J. Proteome Res., 2013, 12(10), 4351-4365.
[http://dx.doi.org/10.1021/pr400307u] [PMID: 24004147]
[57]
Tambor, V.; Hunter, C.L.; Seymour, S.L.; Kacerovsky, M.; Stulik, J.; Lenco, J. CysTRAQ - A combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes. J. Proteomics, 2012, 75(3), 857-867.
[http://dx.doi.org/10.1016/j.jprot.2011.09.027] [PMID: 22008608]
[58]
Choi, H.; Nesvizhskii, A.I. False discovery rates and related statistical concepts in mass spectrometry-based proteomics. J. Proteome Res., 2008, 7(1), 47-50.
[http://dx.doi.org/10.1021/pr700747q] [PMID: 18067251]
[59]
Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc., 2016, 11(12), 2301-2319.
[http://dx.doi.org/10.1038/nprot.2016.136] [PMID: 27809316]
[60]
Burat, B.; Gonzalez, J.; Sauvage, F.L.; Aouad, H.; Arnion, H.; Pinault, E.; Marquet, P.; Essig, M. Sum of peak intensities outperforms peak area integration in iTRAQ protein expression measurement by LC-MS/MS using a TripleTOF 5600+ platform. Biosci. Rep., 2019, 39(6), BSR20190904.
[http://dx.doi.org/10.1042/BSR20190904] [PMID: 31110078]
[61]
Zhou, H.; Yan, H.; Yan, W.; Wang, X.; Ma, Y.; Wang, J. Quantitative proteomics analysis with iTRAQ in human lenses with nuclear cataracts of different axial lengths. Mol. Vis., 2016, 22, 933-943.
[PMID: 27559289]
[62]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[63]
Zhang, X.; Yang, H.; Zhang, J.; Gao, F.; Dai, L. HSD17B4, ACAA1, and PXMP4 in peroxisome pathway are down-regulated and have clinical significance in non-small cell lung cancer. Front. Genet., 2020, 11, 273.
[http://dx.doi.org/10.3389/fgene.2020.00273] [PMID: 32265992]
[64]
Crosara, K.T.B.; Moffa, E.B.; Xiao, Y.; Siqueira, W.L. Merging in-silico and in vitro salivary protein complex partners using the STRING database: A tutorial. J. Proteomics, 2018, 171, 87-94.
[http://dx.doi.org/10.1016/j.jprot.2017.08.002] [PMID: 28782718]
[65]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[66]
Mansouri, V.; Rezaei Tavirani, M.; Rezaei Tavirani, S. Gene screening of colorectal cancers via network analysis. Gastroenterol. Hepatol. Bed Bench, 2019, 12(2), 149-154.
[PMID: 31191840]
[67]
Gerold, G.; Bruening, J.; Pietschmann, T. Decoding protein networks during virus entry by quantitative proteomics. Virus Res., 2016, 218, 25-39.
[http://dx.doi.org/10.1016/j.virusres.2015.09.006] [PMID: 26365680]
[68]
Zhou, S.; Liu, R.; Zhao, X.; Huang, C.; Wei, Y. Viral proteomics: The emerging cutting-edge of virus research. Sci. China Life Sci., 2011, 54(6), 502-512.
[http://dx.doi.org/10.1007/s11427-011-4177-7] [PMID: 21706410]
[69]
Yang, Y.; Zhang, Y.; Yang, C.; Fang, F.; Wang, Y.; Chang, H.; Chen, Z.; Chen, P. Differential mitochondrial proteomic analysis of A549 cells infected with avian influenza virus subtypes H5 and H9. Virol. J., 2021, 18(1), 39.
[http://dx.doi.org/10.1186/s12985-021-01512-4] [PMID: 33602268]
[70]
Ding, X.; Yu, R.; Wang, X.; Wu, W.; Peng, B.; Liu, H.; Geng, Y.; Dong, F.; Lu, J.; Yu, M.; Fang, S. Proteome profiling of A549 cells infected with influenza H7N9 Virus. Chin. J. Virol., 2016, 32(5), 574-581.
[PMID: 30001579]
[71]
Zheng, Y.; Lou, X.; Yang, P.; Shi, W.; Chu, Y.; Yan, M.; Jiang, C.; Wu, D.; Pan, Y.; Zhao, J.; Li, Y.; Dong, Y.; Chen, L.; Liu, S.; Wang, Q. Proteomic analysis of avian influenza A (H7N9) patients within a family cluster. J. Glob. Infect. Dis., 2018, 10(2), 58-66.
[http://dx.doi.org/10.4103/jgid.jgid_159_16] [PMID: 29910565]
[72]
Kuo, R.L.; Chen, C.J.; Tam, E.H.; Huang, C.G.; Li, L.H.; Li, Z.H.; Su, P.C.; Liu, H.P.; Wu, C.C. Interactome analysis of NS1 protein encoded by influenza A H7N9 virus reveals an inhibitory role of NS1 in host mRNA maturation. J. Proteome Res., 2018, 17(4), 1474-1484.
[http://dx.doi.org/10.1021/acs.jproteome.7b00815] [PMID: 29558158]
[73]
Nakamura, H.; Shimizu, T.; Takatani, A.; Suematsu, T.; Nakamura, T.; Kawakami, A. Initial human T-cell leukemia virus type 1 infection of the salivary gland epithelial cells requires a biofilm-like structure. Virus Res., 2019, 269, 197643.
[http://dx.doi.org/10.1016/j.virusres.2019.197643] [PMID: 31233774]
[74]
Giordanengo, V.; Limouse, M.; Doglio, A.; Lesimple, J.; Lefebvre, J.C. Alteration of CD44 expression in HIV type 1-infected T cell lines. AIDS Res. Hum. Retroviruses, 1996, 12(17), 1615-1622.
[http://dx.doi.org/10.1089/aid.1996.12.1615] [PMID: 8947296]
[75]
Abe, T.; Fukuhara, T.; Wen, X.; Ninomiya, A.; Moriishi, K.; Maehara, Y.; Takeuchi, O.; Kawai, T.; Akira, S.; Matsuura, Y. CD44 participates in IP-10 induction in cells in which hepatitis C virus RNA is replicating, through an interaction with Toll-like receptor 2 and hyaluronan. J. Virol., 2012, 86(11), 6159-6170.
[http://dx.doi.org/10.1128/JVI.06872-11] [PMID: 22491449]
[76]
Jiang, W.M.; Zhang, X.Y.; Zhang, Y.Z.; Liu, L.; Lu, H.Z. A high throughput RNAi screen reveals determinants of HIV-1 activity in host kinases. Int. J. Clin. Exp. Pathol., 2014, 7(5), 2229-2237.
[PMID: 24966931]
[77]
Scheffer, K.D.; Berditchevski, F.; Florin, L. The tetraspanin CD151 in papillomavirus infection. Viruses, 2014, 6(2), 893-908.
[http://dx.doi.org/10.3390/v6020893] [PMID: 24553111]
[78]
Shanmukhappa, K.; Kim, J.K.; Kapil, S. Role of CD151, A tetraspanin, in porcine reproductive and respiratory syndrome virus infection. Virol. J., 2007, 4, 62.
[http://dx.doi.org/10.1186/1743-422X-4-62] [PMID: 17572908]
[79]
Dziduszko, A.; Ozbun, M.A. Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes. J. Virol., 2013, 87(13), 7502-7515.
[http://dx.doi.org/10.1128/JVI.00519-13] [PMID: 23637395]
[80]
Xing, Y.; Wen, Z.; Gao, W.; Lin, Z.; Zhong, J.; Jiu, Y. Multifaceted functions of host cell caveolae/caveolin-1 in virus infections. Viruses, 2020, 12(5), 487.
[http://dx.doi.org/10.3390/v12050487] [PMID: 32357558]
[81]
Sun, L.; Li, K.; Liu, G.; Xu, Y.; Zhang, A.; Lin, D.; Zhang, H.; Zhao, X.; Jin, B.; Li, N.; Zhang, Y. Distinctive pattern of AHNAK methylation level in peripheral blood mononuclear cells and the association with HBV-related liver diseases. Cancer Med., 2018, 7(10), 5178-5186.
[http://dx.doi.org/10.1002/cam4.1778] [PMID: 30259695]
[82]
Nonnenmacher, M.; Salmon, J.; Jacob, Y.; Orth, G.; Breitburd, F. Cottontail rabbit papillomavirus E8 protein is essential for wart formation and provides new insights into viral pathogenesis. J. Virol., 2006, 80(10), 4890-4900.
[http://dx.doi.org/10.1128/JVI.80.10.4890-4900.2006] [PMID: 16641280]
[83]
Zhong, Y.; Smart, E.J.; Weksler, B.; Couraud, P.O.; Hennig, B.; Toborek, M. Caveolin-1 regulates human immunodeficiency virus-1 Tat-induced alterations of tight junction protein expression via modulation of the Ras signaling. J. Neurosci., 2008, 28(31), 7788-7796.
[http://dx.doi.org/10.1523/JNEUROSCI.0061-08.2008] [PMID: 18667611]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy