Mini-Review Article

Prognostic Value and Biological Role of miR-126 in Breast Cancer

Author(s): Saiedeh Razi Soofiyani, Kamran Hosseini, Tahereh Ebrahimi, Haleh Forouhandeh, Mohammadreza Sadeghi, Sohrab Minaei Beirami, Tohid Ghasemnejad, Vahideh Tarhriz* and Soheila Montazersaheb*

Volume 11, Issue 2, 2022

Published on: 15 July, 2022

Page: [95 - 103] Pages: 9

DOI: 10.2174/1876402914666220428123203

Price: $65

Abstract

In eukaryotic organisms such as humans, some noncoding single-stranded RNAs (ncRNAs) contribute to regulating the expression of some genes before and after the transcription process, which in turn controls a number of vital physiological processes, including cell proliferation, differentiation, invasion, angiogenesis, and embryonic development. miR-126 is one of these miRNAs expressed exclusively in endothelial cells such as capillaries and vessels involved in controlling angiogenesis. In recent years, the link between miRs such as miR-126 and the pathology of breast cancer has attracted the attention of many researchers. Numerous studies have shown that miR-126 may be able to suppress tumor tissue metastasis or to increase tumor metastasis through complex molecular mechanisms. There is ample clinical evidence that miR-126 can be used as a biomarker to predict and diagnose breast cancer due to the increased or decreased expression of certain genes in breast cancer tissue. In this review, we discuss the association between the growth and metastasis (tumorigenesis) of breast cancer and miR-126, as well as the relationship between current research advances in the prognosis, diagnosis, and treatment of breast cancer and miR-126.

Keywords: ncRNAs, miR-126, breast cancer, metastasis, prognosis, diagnosis, treatment.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[2]
Zoon, C.K.; Starker, E.Q.; Wilson, A.M.; Emmert-Buck, M.R.; Libutti, S.K.; Tangrea, M.A. Current molecular diagnostics of breast cancer and the potential incorporation of microRNA. Expert Rev. Mol. Diagn., 2009, 9(5), 455-467.
[http://dx.doi.org/10.1586/erm.09.25] [PMID: 19580430]
[3]
Johnson, A.B.; O’Malley, B.W. Steroid receptor coactivators 1, 2, and 3: Critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol. Cell. Endocrinol., 2012, 348(2), 430-439.
[http://dx.doi.org/10.1016/j.mce.2011.04.021] [PMID: 21664237]
[4]
Society, A.C. Breast cancer facts & figures. American Cancer Society; , 2007. [ Available from: https://www.cancer.org/research/cancer-facts-statistics/breast-cancer-facts-figures.html
[5]
Dunning, A.M.; Healey, C.S.; Pharoah, P.D.; Teare, M.D.; Ponder, B.A.; Easton, D.F. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol. Biomarkers Prev., 1999, 8(10), 843-854.
[PMID: 10548311]
[6]
Ramezani, F.; Samadi, N.; Mostafavi-Pour, Z. Sequential therapy of breast cancer cell lines with vitamin C and quercetin improves the efficacy of chemotherapeutic drugs. Nutr. Cancer, 2017, 69(6), 881-891.
[http://dx.doi.org/10.1080/01635581.2017.1339813] [PMID: 28742385]
[7]
Moo, T.A.; Sanford, R.; Dang, C.; Morrow, M. Overview of breast cancer therapy. PET Clin., 2018, 13(3), 339-354.
[http://dx.doi.org/10.1016/j.cpet.2018.02.006] [PMID: 30100074]
[8]
Nana-Sinkam, S.P.; Croce, C.M. Clinical applications for microRNAs in cancer. Clin. Pharmacol. Ther., 2013, 93(1), 98-104.
[http://dx.doi.org/10.1038/clpt.2012.192] [PMID: 23212103]
[9]
Soofiyani, S.R.; Hosseini, K.; Soleimanian, A.; Abkhooei, L.; Hoseini, A.M.; Tarhriz, V. An overview on the role of miR-451 in lung cancer: Diagnosis, therapy, and prognosis. MicroRNA, 2021, 10(3), 181-190.
[10]
Abkhooie, L.; Sarabi, M.M.; Kahroba, H. Potential roles of MyomiRs in cardiac development and related diseases. Curr. Cardiol. Rev., 2021, 17(4), e010621188335.
[http://dx.doi.org/10.2174/1573403X16999201124201021] [PMID: 33238844]
[11]
Tarhriz, V.; Eyvazi, S.; Musavi, M. Transient induction of Cdk9 in the early stage of differentiation is critical for myogenesis. J. Cell. Biochem., 2019, 120(11), 18854-18861.
[http://dx.doi.org/10.1002/jcb.29204] [PMID: 31257635]
[12]
Pahlavan, Y.; Mohammadi Nasr, M.; Dalir Abdolahinia, E. Prominent roles of microRNA-142 in cancer. Pathol. Res. Pract., 2020, 216(11), 153220.
[http://dx.doi.org/10.1016/j.prp.2020.153220] [PMID: 33007646]
[13]
Farazi, T.A.; Hoell, J.I.; Morozov, P.; Tuschl, T. MicroRNAs in human cancer. In: MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology; Schmitz, U.; Wolkenhauer, O.; Vera, J., Eds.; Springer: Dordrecht, 2013; pp. 1-20.
[http://dx.doi.org/10.1007/978-94-007-5590-1_1]
[14]
Baer, C.; Claus, R.; Plass, C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res., 2013, 73(2), 473-477.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3731] [PMID: 23316035]
[15]
Chan, M.; Liaw, C.S.; Ji, S.M. Identification of circulating microRNA signatures for breast cancer detection. Clin. Cancer Res., 2013, 19(16), 4477-4487.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3401] [PMID: 23797906]
[16]
Cuk, K.; Zucknick, M.; Madhavan, D. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS One, 2013, 8(10), e76729.
[http://dx.doi.org/10.1371/journal.pone.0076729] [PMID: 24194846]
[17]
Zhu, N.; Zhang, D.; Xie, H. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol. Cell. Biochem., 2011, 351(1-2), 157-164.
[http://dx.doi.org/10.1007/s11010-011-0723-7] [PMID: 21249429]
[18]
Piva, R.; Spandidos, D.A.; Gambari, R. From microRNA functions to microRNA therapeutics: Novel targets and novel drugs in breast cancer research and treatment (Review). Int. J. Oncol., 2013, 43(4), 985-994.
[http://dx.doi.org/10.3892/ijo.2013.2059] [PMID: 23939688]
[19]
Tomasetti, C.; Li, L.; Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science, 2017, 355(6331), 1330-1334.
[http://dx.doi.org/10.1126/science.aaf9011] [PMID: 28336671]
[20]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[21]
Calin, G.A.; Dumitru, C.D.; Shimizu, M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15524-15529.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[22]
Png, K.J.; Halberg, N.; Yoshida, M.; Tavazoie, S.F. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 2011, 481(7380), 190-194.
[http://dx.doi.org/10.1038/nature10661] [PMID: 22170610]
[23]
Zhang, Y.; Yang, P.; Sun, T. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat. Cell Biol., 2013, 15(3), 284-294.
[http://dx.doi.org/10.1038/ncb2690] [PMID: 23396050]
[24]
Rohde, J.H.; Weigand, J.E.; Suess, B.; Dimmeler, S. A universal aptamer chimera for the delivery of functional microRNA-126. Nucleic Acid Ther., 2015, 25(3), 141-151.
[25]
Lu, Y.Y.; Sweredoski, M.J.; Huss, D.; Lansford, R.; Hess, S.; Tirrell, D.A. Prometastatic GPCR CD97 is a direct target of tumor suppressor microRNA-126. ACS Chem. Biol., 2014, 9(2), 334-338.
[http://dx.doi.org/10.1021/cb400704n] [PMID: 24274104]
[26]
Wang, C.Z.; Yuan, P.; Li, Y. MiR-126 regulated breast cancer cell invasion by targeting ADAM9. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6547-6553.
[PMID: 26261534]
[27]
Turgut Cosan, D.; Oner, C.; Mutlu Sahin, F. Micro RNA-126 coordinates cell behavior and signaling cascades according to characteristics of breast cancer cells. Bratisl. Lek Listy, 2016, 117(11), 639-647.
[PMID: 28125889]
[28]
Rouigari, M.; Dehbashi, M.; Tabatabaeian, H.; Ghaedi, K.; Mohammadynejad, P.; Azadeh, M. Evaluation of the expression level and hormone receptor association of miR-126 in breast cancer. Indian J. Clin. Biochem., 2019, 34(4), 451-457.
[http://dx.doi.org/10.1007/s12291-018-0766-6] [PMID: 31686732]
[29]
Alhasan, L. MiR-126 modulates angiogenesis in breast cancer by targeting VEGF-A-mRNA. Asian Pac. J. Cancer Prev., 2019, 20(1), 193-197.
[http://dx.doi.org/10.31557/APJCP.2019.20.1.193] [PMID: 30678431]
[30]
Fu, R.; Tong, J.S. miR-126 reduces trastuzumab resistance by targeting PIK3R2 and regulating AKT/mTOR pathway in breast cancer cells. J. Cell. Mol. Med., 2020, 24(13), 7600-7608.
[http://dx.doi.org/10.1111/jcmm.15396] [PMID: 32410348]
[31]
Li, F. Expression and correlation of miR-124 and miR-126 in breast cancer. Oncol. Lett., 2019, 17(6), 5115-5119.
[http://dx.doi.org/10.3892/ol.2019.10184] [PMID: 31186724]
[32]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[33]
Khan, S; Ullah, MW; Siddique, R Role of recombinant DNA technology to improve life. Int J Genomics, 2016, 2016
[http://dx.doi.org/10.1155/2016/2405954]
[34]
Beheshtirouy, S.; Mirzaei, F.; Eyvazi, S.; Tarhriz, V. Recent advances in therapeutic peptides for breast cancer treatment. Curr. Protein Pept. Sci., 2021, 22(1), 74-88.
[http://dx.doi.org/10.2174/1389203721999201117123616] [PMID: 33208071]
[35]
Ebrahimzadeh, S.; Ahangari, H.; Soleimanian, A. Colorectal cancer treatment using bacteria: Focus on molecular mechanisms. BMC Microbiol., 2021, 21(1), 218.
[http://dx.doi.org/10.1186/s12866-021-02274-3] [PMID: 34281519]
[36]
Cyr, A.E.; Margenthaler, J.A. Molecular profiling of breast cancer. Surgical Oncology Clinics, 2014, 23(3), 451-462.
[PMID: 24882344]
[37]
Gradishar, W.J. Treatment of metastatic breast cancer. J. Natl. Compr. Canc. Netw., 2014, 12(5)(Suppl.), 759-761.
[http://dx.doi.org/10.6004/jnccn.2014.0184] [PMID: 24853211]
[38]
Martin, H.L.; Smith, L.; Tomlinson, D.C. Multidrug-resistant breast cancer: Current perspectives. Breast Cancer, 2014, 6, 1-13.
[39]
Hafez, M.M.; Hassan, Z.K.; Zekri, A.R.N. MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients. Asian Pac. J. Cancer Prev., 2012, 13(2), 591-598.
[http://dx.doi.org/10.7314/APJCP.2012.13.2.591] [PMID: 22524830]
[40]
Tavazoie, S.F.; Alarcón, C.; Oskarsson, T. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008, 451(7175), 147-152.
[http://dx.doi.org/10.1038/nature06487] [PMID: 18185580]
[41]
Crawford, M.; Brawner, E.; Batte, K. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem. Biophys. Res. Commun., 2008, 373(4), 607-612.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.090] [PMID: 18602365]
[42]
Zhang, P.; Sun, Y.; Ma, L. ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 2015, 14(4), 481-487.
[http://dx.doi.org/10.1080/15384101.2015.1006048] [PMID: 25607528]
[43]
Kumar, A.; Golani, A.; Kumar, L.D. EMT in breast cancer metastasis: An interplay of microRNAs, signaling pathways and circulating tumor cells. Front. Biosci., 2020, 25(5), 979-1010.
[http://dx.doi.org/10.2741/4844] [PMID: 32114421]
[44]
Bill, R.; Christofori, G. The relevance of EMT in breast cancer metastasis: Correlation or causality? FEBS Lett., 2015, 589(14), 1577-1587.
[http://dx.doi.org/10.1016/j.febslet.2015.05.002] [PMID: 25979173]
[45]
Hong, Z.; Hong, C.; Ma, B. MicroRNA 126 3p inhibits the proliferation, migration, invasion, and angiogenesis of triple negative breast cancer cells by targeting RGS3. Oncol. Rep., 2019, 42(4), 1569-1579.
[http://dx.doi.org/10.3892/or.2019.7251] [PMID: 31364749]
[46]
Eastlack, S.C.; Alahari, S.K. MicroRNA and breast cancer: Understanding pathogenesis, improving management. Noncoding RNA, 2015, 1(1), 17-43.
[http://dx.doi.org/10.3390/ncrna1010017] [PMID: 29861413]
[47]
Zhang, Z.J.; Ma, S.L. miRNAs in breast cancer tumorigenesis (Review). Oncol. Rep., 2012, 27(4), 903-910.
[http://dx.doi.org/10.3892/or.2011.1611] [PMID: 22200848]
[48]
Zhao, H.; Shen, J.; Medico, L.; Wang, D.; Ambrosone, C.B.; Liu, S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One, 2010, 5(10), e13735.
[http://dx.doi.org/10.1371/journal.pone.0013735] [PMID: 21060830]
[49]
Wang, F.; Zheng, Z.; Guo, J.; Ding, X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol., 2010, 119(3), 586-593.
[http://dx.doi.org/10.1016/j.ygyno.2010.07.021] [PMID: 20801493]
[50]
van Schooneveld, E.; Wildiers, H.; Vergote, I.; Vermeulen, P.B.; Dirix, L.Y.; Van Laere, S.J. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res., 2015, 17(1), 21.
[http://dx.doi.org/10.1186/s13058-015-0526-y] [PMID: 25849621]
[51]
Condrat, C.E.; Thompson, D.C.; Barbu, M.G. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells, 2020, 9(2), 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[52]
Dong, Y.; Fu, C.; Guan, H.; Zhang, Z.; Zhou, T.; Li, B. Prognostic significance of miR-126 in various cancers: A meta-analysis. OncoTargets Ther., 2016, 9, 2547-2555.
[http://dx.doi.org/10.2147/OTT.S103481] [PMID: 27217773]
[53]
Bu, J.; Li, H.; Li, X-y.; Liu, L-h.; Sun, W.; Xiao, T. Prognostic role of microRNA-126 for survival in malignant tumors: A systematic review and meta-analysis. Dis. Markers, 2015, 2015, 739469.
[http://dx.doi.org/10.1155/2015/739469]
[54]
Baldassari, F.; Zerbinati, C.; Galasso, M. Screen for MicroRNA and drug interactions in breast cancer cell lines points to miR-126 as a modulator of CDK4/6 and PIK3CA inhibitors. Front. Genet., 2018, 9, 174.
[http://dx.doi.org/10.3389/fgene.2018.00174] [PMID: 29868122]
[55]
Malla, R.R.; Kumari, S.; Gavara, M.M. A perspective on the diagnostics, prognostics, and therapeutics of microRNAs of triple-negative breast cancer. Biophys. Rev., 2019, 11(2), 227-234.
[http://dx.doi.org/10.1007/s12551-019-00503-8] [PMID: 30796734]
[56]
Volinia, S.; Galasso, M.; Sana, M.E. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 3024-3029.
[http://dx.doi.org/10.1073/pnas.1200010109] [PMID: 22315424]
[57]
Boult, J.K.R.; Box, G.; Vinci, M. Evaluation of the response of intracranial xenografts to VEGF signaling inhibition using multiparametric MRI. Neoplasia, 2017, 19(9), 684-694.
[http://dx.doi.org/10.1016/j.neo.2017.05.007] [PMID: 28780387]
[58]
Burstein, H.J.; Chen, Y.H.; Parker, L.M. VEGF as a marker for outcome among advanced breast cancer patients receiving anti-VEGF therapy with bevacizumab and vinorelbine chemotherapy. Clin. Cancer Res., 2008, 14(23), 7871-7877.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0593] [PMID: 19047116]
[59]
Shi, H.; Bi, H.; Sun, X. Antitumor effects of Tubeimoside-1 in NCI-H1299 cells are mediated by microRNA-126-5p-induced inactivation of VEGF-A/VEGFR-2/ERK signaling pathway. Mol. Med. Rep., 2018, 17(3), 4327-4336.
[http://dx.doi.org/10.3892/mmr.2018.8459] [PMID: 29363720]
[60]
Li, L.; Liu, H.; Xu, C. VEGF promotes endothelial progenitor cell differentiation and vascular repair through connexin 43. Stem Cell Res. Ther., 2017, 8(1), 237.
[http://dx.doi.org/10.1186/s13287-017-0684-1] [PMID: 29065929]
[61]
Yücel, E.I.; Sahin, M. Fenretinide reduces angiogenesis by downregulating CDH5, FOXM1 and eNOS genes and suppressing microRNA-10b. Mol. Biol. Rep., 2020, 47(3), 1649-1658.
[http://dx.doi.org/10.1007/s11033-020-05252-6] [PMID: 31925643]
[62]
Meister, J.; Schmidt, M.H.H. miR-126 and miR-126*: New players in cancer. ScientificWorldJournal, 2010, 10, 2090-2100.
[http://dx.doi.org/10.1100/tsw.2010.198] [PMID: 20953557]
[63]
Mattie, M.D.; Benz, C.C.; Bowers, J. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer, 2006, 5(1), 24.
[http://dx.doi.org/10.1186/1476-4598-5-24] [PMID: 16784538]
[64]
Banerjee, N.; Kim, H.; Krenek, K.; Talcott, S.T.; Mertens-Talcott, S.U. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: Role of the PI3K/AKT pathway and associated microRNAs. Nutr. Res., 2015, 35(8), 744-751.
[http://dx.doi.org/10.1016/j.nutres.2015.06.002] [PMID: 26194618]
[65]
Harapan, H.; Yeni, C.M. The role of microRNAs on angiogenesis and vascular pressure in preeclampsia: The evidence from systematic review. Egypt. J. Med. Hum. Genet., 2015, 16(4), 313-325.
[http://dx.doi.org/10.1016/j.ejmhg.2015.03.006]
[66]
Banerjee, A.; Luettich, K. MicroRNAs as potential biomarkers of smoking-related diseases. Biomarkers Med., 2012, 6(5), 671-684.
[http://dx.doi.org/10.2217/bmm.12.50] [PMID: 23075247]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy