Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Targeting G-Quadruplex DNA for Cancer Chemotherapy

Author(s): Sumanta Debbarma and Pratap Chandra Acharya*

Volume 19, Issue 3, 2022

Published on: 18 March, 2022

Article ID: e140222201110 Pages: 13

DOI: 10.2174/1570163819666220214115408

Price: $65

Abstract

The self-association of DNA formed by Hoogsteen hydrogen bonding comprises several layers of four guanine or G-tetrads or G4s. The distinct feature of G4s, such as the G-tetrads and loops, qualify structure-selective recognition by small molecules and various ligands and can act as potential anticancer therapeutic molecules. The G4 selective ligands can influence gene expression by targeting a nucleic acid structure rather than sequence. Telomere G4 can be targeted for cancer treatment by small molecules inhibiting the telomerase activity, whereas c-MYC is capable of controlling transcription and can be targeted to influence transcription. The k-RAS is one of the most frequently encountered oncogenic driver mutations in pancreatic, colorectal, and lung cancers. The k-RAS oncogene plays an important role in acquiring and increasing drug resistance and can also be directly targeted by small molecules to combat k-RAS mutant tumors. Modular G4 ligands with different functional groups, side chains, and rotatable bonds, as well as conformation, affect the binding affinity/ selectivity in cancer chemotherapeutic interventions. These modular G4 ligands act by targeting the diversity of G4 loops and groves and assist in developing more drug-like compounds with selectivity. In this review, we present the recent research on synthetic G4 DNA-interacting ligands as an approach towards the discovery of target-specific anticancer chemotherapeutic agents.

Keywords: G-Quadruplex, c-MYC, telomerase inhibitors, k-RAS, modular G4 ligand, anticancer G4 ligands.

Graphical Abstract
[1]
Spiegel J, Adhikari S, Balasubramanian S. The structure and function of DNA G-quadruplexes. Trends Chem 2020; 2(2): 123-36.
[http://dx.doi.org/10.1016/j.trechm.2019.07.002] [PMID: 32923997]
[2]
Drewe WC, Neidle S. Click chemistry assembly of G-quadruplex ligands incorporating a diarylurea scaffold and triazole linkers. Chem Commun (Camb) 2008; (42): 5295-7.
[http://dx.doi.org/10.1039/b814576h] [PMID: 18985188]
[3]
Maizels N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat Struct Mol Biol 2006; 13(12): 1055-9.
[http://dx.doi.org/10.1038/nsmb1171] [PMID: 17146462]
[4]
Asamitsu S, Obata S, Yu Z, Bando T, Sugiyama H. Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy. Molecules 2019; 24(3): 429.
[http://dx.doi.org/10.3390/molecules24030429] [PMID: 30682877]
[5]
Poudel L, Steinmetz NF, French RH, Parsegian VA, Podgornik R, Ching WY. Implication of the solvent effect, metal ions and topology in the electronic structure and hydrogen bonding of human telomeric G-quadruplex DNA. Phys Chem Chem Phys 2016; 18(31): 21573-85.
[http://dx.doi.org/10.1039/C6CP04357G] [PMID: 27425864]
[6]
Lipps HJ, Rhodes D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 2009; 19(8): 414-22.
[http://dx.doi.org/10.1016/j.tcb.2009.05.002] [PMID: 19589679]
[7]
Gavathiotis E, Heald RA, Stevens MF, Searle MS. Drug recognition and stabilisation of the parallel-stranded DNA quadruplex d(TTAGGGT) 4 containing the human telomeric repeat. J Mol Biol 2003; 334(1): 25-36.
[http://dx.doi.org/10.1016/j.jmb.2003.09.018] [PMID: 14596797]
[8]
Leonetti C, Scarsella M, Riggio G, et al. G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in preclinical models of solid tumors. Clin Cancer Res 2008; 14(22): 7284-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0941] [PMID: 19010844]
[9]
Cogoi S, Paramasivam M, Spolaore B, Xodo LE. Structural polymorphism within a regulatory element of the human KRAS promoter: Formation of G4-DNA recognized by nuclear proteins. Nucleic Acids Res 2008; 36(11): 3765-80.
[http://dx.doi.org/10.1093/nar/gkn120] [PMID: 18490377]
[10]
Ghosal G, Muniyappa K. Hoogsteen base-pairing revisited: Resolving a role in normal biological processes and human diseases. Biochem Biophys Res Commun 2006; 343(1): 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2006.02.148] [PMID: 16540083]
[11]
Marsico G, Chambers VS, Sahakyan AB, et al. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res 2019; 47(8): 3862-74.
[http://dx.doi.org/10.1093/nar/gkz179] [PMID: 30892612]
[12]
Patel DJ, Phan AT, Kuryavyi V. Human telomere, oncogenic promoter and 5¢-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Research 2007; 3522: 7429-55.
[13]
Eddy J, Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 2006; 34(14): 3887-96.
[http://dx.doi.org/10.1093/nar/gkl529] [PMID: 16914419]
[14]
Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res 2005; 33(9): 2908-16.
[http://dx.doi.org/10.1093/nar/gki609] [PMID: 15914667]
[15]
Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 2007; 35(2): 406-13.
[http://dx.doi.org/10.1093/nar/gkl1057] [PMID: 17169996]
[16]
Todd AK, Johnston M, Neidle S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 2005; 33(9): 2901-7.
[http://dx.doi.org/10.1093/nar/gki553] [PMID: 15914666]
[17]
Parkinson GN, Lee MP, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 2002; 417(6891): 876-80.
[http://dx.doi.org/10.1038/nature755] [PMID: 12050675]
[18]
Phan AT, Luu KN, Patel DJ. Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution. Nucleic Acids Res 2006; 34(19): 5715-9.
[http://dx.doi.org/10.1093/nar/gkl726] [PMID: 17040899]
[19]
Phan AT, Kuryavyi V, Luu KN, Patel DJ. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 2007; 35(19): 6517-25.
[http://dx.doi.org/10.1093/nar/gkm706] [PMID: 17895279]
[20]
Wu Y, Brosh RM Jr. G-quadruplex nucleic acids and human disease. FEBS J 2010; 277(17): 3470-88.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07760.x] [PMID: 20670277]
[21]
Bharti SK, Sommers JA, George F, et al. Specialization among iron-sulfur cluster helicases to resolve G-quadruplex DNA structures that threaten genomic stability. J Biol Chem 2013; 288(39): 28217-29.
[http://dx.doi.org/10.1074/jbc.M113.496463] [PMID: 23935105]
[22]
Dhamodharan V, Pradeepkumar PI. Specific recognition of promoter G-quadruplex DNAs by small molecule ligands and light-up probes. ACS Chem Biol 2019; 14(10): 2102-14.
[http://dx.doi.org/10.1021/acschembio.9b00475] [PMID: 31532996]
[23]
Wang Y, Patel DJ. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1993; 1(4): 263-82.
[http://dx.doi.org/10.1016/0969-2126(93)90015-9] [PMID: 8081740]
[24]
Carvalho J, Mergny JL, Salgado GF, Queiroz JA, Cruz C. G-quadruplex, friend or foe: the role of the G-quartet in anticancer strategies. Trends Mol Med 2020; 26(9): 848-61.
[http://dx.doi.org/10.1016/j.molmed.2020.05.002] [PMID: 32467069]
[25]
Duarte AR, Cadoni E, Ressurreição AS, Moreira R, Paulo A. Design of modular G-quadruplex ligands. ChemMedChem 2018; 13(9): 869-93.
[http://dx.doi.org/10.1002/cmdc.201700747] [PMID: 29512884]
[26]
Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 2020; 21(8): 459-74.
[http://dx.doi.org/10.1038/s41580-020-0236-x] [PMID: 32313204]
[27]
Neidle S. Quadruplex nucleic acids as targets for anticancer therapeutics. Nat Rev Chem 2017; 1(5): 1-10.
[http://dx.doi.org/10.1038/s41570-017-0041]
[28]
Ruggiero E, Richter SN. G-quadruplexes and G-quadruplex ligands: Targets and tools in antiviral therapy. Nucleic Acids Res 2018; 46(7): 3270-83.
[http://dx.doi.org/10.1093/nar/gky187] [PMID: 29554280]
[29]
Neidle S, Parkinson G. Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 2002; 1(5): 383-93.
[http://dx.doi.org/10.1038/nrd793] [PMID: 12120414]
[30]
Yue DJ, Lim KW, Phan AT. Formation of (3+1) G-quadruplexes with a long loop by human telomeric DNA spanning five or more repeats. J Am Chem Soc 2011; 133(30): 11462-5.
[http://dx.doi.org/10.1021/ja204197d] [PMID: 21702440]
[31]
Clark GR, Pytel PD, Squire CJ, Neidle S. Structure of the first parallel DNA quadruplex-drug complex. J Am Chem Soc 2003; 125(14): 4066-7.
[http://dx.doi.org/10.1021/ja0297988] [PMID: 12670225]
[32]
Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans . Philos Trans R Soc 2018; 373(1741): 20160436..
[http://dx.doi.org/10.1098/rstb.2016.0436]
[33]
Li Z, Tan JH, He JH, et al. Disubstituted quinazoline derivatives as a new type of highly selective ligands for telomeric G-quadruplex DNA. Eur J Med Chem 2012; 47(1): 299-311.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.057] [PMID: 22104971]
[34]
Simonsson T. G-quadruplex DNA structures-variations on a theme. Biol Chem 2001; 382(4): 621-8.
[http://dx.doi.org/10.1515/BC.2001.073] [PMID: 11405224]
[35]
Trybek T, Kowalik A, Góźdź S, Kowalska A. Telomeres and telomerase in oncogenesis. Oncol Lett 2020; 20(2): 1015-27.
[http://dx.doi.org/10.3892/ol.2020.11659] [PMID: 32724340]
[36]
Herrmann M, Pusceddu I, März W, Herrmann W. Telomere biology and age-related diseases. Clin Chem Lab Med 2018; 56(8): 1210-22.
[http://dx.doi.org/10.1515/cclm-2017-0870] [PMID: 29494336]
[37]
Kimura M, Hjelmborg JV, Gardner JP, et al. Telomere length and mortality: a study of leukocytes in elderly Danish twins. Am J Epidemiol 2008; 167(7): 799-806.
[http://dx.doi.org/10.1093/aje/kwm380] [PMID: 18270372]
[38]
Anderson R, Lagnado A, Maggiorani D, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J 2019; 38(5), 100492.
[http://dx.doi.org/10.15252/embj.2018100492] [PMID: 30737259]
[39]
Phan AT. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J 2010; 277(5): 1107-17.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07464.x] [PMID: 19951353]
[40]
Shay JW, Wright WE. Telomeres and telomerase: Three decades of progress. Nat Rev Genet 2019; 20(5): 299-309.
[http://dx.doi.org/10.1038/s41576-019-0099-1] [PMID: 30760854]
[41]
Bertuch AA. The molecular genetics of the telomere biology disorders. RNA Biol 2016; 13(8): 696-706.
[http://dx.doi.org/10.1080/15476286.2015.1094596] [PMID: 26400640]
[42]
Harley CB. Telomerase and cancer therapeutics. Nat Rev Cancer 2008; 8(3): 167-79.
[http://dx.doi.org/10.1038/nrc2275] [PMID: 18256617]
[43]
Shin-ya K, Wierzba K, Matsuo K, et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc 2001; 123(6): 1262-3.
[http://dx.doi.org/10.1021/ja005780q] [PMID: 11456694]
[44]
Morris MJ, Wingate KL, Silwal J, Leeper TC, Basu S. The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res 2012; 40(9): 4137-45.
[http://dx.doi.org/10.1093/nar/gkr1308] [PMID: 22266651]
[45]
Asamitsu S, Shioda N, Sugiyama H. Telomeric quadruplexes as therapeutic targets. Annu Rep Med Chem 2020; 54: 77-99.
[http://dx.doi.org/10.1016/bs.armc.2020.04.005]
[46]
Neidle S, Parkinson GN. The structure of telomeric DNA. Curr Opin Struct Biol 2003; 13(3): 275-83.
[http://dx.doi.org/10.1016/S0959-440X(03)00072-1] [PMID: 12831878]
[47]
Davis JT. G-quartets 40 years later: from 5'-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed 2004; 43(6): 668-98.
[http://dx.doi.org/10.1002/anie.200300589] [PMID: 14755695]
[48]
Awadasseid A, Ma X, Wu Y, Zhang W. G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy. Biomed Pharmacother 2021; 139, 111550.
[http://dx.doi.org/10.1016/j.biopha.2021.111550] [PMID: 33831835]
[49]
Lim KW, Amrane S, Bouaziz S, et al. Structure of the human telomere in K+ solution: A stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 2009; 131(12): 4301-9.
[http://dx.doi.org/10.1021/ja807503g] [PMID: 19271707]
[50]
Düchler M. G-quadruplexes: Targets and tools in anticancer drug design. J Drug Target 2012; 20(5): 389-400.
[http://dx.doi.org/10.3109/1061186X.2012.669384] [PMID: 22424091]
[51]
De Cian A, Lacroix L, Douarre C, et al. Targeting telomeres and telomerase. Biochimie 2008; 90(1): 131-55.
[http://dx.doi.org/10.1016/j.biochi.2007.07.011] [PMID: 17822826]
[52]
Balasubramanian S, Neidle S. G-quadruplex nucleic acids as therapeutic targets. Curr Opin Chem Biol 2009; 13(3): 345-53.
[http://dx.doi.org/10.1016/j.cbpa.2009.04.637] [PMID: 19515602]
[53]
Lavrado J, Brito H, Borralho PM, et al. KRAS oncogene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines. Sci Rep 2015; 5(1): 9696.
[http://dx.doi.org/10.1038/srep09696] [PMID: 25853628]
[54]
Krens LL, Baas JM, Gelderblom H, Guchelaar HJ. Therapeutic modulation of k-ras signaling in colorectal cancer. Drug Discov Today 2010; 15(13-14): 502-16.
[http://dx.doi.org/10.1016/j.drudis.2010.05.012] [PMID: 20594936]
[55]
Artale S, Sartore-Bianchi A, Veronese SM, et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J Clin Oncol 2008; 26(25): 4217-9.
[http://dx.doi.org/10.1200/JCO.2008.18.7286] [PMID: 18757341]
[56]
Lin CY, Lovén J, Rahl PB, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151(1): 56-67.
[http://dx.doi.org/10.1016/j.cell.2012.08.026] [PMID: 23021215]
[57]
van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 2010; 10(4): 301-9.
[http://dx.doi.org/10.1038/nrc2819] [PMID: 20332779]
[58]
Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Seminars Cancer Boil 2006; 16(4): 253-64.
[http://dx.doi.org/10.1016/j.semcancer.2006.07.014]
[59]
Orian A, van Steensel B, Delrow J, et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev 2003; 17(9): 1101-14.
[http://dx.doi.org/10.1101/gad.1066903] [PMID: 12695332]
[60]
Fernandez PC, Frank SR, Wang L, et al. Genomic targets of the human c-Myc protein. Genes Dev 2003; 17(9): 1115-29.
[http://dx.doi.org/10.1101/gad.1067003] [PMID: 12695333]
[61]
O’Connell BC, Cheung AF, Simkevich CP, et al. A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 2003; 278(14): 12563-73.
[http://dx.doi.org/10.1074/jbc.M210462200] [PMID: 12529326]
[62]
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4(1), a014357.
[http://dx.doi.org/10.1101/cshperspect.a014357] [PMID: 24384812]
[63]
Eberhardy SR, Farnham PJ. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem 2002; 277(42): 40156-62.
[http://dx.doi.org/10.1074/jbc.M207441200] [PMID: 12177005]
[64]
Kanazawa S, Soucek L, Evan G, Okamoto T, Peterlin BM. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 2003; 22(36): 5707-11.
[http://dx.doi.org/10.1038/sj.onc.1206800] [PMID: 12944920]
[65]
Brenner C, Deplus R, Didelot C, et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J 2005; 24(2): 336-46.
[http://dx.doi.org/10.1038/sj.emboj.7600509] [PMID: 15616584]
[66]
González V, Hurley LH. The c-MYC NHE III(1): Function and regulation. Annu Rev Pharmacol Toxicol 2010; 50: 111-29.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094649] [PMID: 19922264]
[67]
Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005; 6(8): 635-45.
[http://dx.doi.org/10.1038/nrm1703] [PMID: 16064138]
[68]
Dang CV. MYC on the path to cancer. Cell 2012; 149(1): 22-35.
[http://dx.doi.org/10.1016/j.cell.2012.03.003] [PMID: 22464321]
[69]
Asamitsu S. Development of selective DNA-interacting ligands: understanding the function of non-canonical DNA Structures. 2020. Springer Nature.
[70]
Balasubramanian S, Hurley LH, Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 2011; 10(4): 261-75.
[http://dx.doi.org/10.1038/nrd3428] [PMID: 21455236]
[71]
Brooks TA, Hurley LH. Targeting MYC expression through G-quadruplexes. Genes Cancer 2010; 1(6): 641-9.
[http://dx.doi.org/10.1177/1947601910377493] [PMID: 21113409]
[72]
Brooks TA, Hurley LH. The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer 2009; 9(12): 849-61.
[http://dx.doi.org/10.1038/nrc2733] [PMID: 19907434]
[73]
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 2002; 99(18): 11593-8.
[http://dx.doi.org/10.1073/pnas.182256799] [PMID: 12195017]
[74]
Zyner KG, Mulhearn DS, Adhikari S, et al. Genetic interactions of G-quadruplexes in humans. eLife 2019; 8, e46793.
[http://dx.doi.org/10.7554/eLife.46793] [PMID: 31287417]
[75]
Liu KC, Röder K, Mayer C, Adhikari S, Wales DJ, Balasubramanian S. Affinity-selected bicyclic peptide G-quadruplex ligands mimic a protein-like binding mechanism. J Am Chem Soc 2020; 142(18): 8367-73.
[http://dx.doi.org/10.1021/jacs.0c01879] [PMID: 32267689]
[76]
Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K, Hurley LH. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J Am Chem Soc 2002; 124(10): 2098-9.
[http://dx.doi.org/10.1021/ja017308q] [PMID: 11878947]
[77]
Banerjee N, Panda S, Chatterjee S. Frontiers in G-Quadruplex therapeutics in cancer: Selection of small molecules, peptides and aptamers. Chem Biol Drug Des 2022; 99(1): 1-31.
[http://dx.doi.org/10.1111/cbdd.13910] [PMID: 34148284]
[78]
Mukundan VT, Phan AT. Bulges in G-quadruplexes: broadening the definition of G-quadruplex-forming sequences. J Am Chem Soc 2013; 135(13): 5017-28.
[http://dx.doi.org/10.1021/ja310251r] [PMID: 23521617]
[79]
Rodriguez R, Müller S, Yeoman JA, Trentesaux C, Riou JF, Balasubramanian S. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J Am Chem Soc 2008; 130(47): 15758-9.
[http://dx.doi.org/10.1021/ja805615w] [PMID: 18975896]
[80]
De Cian A, Delemos E, Mergny JL, Teulade-Fichou MP, Monchaud D. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J Am Chem Soc 2007; 129(7): 1856-7.
[http://dx.doi.org/10.1021/ja067352b] [PMID: 17260991]
[81]
Burger AM, Dai F, Schultes CM, et al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res 2005; 65(4): 1489-96.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2910] [PMID: 15735037]
[82]
Tera M, Ishizuka H, Takagi M, Suganuma M, Shin-ya K, Nagasawa K. Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders. Angew Chem Int Ed Engl 2008; 47(30): 5557-60.
[http://dx.doi.org/10.1002/anie.200801235] [PMID: 18563772]
[83]
Tera M, Iida K, Ishizuka H, et al. Synthesis of a potent G-quadruplex-binding macrocyclic heptaoxazole. ChemBioChem 2009; 10(3): 431-5.
[http://dx.doi.org/10.1002/cbic.200800563] [PMID: 19140143]
[84]
Ray S, Tillo D, Boer RE, et al. Custom DNA microarrays reveal diverse binding preferences of proteins and small molecules to thousands of G-quadruplexes. ACS Chem Biol 2020; 15(4): 925-35.
[http://dx.doi.org/10.1021/acschembio.9b00934] [PMID: 32216326]
[85]
Panda D, Saha P, Das T, Dash J. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor. Nat Commun 2017; 8(1): 16103.
[http://dx.doi.org/10.1038/ncomms16103] [PMID: 28706243]
[86]
Murat P, Singh Y, Defrancq E. Methods for investigating G-quadruplex DNA/ligand interactions. Chem Soc Rev 2011; 40(11): 5293-307.
[http://dx.doi.org/10.1039/c1cs15117g] [PMID: 21720638]
[87]
Dash J, Shirude PS, Hsu ST, Balasubramanian S. Diarylethynyl amides that recognize the parallel conformation of genomic promoter DNA G-quadruplexes. J Am Chem Soc 2008; 130(47): 15950-6.
[http://dx.doi.org/10.1021/ja8046552] [PMID: 18980309]
[88]
Waller ZA, Shirude PS, Rodriguez R, Balasubramanian S. Triarylpyridines: a versatile small molecule scaffold for G-quadruplex recognition. Chem Commun (Camb) 2008; 12(12): 1467-9.
[http://dx.doi.org/10.1039/b718854d] [PMID: 18338058]
[89]
Hamon F, Largy E, Guédin-Beaurepaire A, et al. An acyclic oligoheteroaryle that discriminates strongly between diverse G-quadruplex topologies. Angew Chem Int Ed Engl 2011; 50(37): 8745-9.
[http://dx.doi.org/10.1002/anie.201103422] [PMID: 21812083]
[90]
Medeiros-Silva J, Guédin A, Salgado GF, et al. Phenanthroline-bis-oxazole ligands for binding and stabilization of G-quadruplexes. Biochim Biophys Acta, Gen Subj 2017; 1861(5 Pt B): 1281-92.
[http://dx.doi.org/10.1016/j.bbagen.2016.11.024] [PMID: 27865994]
[91]
Ohnmacht SA, Micco M, Petrucci V, et al. Sequences in the HSP90 promoter form G-quadruplex structures with selectivity for disubstituted phenyl bis-oxazole derivatives. Bioorg Med Chem Lett 2012; 22(18): 5930-5.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.065] [PMID: 22892119]
[92]
Ohnmacht SA, Ciancimino C, Vignaroli G, Gunaratnam M, Neidle S. Optimization of anti-proliferative activity using a screening approach with a series of bis-heterocyclic G-quadruplex ligands. Bioorg Med Chem Lett 2013; 23(19): 5351-5.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.057] [PMID: 23972440]
[93]
Ritson DJ, Moses JE. A fragment based click chemistry approach towards hybrid G-quadruplex ligands: design, synthesis and biophysical evaluation. Tetrahedron 2012; 68(1): 197-203.
[http://dx.doi.org/10.1016/j.tet.2011.10.066]
[94]
Riou JF, Guittat L, Mailliet P, et al. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc Natl Acad Sci USA 2002; 99(5): 2672-7.
[http://dx.doi.org/10.1073/pnas.052698099] [PMID: 11854467]
[95]
Pennarun G, Granotier C, Gauthier LR, et al. Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene 2005; 24(18): 2917-28.
[http://dx.doi.org/10.1038/sj.onc.1208468] [PMID: 15735722]
[96]
Dash J, Shirude PS, Balasubramanian S. G-quadruplex recognition by bis-indole carboxamides. Chem Commun (Camb) 2008; (26): 3055-7.
[http://dx.doi.org/10.1039/b806042h] [PMID: 18688346]
[97]
Dash J, Das RN, Hegde N, Pantoş GD, Shirude PS, Balasubramanian S. Synthesis of bis-indole carboxamides as G-quadruplex stabilizing and inducing ligands. Chemistry 2012; 18(2): 554-64.
[http://dx.doi.org/10.1002/chem.201102556] [PMID: 22161991]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy