Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

An Updated and Focused Review on Heterocyclic Inhibitors for SARSCoV and SARS-CoV-2 3CLpro

Author(s): Ajay Manaithiya, Ozair Alam*, Shruti Mittal, Mohd. Javed Naim, Mohd. Imran, Ahmed Subeh Alshrari, Aadil A. Sheikh and Imran A. Khan

Volume 23, Issue 5, 2023

Published on: 20 October, 2022

Page: [576 - 632] Pages: 57

DOI: 10.2174/1389557522666220511125102

Price: $65

Abstract

Background: SARS-CoV and SARS-CoV-2 are exceedingly contagious and typically result in major respiratory illnesses (acute respiratory syndrome). The public health is facing enormous challenges across all the nations due to these newly emerging pathogens. Reliable and systematic examination of SARS-CoV and COVID-19 will assist in identifying infectious persons accurately. Based on the biological, chemical, and genetic link of SARS CoV-2 towards SARS-CoV, the recurrence of different anti-SARS-CoV natural drug molecules may be beneficial in the advancement of anti-COVID-19 herbal drug molecules. Here in this review, we evaluated SAR research that has recently been published as well as molecular docking analysis of previously synthesised compounds that have been targeted against SARS-CoV and SARS-CoV-2, respectively. This investigation might assist scientists in creating novel and revolutionary molecules that could target SAR-CoV-2.

Objectives: The review highlights the heterocyclic inhibitors' ability to successfully inhibit SARSCoV and SARS-CoV-2. The meticulously described structure-activity relationship of potential SARS-CoV and SARS-CoV-2 inhibiting compounds has been addressed in this review.

Evidence Acquisition: We conducted a thorough literature assessment employing electronic databases for scientific articles highlighting potential heterocyclic inhibitors for SARS-CoVand SARSCoV- 2, published from 2010 to 2021. We recovered 415 articles, but only 220 were involved and conversed in this manuscript. The article apprehended appropriate research considering three areas: 1) SAR activity, 2) Molecular docking, and 3) Biological activity and future prospects on SARS-CoV-2.

Methods: The potential compounds with decent inhibitory activity have been discussed and reviewed along with their inhibition potential, expressed in terms of IC50 value.

Results: Heterocyclic scaffolds reflect an extensive spectrum of therapeutic activity and might function as an initiating concept for the designing and discovery of potential inhibitors for SARS-CoV and SARS-CoV-2 treatment.

Conclusion: The points highlighted here may prove to be a vital tool for medicinal chemists working/ investigating more potent and efficacious scaffolds in treating SARS-CoV and SARS-CoV-2.

Keywords: SARS-CoV, SARS-CoV-2, biological activity, structure-activity relationship, molecular docking, heterocyclic inhibitors.

Graphical Abstract
[1]
Woo, P.C.Y.; Huang, Y.; Lau, S.K.P.; Yuen, K.Y. Coronavirus genomics and bioinformatics analysis. Viruses, 2010, 2(8), 1804-1820.
[http://dx.doi.org/10.3390/v2081803] [PMID: 21994708]
[2]
Bemtgen, X.; Krüger, K.; Supady, A.; Duerschmied, D.; Schibilsky, D.; Bamberg, F.; Bode, C.; Wengenmayer, T.; Staudacher, D.L. First successful treatment of coronavirus disease 2019 induced refractory cardiogenic plus vasoplegic shock by combination of percutaneous ventricular assist device and extracorporeal membrane oxygenation: A case report. ASAIO J., 2020, 66(6), 607-609.
[http://dx.doi.org/10.1097/MAT.0000000000001178] [PMID: 32472827]
[3]
Khan, F.; Ghaffar, A.; Khan, N.; Cho, S.H. An overview of signal processing techniques for remote health monitoring using impulse radio UWB transceiver. Sensors (Basel), 2020, 20(9), 2479.
[http://dx.doi.org/10.3390/s20092479] [PMID: 32349382]
[4]
Tian, B.; Gao, F.; Fock, J.; Dufva, M.; Hansen, M.F. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens. Bioelectron., 2020, 165, 112356.
[http://dx.doi.org/10.1016/j.bios.2020.112356] [PMID: 32510339]
[5]
Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[6]
Hui, D.S.C.; Zumla, A. Severe acute respiratory syndrome: Historical, epidemiologic, and clinical features. Infect. Dis. Clin. North Am., 2019, 33(4), 869-889.
[http://dx.doi.org/10.1016/j.idc.2019.07.001] [PMID: 31668196]
[7]
Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003, Who.Int. 2020. Available from: https://www.who.int/publications/m/item/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003 (Accessed on: 10 November 2020).
[8]
Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; Berger, A.; Burguière, A.M.; Cinatl, J.; Eickmann, M.; Escriou, N.; Grywna, K.; Kramme, S.; Manuguerra, J.C.; Müller, S.; Rickerts, V.; Stürmer, M.; Vieth, S.; Klenk, H.D.; Osterhaus, A.D.M.E.; Schmitz, H.; Doerr, H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1967-1976.
[http://dx.doi.org/10.1056/NEJMoa030747] [PMID: 12690091]
[9]
Memish, Z.A.; Zumla, A.I.; Al-Hakeem, R.F.; Al-Rabeeah, A.A.; Stephens, G.M. Family cluster of Middle East respiratory syndrome coronavirus infections. N. Engl. J. Med., 2013, 368(26), 2487-2494.
[http://dx.doi.org/10.1056/NEJMoa1303729] [PMID: 23718156]
[10]
Azhar, E.I.; Hui, D.S.C.; Memish, Z.A.; Drosten, C.; Zumla, A. The Middle East Respiratory Syndrome (MERS). Infect. Dis. Clin. North Am., 2019, 33(4), 891-905.
[http://dx.doi.org/10.1016/j.idc.2019.08.001] [PMID: 31668197]
[11]
Liu, X.; Zhang, M.; He, L.; Li, Y. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database Syst. Rev., 2012, 10(10), CD004882.
[http://dx.doi.org/10.1002/14651858.CD004882.pub3] [PMID: 23076910]
[12]
Zhang, M.M.; Liu, X.M.; He, L. Effect of integrated traditional Chinese and Western medicine on SARS: A review of clinical evidence. World J. Gastroenterol., 2004, 10(23), 3500-3505.
[http://dx.doi.org/10.3748/wjg.v10.i23.3500] [PMID: 15526373]
[13]
Groot, R.J.D.; Ziebuhr, J.; Poon, L.; Woo, P.C.; Talbot, P.; Rottier, P.J.M.; Holmes, K.V.; Baric, R.; Perlman, S.; Enjuanes, L.; Gorbalenya, A.E. Revision of the family Coronaviridae. Inter. Comm. Taxo. Virus, 2008, 85-126.
[14]
Enjuanes, L.; Gorbalenya, A.E.; Groot, R.J.D.; Cowley, J.A.; Ziebuhr, J.; Snijder, E.J. The Nidovirales; Encyclo. Viro, 2008, pp. 419-430.
[15]
Perlman, S.; Gallagher, T.; Snijder, E. Nidoviruses; ASM Press: Washington, DC, 2008.
[16]
Crossley, B.M.; Mock, R.E.; Callison, S.A.; Hietala, S.K. Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E. Viruses, 2012, 4(12), 3689-3700.
[http://dx.doi.org/10.3390/v4123689] [PMID: 23235471]
[17]
Prentice, E.; McAuliffe, J.; Lu, X.; Subbarao, K.; Denison, M.R. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J. Virol., 2004, 78(18), 9977-9986.
[http://dx.doi.org/10.1128/JVI.78.18.9977-9986.2004] [PMID: 15331731]
[18]
Thiel, V.; Ivanov, K.A.; Putics, Á.; Hertzig, T.; Schelle, B.; Bayer, S.; Weißbrich, B.; Snijder, E.J.; Rabenau, H.; Doerr, H.W.; Gorbalenya, A.E.; Ziebuhr, J. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol., 2003, 84(Pt 9), 2305-2315.
[http://dx.doi.org/10.1099/vir.0.19424-0] [PMID: 12917450]
[19]
Xiao, X.; Dimitrov, D.S. The SARS-CoV S glycoprotein. Cell. Mol. Life Sci., 2004, 61(19-20), 2428-2430.
[http://dx.doi.org/10.1007/s00018-004-4257-y] [PMID: 15526150]
[20]
Bosch, B.J.; van der Zee, R.; de Haan, C.A.; Rottier, P.J.M. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol., 2003, 77(16), 8801-8811.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[21]
Liu, D.X.; Fung, T.S.; Chong, K.K.L.; Shukla, A.; Hilgenfeld, R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res., 2014, 109, 97-109.
[http://dx.doi.org/10.1016/j.antiviral.2014.06.013] [PMID: 24995382]
[22]
Narayanan, K.; Huang, C.; Makino, S. SARS coronavirus accessory proteins. Virus Res., 2008, 133(1), 113-121.
[http://dx.doi.org/10.1016/j.virusres.2007.10.009] [PMID: 18045721]
[23]
Hsu, Y. R.; Kang, Y. W.; Fang, J. Y.; Lee, G. Y.; Chyi, J. I.; Chang, C. K.; Huang, C. C.; Hsu, C. P.; Huang, T. H.; Huang, Y. F.; Sun, Y. C.; Hsu, C. H.; Chen, C. C.; Li, S. S.; Yeh, J. A.; Yao, D. J.; Ren, F.; Wang, Y. L. Investigation of Cterminal domain of SARS nucleocapsid protein-Duplex DNA interaction using transistors and binding-site models. Sens. Actuators B Chem., 2014, 193, 334-339.
[http://dx.doi.org/10.1016/j.snb.2013.11.087] [PMID: 32288246]
[24]
Long, C.; Xu, H.; Shen, Q.; Zhang, X.; Fan, B.; Wang, C.; Zeng, B.; Li, Z.; Li, X.; Li, H. Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT? Eur. J. Radiol., 2020, 126, 108961.
[http://dx.doi.org/10.1016/j.ejrad.2020.108961] [PMID: 32229322]
[25]
Zhong, Q.; Li, Z.; Shen, X.; Xu, K.; Shen, Y.; Fang, Q.; Chen, F.; Liang, T. CT imaging features of patients with different clinical types of coronavirus disease 2019 (COVID-19). Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(1), 198-202.
[PMID: 32207591]
[26]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[27]
WHO Coronavirus (COVID-19) Dashboard. 2021. Available from: https://covid19.who.int/ (Accessed on: 21 November 2021).
[28]
Fouchier, R.A.M.; Kuiken, T.; Schutten, M.; van Amerongen, G.; van Doornum, G.J.; van den Hoogen, B.G.; Peiris, M.; Lim, W.; Stöhr, K.; Osterhaus, A.D.M.E. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature, 2003, 423(6937), 240.
[http://dx.doi.org/10.1038/423240a] [PMID: 12748632]
[29]
Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020, 7(6), 1012-1023.
[http://dx.doi.org/10.1093/nsr/nwaa036] [PMID: 34676127]
[30]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[31]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[32]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[33]
Qian, Z.; Travanty, E.A.; Oko, L.; Edeen, K.; Berglund, A.; Wang, J.; Ito, Y.; Holmes, K.V.; Mason, R.J. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am. J. Respir. Cell Mol. Biol., 2013, 48(6), 742-748.
[http://dx.doi.org/10.1165/rcmb.2012-0339OC] [PMID: 23418343]
[34]
Alanagreh, L.; Alzoughool, F.; Atoum, M. The human coronavirus disease COVID-19: Its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens, 2020, 9(5), 331.
[http://dx.doi.org/10.3390/pathogens9050331] [PMID: 32365466]
[35]
Rafiq, D.; Batool, A.; Bazaz, M.A. Three months of COVID -19: A systematic review and meta-analysis. Rev. Med. Virol., 2020, 30(4), 2113.
[36]
Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, 5(4), 562-569.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[37]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[38]
Tong, T.R. Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infect. Disord. Drug Targets, 2009, 9(2), 223-245.
[http://dx.doi.org/10.2174/187152609787847659] [PMID: 19275708]
[39]
Rota, P.A.; Oberste, M.S.; Monroe, S.S.; Nix, W.A.; Campagnoli, R.; Icenogle, J.P.; Peñaranda, S.; Bankamp, B.; Maher, K.; Chen, M.H.; Tong, S.; Tamin, A.; Lowe, L.; Frace, M.; DeRisi, J.L.; Chen, Q.; Wang, D.; Erdman, D.D.; Peret, T.C.; Burns, C.; Ksiazek, T.G.; Rollin, P.E.; Sanchez, A.; Liffick, S.; Holloway, B.; Limor, J.; McCaustland, K.; Olsen-Rasmussen, M.; Fouchier, R.; Günther, S.; Osterhaus, A.D.; Drosten, C.; Pallansch, M.A.; Anderson, L.J.; Bellini, W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003, 300(5624), 1394-1399.
[http://dx.doi.org/10.1126/science.1085952] [PMID: 12730500]
[40]
Lu, R.; Wang, Y.; Wang, W.; Nie, K.; Zhao, Y.; Su, J.; Deng, Y.; Zhou, W.; Li, Y.; Wang, H.; Wang, W.; Ke, C.; Ma, X.; Wu, G.; Tan, W. Complete genome sequence of middle east respiratory syndrome coronavirus (MERS-CoV) from the first imported MERS-CoV case in China. Genome Announc., 2015, 3(4), 00818-15.
[http://dx.doi.org/10.1128/genomeA.00818-15] [PMID: 26272560]
[41]
Gao, F.; Ou, H.Y.; Chen, L.L.; Zheng, W.X.; Zhang, C.T. Prediction of proteinase cleavage sites in polyproteins of coronaviruses and its applications in analyzing SARS-CoV genomes. FEBS Lett., 2003, 553(3), 451-456.
[http://dx.doi.org/10.1016/S0014-5793(03)01091-3] [PMID: 14572668]
[42]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[43]
Li, W.; Zhang, C.; Sui, J.; Kuhn, J.H.; Moore, M.J.; Luo, S.; Wong, S.K.; Huang, I.C.; Xu, K.; Vasilieva, N.; Murakami, A.; He, Y.; Marasco, W.A.; Guan, Y.; Choe, H.; Farzan, M. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J., 2005, 24(8), 1634-1643.
[http://dx.doi.org/10.1038/sj.emboj.7600640] [PMID: 15791205]
[44]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol., 2021, 19(3), 155-170.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[45]
Brian, D.A.; Baric, R.S. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol., 2005, 287, 1-30.
[http://dx.doi.org/10.1007/3-540-26765-4_1] [PMID: 15609507]
[46]
Liu, Y.; Mao, B.; Liang, S.; Yang, J.W.; Lu, H.W.; Chai, Y.H.; Wang, L.; Zhang, L.; Li, Q.H.; Zhao, L.; He, Y.; Gu, X.L.; Ji, X.B.; Li, L.; Jie, Z.J.; Li, Q.; Li, X.Y.; Lu, H.Z.; Zhang, W.H.; Song, Y.L.; Qu, J.M.; Xu, J.F. Association between age and clinical characteristics and outcomes of COVID-19. Eur. Respir. J., 2020, 55(5), 2001112.
[http://dx.doi.org/10.1183/13993003.01112-2020] [PMID: 32312864]
[47]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165878.
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[48]
Banerjee, A.K.; Blanco, M.R.; Bruce, E.A.; Honson, D.D.; Chen, L.M.; Chow, A.; Bhat, P.; Ollikainen, N.; Quinodoz, S.A.; Loney, C.; Thai, J.; Miller, Z.D.; Lin, A.E.; Schmidt, M.M.; Stewart, D.G.; Goldfarb, D.; De Lorenzo, G.; Rihn, S.J.; Voorhees, R.M.; Botten, J.W.; Majumdar, D.; Guttman, M. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell, 2020, 183(5), 1325-1339.e21.
[http://dx.doi.org/10.1016/j.cell.2020.10.004] [PMID: 33080218]
[49]
Wang, M.Y.; Zhao, R.; Gao, L.J.; Gao, X.F.; Wang, D.P.; Cao, J.M. SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Front. Cell. Infect. Microbiol., 2020, 10, 587269.
[http://dx.doi.org/10.3389/fcimb.2020.587269] [PMID: 33324574]
[50]
Peng, Q.; Peng, R.; Yuan, B.; Zhao, J.; Wang, M.; Wang, X.; Wang, Q.; Sun, Y.; Fan, Z.; Qi, J.; Gao, G.F.; Shi, Y. Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Rep., 2020, 31(11), 107774.
[http://dx.doi.org/10.1016/j.celrep.2020.107774] [PMID: 32531208]
[51]
Ruan, Z.; Liu, C.; Guo, Y.; He, Z.; Huang, X.; Jia, X.; Yang, T. SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J. Med. Virol., 2021, 93(1), 389-400.
[http://dx.doi.org/10.1002/jmv.26222] [PMID: 32579254]
[52]
Thoms, M.; Buschauer, R.; Ameismeier, M.; Koepke, L.; Denk, T.; Hirschenberger, M.; Kratzat, H.; Hayn, M.; Mackens-Kiani, T.; Cheng, J.; Straub, J.H.; Stürzel, C.M.; Fröhlich, T.; Berninghausen, O.; Becker, T.; Kirchhoff, F.; Sparrer, K.M.J.; Beckmann, R. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science, 2020, 369(6508), 1249-1255.
[http://dx.doi.org/10.1126/science.abc8665] [PMID: 32680882]
[53]
Jamalipour Soufi, G.; Iravani, S. Potential inhibitors of SARS-CoV-2: Recent advances. J. Drug Target., 2021, 29(4), 349-364.
[http://dx.doi.org/10.1080/1061186X.2020.1853736] [PMID: 33210953]
[54]
Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020, 11(1), 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[55]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[56]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[57]
Liu, F.; Xu, A.; Zhang, Y.; Xuan, W.; Yan, T.; Pan, K.; Yu, W.; Zhang, J. Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of Eosinophil may predict the outcome of COVID-19 progression. Int. J. Infect. Dis., 2020, 95, 183-191.
[http://dx.doi.org/10.1016/j.ijid.2020.03.013] [PMID: 32173576]
[58]
The importance of heterocyclic compounds in anti-cancer drug design. Available from: https://www.ddw-online.com/therapeutics/p320375-the-importance-of-heterocycliccompounds-in-anti-cancer-drug-design.html (Accessed on: November 23, 2021).
[59]
Nile, S.H.; Nile, A.; Qiu, J.; Li, L.; Jia, X.; Kai, G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev., 2020, 53, 66-70.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002] [PMID: 32418715]
[60]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[61]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem., 2020, 27(27), 4536-4541.
[http://dx.doi.org/10.2174/0929867327666200416131117] [PMID: 32297571]
[62]
Ghosh, A.K.; Brindisi, M.; Shahabi, D.; Chapman, M.E.; Mesecar, A.D. Drug development and medicinal chemistry efforts toward SARS-Coronavirus and Covid-19 therapeutics. ChemMedChem, 2020, 15(11), 907-932.
[http://dx.doi.org/10.1002/cmdc.202000223] [PMID: 32324951]
[63]
Dabbous, H.M.; Abd-Elsalam, S.; El-Sayed, M.H.; Sherief, A.F.; Ebeid, F.F.S.; El Ghafar, M.S.A.; Soliman, S.; Elbahnasawy, M.; Badawi, R.; Tageldin, M.A. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch. Virol., 2021, 166(3), 949-954.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[64]
Abd-Elsalam, S.; Salama, M.; Soliman, S.; Naguib, A.M.; Ibrahim, I.S.; Torky, M.; El Ghafar, M.S.A.; Abdul-Baki, E.A.M.; Elhendawy, M.; Ibrahim, I.; Torky, M.; Dabbous, H.; El Ghafar, M.; Abdul-Baki, E.; Elhendawy, M. Remdesivir efficacy in COVID-19 treatment: A randomized controlled trial. Am. J. Trop. Med. Hyg., 2021, 106(3), 886-890.
[http://dx.doi.org/10.4269/ajtmh.21-0606] [PMID: 34649223]
[65]
Pruijssers, A.J.; Denison, M.R. Nucleoside analogues for the treatment of coronavirus infections. Curr. Opin. Virol., 2019, 35, 57-62.
[http://dx.doi.org/10.1016/j.coviro.2019.04.002] [PMID: 31125806]
[66]
Fung, J.; Lai, C.L.; Seto, W.K.; Yuen, M.F. Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B. J. Antimicrob. Chemother., 2011, 66(12), 2715-2725.
[http://dx.doi.org/10.1093/jac/dkr388] [PMID: 21965435]
[67]
Mohamed, A.A.; Mohamed, N.; Mohamoud, S.; Zahran, F.E.; Khattab, R.A.; El-Damasy, D.A.; Alsayed, E.; Abd-Elsalam, S. SARS-CoV-2: The path of prevention and control. Infect. Disord. Drug Targets, 2021, 21(3), 358-362.
[http://dx.doi.org/10.2174/1871526520666200520112848] [PMID: 32433010]
[68]
Mavel, S.; Renou, J.L.; Galtier, C.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Synthesis of imidazo[1,2-a]pyridine derivatives as antiviral agents. Arzneimittelforschung, 2001, 51(4), 304-309.
[PMID: 11367871]
[69]
Gueiffier, A.; Mavel, S.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.; Andrei, G.; Chavignon, O.; Teulade, J.C.; Witvrouw, M.; Balzarini, J.; De Clercq, E.; Chapat, J.P. Synthesis of imidazo[1,2-a]pyridines as antiviral agents. J. Med. Chem., 1998, 41(25), 5108-5112.
[http://dx.doi.org/10.1021/jm981051y] [PMID: 9836626]
[70]
Albratty, M.; El-Sharkawy, K.A.; Alhazmi, H.A. Synthesis and evaluation of some new 1,3,4-oxadiazoles bearing thiophene, thiazole, coumarin, pyridine and pyridazine derivatives as antiviral agents. Acta Pharm., 2019, 69(2), 261-276.
[http://dx.doi.org/10.2478/acph-2019-0015] [PMID: 31259726]
[71]
Wu, W.; Chen, Q.; Tai, A.; Jiang, G.; Ouyang, G. Synthesis and antiviral activity of 2-substituted methylthio-5-(4-amino-2-methylpyrimidin-5-yl)-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(10), 2243-2246.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.069] [PMID: 25900217]
[72]
Han, C.; Guo, Y.; Wang, D.; Dai, X.; Wu, F.; Liu, H.; Dai, G.; Tao, J. Novel pyrazole fused heterocyclic ligands: synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity. Chin. Chem. Lett., 2015, 26(5), 534-538.
[http://dx.doi.org/10.1016/j.cclet.2015.01.006]
[73]
Bernardino, A.M.; Azevedo, A.R.; Pinheiro, L.C.; Borges, J.C.; Paixão, I.C.; Mesquita, M.; Souza, T.M.; Dos Santos, M.S. Synthesis and anti-HSV-1 evaluation of new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines. Org. Med. Chem. Lett., 2012, 2(1), 3.
[http://dx.doi.org/10.1186/2191-2858-2-3] [PMID: 22373524]
[74]
Wei, Y.; Wang, H.; Xi, C.; Li, N.; Li, D.; Yao, C.; Sun, G.; Ge, H.; Hu, K.; Zhang, Q. Antiviral effects of novel 2-benzoxyl-phenylpyridine derivatives. Molecules, 2020, 25(6), 1409.
[http://dx.doi.org/10.3390/molecules25061409] [PMID: 32204528]
[75]
Amorim, R.; de Meneses, M.D.F.; Borges, J.C.; da Silva Pinheiro, L.C.; Caldas, L.A.; Cirne-Santos, C.C.; de Mello, M.V.P.; de Souza, A.M.T.; Castro, H.C.; de Palmer Paixão, I.C.N.; Campos, R.M.; Bergmann, I.E.; Malirat, V.; Bernardino, A.M.R.; Rebello, M.A.; Ferreira, D.F. Thieno[2,3-b]pyridine derivatives: A new class of antiviral drugs against Mayaro virus. Arch. Virol., 2017, 162(6), 1577-1587.
[http://dx.doi.org/10.1007/s00705-017-3261-0] [PMID: 28213871]
[76]
el-Sherbeny, M.A.; Gineinah, M.M.; Nasr, M.N.; el-Shafeih, F.S. Synthesis and biological evaluation of some quinazoline derivatives as antitumor and antiviral agents. Arzneimittelforschung, 2003, 53(3), 206-213.
[PMID: 12705177]
[77]
Fernández, G.A.; Castro, E.F.; Rosas, R.A.; Fidalgo, D.M.; Adler, N.S.; Battini, L.; España de Marco, M.J.; Fabiani, M.; Bruno, A.M.; Bollini, M.; Cavallaro, L.V. Design and optimization of quinazoline derivatives: New non-nucleoside inhibitors of bovine viral diarrhea virus. Front. Chem., 2020, 8, 590235.
[http://dx.doi.org/10.3389/fchem.2020.590235] [PMID: 33425849]
[78]
Giampieri, M.; Balbi, A.; Mazzei, M.; La Colla, P.; Ibba, C.; Loddo, R. Antiviral activity of indole derivatives. Antiviral Res., 2009, 83(2), 179-185.
[http://dx.doi.org/10.1016/j.antiviral.2009.05.001] [PMID: 19445965]
[79]
Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.065] [PMID: 25462257]
[80]
Srivastava, P.C.; Pickering, M.V.; Allen, L.B.; Streeter, D.G.; Campbell, M.T.; Witkowski, J.T.; Sidwell, R.W.; Robins, R.K. Synthesis and antiviral activity of certain thiazole C-nucleosides. J. Med. Chem., 1977, 20(2), 256-262.
[http://dx.doi.org/10.1021/jm00212a014] [PMID: 189032]
[81]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[82]
Dawar, M.; Utreja, D.; Rani, R.; Kaur, K. Synthesis and evaluation of isatin derivatives as antifungal agents. Lett. Org. Chem., 2020, 17(3), 199-205.
[http://dx.doi.org/10.2174/1570178616666190724120308]
[83]
Ali, E.M.H.; Abdel-Maksoud, M.S.; Oh, C.H. Thieno[2,3-d]pyrimidine as a promising scaffold in medicinal chemistry: Recent advances. Bioorg. Med. Chem., 2019, 27(7), 1159-1194.
[http://dx.doi.org/10.1016/j.bmc.2019.02.044] [PMID: 30826188]
[84]
Freidel, M.R.; Armen, R.S. Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening: Identification of an allosteric small-molecule binding site on the Nsp13 helicase. PLoS One, 2021, 16(2), e0246181.
[http://dx.doi.org/10.1371/journal.pone.0246181] [PMID: 33596235]
[85]
Kumar, R. 5-(1-Substituted) alkyl pyrimidine nucleosides as antiviral (herpes) agents. Curr. Med. Chem., 2004, 11(20), 2749-2766.
[http://dx.doi.org/10.2174/0929867043364388] [PMID: 15544474]
[86]
Holý, A.; Günter, J.; Dvoráková, H.; Masojídková, M.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E. Structure-antiviral activity relationship in the series of pyrimidine and purine N-[2-(2-phosphonomethoxy)ethyl] nucleotide analogues. 1. Derivatives substituted at the carbon atoms of the base. J. Med. Chem., 1999, 42(12), 2064-2086.
[http://dx.doi.org/10.1021/jm9811256] [PMID: 10377214]
[87]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[88]
Welker, A.; Kersten, C.; Müller, C.; Madhugiri, R.; Zimmer, C.; Müller, P.; Zimmermann, R.; Hammerschmidt, S.; Maus, H.; Ziebuhr, J.; Sotriffer, C.; Schirmeister, T. Structure-activity relationships of benzamides and isoindolines designed as SARS-CoV protease inhibitors effective against SARS-CoV-2. Chem-MedChem, 2021, 16(2), 340-354.
[http://dx.doi.org/10.1002/cmdc.202000548] [PMID: 32930481]
[89]
Csende, F.; Porkoláb, A. Antiviral activity of isoindole derivatives. J. Med. Chem. Sci., 2020, 3(3), 254-285.
[90]
Shaker, Y.M.; Omar, M.A.; Mahmoud, K.; Elhallouty, S.M.; El-Senousy, W.M.; Ali, M.M.; Mahmoud, A.E.; Abdel-Halim, A.H.; Soliman, S.M.; El Diwani, H.I. Synthesis, in vitro and in vivo antitumor and antiviral activity of novel 1-substituted benzimidazole derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 826-845.
[http://dx.doi.org/10.3109/14756366.2014.979344] [PMID: 25567722]
[91]
Kharb, R.; Shahar Yar, M.; Sharma, P.C. Recent advances and future perspectives of triazole analogs as promising antiviral agents. Mini Rev. Med. Chem., 2011, 11(1), 84-96.
[http://dx.doi.org/10.2174/138955711793564051] [PMID: 21034403]
[92]
El-Sayed, W.; Khalaf, H.; Mohamed, S.; Hussien, H.; Kutkat, O.; Amr, A. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russ. J. Gen. Chem., 2017, 87(10), 2444-2453.
[http://dx.doi.org/10.1134/S1070363217100279]
[93]
Mukherjee, P.; Shah, F.; Desai, P.; Avery, M. Inhibitors of SARS-3CLpro: virtual screening, biological evaluation, and molecular dynamics simulation studies. J. Chem. Inf. Model., 2011, 51(6), 1376-1392.
[http://dx.doi.org/10.1021/ci1004916] [PMID: 21604711]
[94]
Xia, R.; Guo, T.; Chen, M.; Su, S.; He, J.; Tang, X.; Jiang, S.; Xue, W. Synthesis, antiviral and antibacterial activities and action mechanism of penta-1,4-dien-3-one oxime ether derivatives containing a quinoxaline moiety. New J. Chem., 2019, 43(42), 16461-16467.
[http://dx.doi.org/10.1039/C9NJ03019K]
[95]
Carta, A.; Sanna, G.; Briguglio, I.; Madeddu, S.; Vitale, G.; Piras, S.; Corona, P.; Peana, A.T.; Laurini, E.; Fermeglia, M.; Pricl, S.; Serra, A.; Carta, E.; Loddo, R.; Giliberti, G. Quinoxaline derivatives as new inhibitors of coxsackievirus B5. Eur. J. Med. Chem., 2018, 145, 559-569.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.083] [PMID: 29339251]
[96]
Conti, C.; Desideri, N. New 4H-chromen-4-one and 2H-chromene derivatives as anti-picornavirus capsid-binders. Bioorg. Med. Chem., 2010, 18(17), 6480-6488.
[http://dx.doi.org/10.1016/j.bmc.2010.06.103] [PMID: 20673722]
[97]
Eldebss, M.A. T.; M. Farag, A.; M. Abdulla, M.; K. Arafa, R. Novel benzo[d]imidazole-based heterocycles as broad spectrum anti-viral agents: Design, synthesis and exploration of molecular basis of action. Mini Rev. Med. Chem., 2015, 16(1), 67-83.
[http://dx.doi.org/10.2174/138955751601151029115533] [PMID: 26527409]
[98]
Wang, C.; Song, Z.; Yu, H.; Liu, K.; Ma, X. Adenine: An important drug scaffold for the design of antiviral agents. Acta Pharm. Sin. B, 2015, 5(5), 431-441.
[http://dx.doi.org/10.1016/j.apsb.2015.07.002] [PMID: 26579473]
[99]
Sandholt, G. B.; Guðmundsdóttir, A.; Stefánsson, B. Peptides having protease activity for use in the treatment or prevention of coronavirus infection. W.O. Patent 2019135003A1, September 11, 2019.
[100]
Mettelman, R.; Mielech, A.; Baker, S.; Lager, K. M.; Deng, X.; Hackbart, M.; Obrien, A.; Faaberg, K. Coronaviruses, vaccines comprising the same, and methods for preventing disease. W.O. Patent 2018160977A1, September 7, 2018.
[101]
Turner, H.; Graham, B.; Corbett, K.; Ward, A.; Cottrell, C.; Mclellan, J.; Kanekiyo, M.; Wang, N.; Pallesen, J.; Joyce, M. G.; Yassine, H.; Kirchdoerfer, R. Prefusion coronavirus spike pro-teins and their use. W.O. Patent 2018081318A1, May 3, 2018.
[102]
Decaro, N.; Buonavoglia, C.; Martella, V.; Elia, G. Canine coronavirus vaccine. W.O. Patent 2013000905A1, January 3, 2013.
[103]
Kim, B.K. Coronavirus proteins and antigens. U.S. Patent 20190202868A1, July 4, 2019.
[104]
Baric, R.; Yount, B.; Agnihothram, S. Methods and compositions for chimeric coronavirus spike proteins. U.S. Patent 20170096455A1, February 6, 2018.
[105]
Agnihothram, S.; Yount, B.; Baric, R. Methods and compositions for coronavirus diagnos-tics and therapeutics. U.S. Patent 20160238601A1, August 18, 2016.
[106]
Brunn, A.V.; Naoumov, N. Compositions and methods for treating coronavirus infection. U.S. Patent 20160082074A1, August 16, 2016.
[107]
Frieman, M.; Hensley, L. E.; Jarhling, P. B. Methods of treating coronavirus infection. U.S. Patent 10434116B2, October 8, 2019.
[108]
Keep, S.; Bickerton, E.; Britton, P. Coronavirus. U.S. Patent 10130701B2, November 20, 2018.
[109]
Neyts, K.L.; Radtke, E. J.; Snijder, H.L.; Peters, JD. Jochmans. Design, synthesis and methods of use of acyclic fleximer nucleoside analogues having anti-coronavirus activity. U.S. Patent 10058516B2, August 28, 2018.
[110]
Kyratsous, C.; Sivapalasingam, S.; Stahl, N. Human antibodies to middle-east respiratory syndrome—coronavirus spike protein. U.S. Patent 9718872B2, August 1, 2017.
[111]
Xue, W.; Peters, C.M.; Trigo, E.; Mellencamp, M.W.; Wasmoen, T.L. Attenuated bovine coronavirus and related vaccines. E.P. Patent 3188750B1, March 11, 2017.
[112]
Perron, M.J. Methods of treating feline coronavirus infections. W.O. Patent 2018169946A1, September 20, 2018.
[113]
Radtke, K. L.; Jochmans, D.; Peters, H. L.; Snijder, E.J.; Neyts, J. Design synthesis and methods of use of acyclic fleximer nucleoside analogues having anti-coronavirus activity. W.O. Patent 2016123318A3, August 4, 2016.
[114]
Abd El-All, A.S.; Atta, S.M.S.; Roaiah, H.M.F.; Awad, E.M.; Abdalla, M.M. New potent SARS-CoV 3C-like protease inhibitors derived from thieno[2,3-d]-pyrimidine derivatives. Arch. Pharm. (Weinheim), 2016, 349(3), 202-210.
[http://dx.doi.org/10.1002/ardp.201500407] [PMID: 26806115]
[115]
Chuck, C.P.; Chen, C.; Ke, Z.; Wan, D.C.C.; Chow, H.F.; Wong, K.B. Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases. Eur. J. Med. Chem., 2013, 59, 1-6.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.053] [PMID: 23202846]
[116]
Cho, A.; Saunders, O.L.; Butler, T.; Zhang, L.; Xu, J.; Vela, J.E.; Feng, J.Y.; Ray, A.S.; Kim, C.U. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg. Med. Chem. Lett., 2012, 22(8), 2705-2707.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.105] [PMID: 22446091]
[117]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[118]
Galasiti Kankanamalage, A.C.; Kim, Y.; Damalanka, V.C.; Rathnayake, A.D.; Fehr, A.R.; Mehzabeen, N.; Battaile, K.P.; Lovell, S.; Lushington, G.H.; Perlman, S.; Chang, K.O.; Groutas, W.C. Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur. J. Med. Chem., 2018, 150(150), 334-346.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.004] [PMID: 29544147]
[119]
Nguyen, T.T.H.; Ryu, H.J.; Lee, S.H.; Hwang, S.; Breton, V.; Rhee, J.H.; Kim, D. Virtual screening identification of novel severe acute respiratory syndrome 3C-like protease inhibitors and in vitro confirmation. Bioorg. Med. Chem. Lett., 2011, 21(10), 3088-3091.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.034] [PMID: 21470860]
[120]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[121]
Karypidou, K.; Ribone, S.R.; Quevedo, M.A.; Persoons, L.; Pannecouque, C.; Helsen, C.; Claessens, F.; Dehaen, W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorg. Med. Chem. Lett., 2018, 28(21), 3472-3476.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.019] [PMID: 30286952]
[122]
Kim, Y.; Kankanamalage, A.C.G.; Damalanka, V.C.; Weerawarna, P.M.; Groutas, W.C.; Chang, K.O. Potent inhibition of enterovirus D68 and human rhinoviruses by dipeptidyl aldehydes and α-ketoamides. Antiviral Res., 2016, 125, 84-91.
[http://dx.doi.org/10.1016/j.antiviral.2015.11.010] [PMID: 26658373]
[123]
Kim, M.K.; Yu, M.S.; Park, H.R.; Kim, K.B.; Lee, C.; Cho, S.Y.; Kang, J.; Yoon, H.; Kim, D.E.; Choo, H.; Jeong, Y.J.; Chong, Y. 2,6-Bis-arylmethyloxy-5-hydroxychromones with antiviral activity against both hepatitis C virus (HCV) and SARS-associated coronavirus (SCV). Eur. J. Med. Chem., 2011, 46(11), 5698-5704.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.005] [PMID: 21925774]
[124]
Konno, H.; Wakabayashi, M.; Takanuma, D.; Saito, Y.; Akaji, K. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease. Bioorg. Med. Chem., 2016, 24(6), 1241-1254.
[http://dx.doi.org/10.1016/j.bmc.2016.01.052] [PMID: 26879854]
[125]
Konno, S.; Thanigaimalai, P.; Yamamoto, T.; Nakada, K.; Kakiuchi, R.; Takayama, K.; Yamazaki, Y.; Yakushiji, F.; Akaji, K.; Kiso, Y.; Kawasaki, Y.; Chen, S.E.; Freire, E.; Hayashi, Y. Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety. Bioorg. Med. Chem., 2013, 21(2), 412-424.
[http://dx.doi.org/10.1016/j.bmc.2012.11.017] [PMID: 23245752]
[126]
Konno, H.; Onuma, T.; Nitanai, I.; Wakabayashi, M.; Yano, S.; Teruya, K.; Akaji, K. Synthesis and evaluation of phenylisoserine derivatives for the SARS-CoV 3CL protease inhibitor. Bioorg. Med. Chem. Lett., 2017, 27(12), 2746-2751.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.056] [PMID: 28454669]
[127]
Kumar, V.; Tan, K.P.; Wang, Y.M.; Lin, S.W.; Liang, P.H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem., 2016, 24(13), 3035-3042.
[http://dx.doi.org/10.1016/j.bmc.2016.05.013] [PMID: 27240464]
[128]
Lee, H.; Mittal, A.; Patel, K.; Gatuz, J.L.; Truong, L.; Torres, J.; Mulhearn, D.C.; Johnson, M.E. Identification of novel drug scaffolds for inhibition of SARS-CoV 3-Chymotrypsin-like protease using virtual and high-throughput screenings. Bioorg. Med. Chem., 2014, 22(1), 167-177.
[http://dx.doi.org/10.1016/j.bmc.2013.11.041] [PMID: 24332657]
[129]
Liu, W.; Zhu, H.M.; Niu, G.J.; Shi, E.Z.; Chen, J.; Sun, B.; Chen, W.Q.; Zhou, H.G.; Yang, C. Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem., 2014, 22(1), 292-302.
[http://dx.doi.org/10.1016/j.bmc.2013.11.028] [PMID: 24316352]
[130]
Mandadapu, S.R.; Weerawarna, P.M.; Prior, A.M.; Uy, R.A.Z.; Aravapalli, S.; Alliston, K.R.; Lushington, G.H.; Kim, Y.; Hua, D.H.; Chang, K.O.; Groutas, W.C. Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Bioorg. Med. Chem. Lett., 2013, 23(13), 3709-3712.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.021] [PMID: 23727045]
[131]
Ohnishi, K.; Hattori, Y.; Kobayashi, K.; Akaji, K. Evaluation of a non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold as a SARS 3CL protease inhibitor. Bioorg. Med. Chem., 2019, 27(2), 425-435.
[http://dx.doi.org/10.1016/j.bmc.2018.12.019] [PMID: 30558861]
[132]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[133]
Prior, A.M.; Kim, Y.; Weerasekara, S.; Moroze, M.; Alliston, K.R.; Uy, R.A.Z.; Groutas, W.C.; Chang, K.O.; Hua, D.H. Design, synthesis, and bioevaluation of viral 3C and 3C-like protease inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(23), 6317-6320.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.070] [PMID: 24125888]
[134]
Ramajayam, R.; Tan, K.P.; Liu, H.G.; Liang, P.H. Synthesis, docking studies, and evaluation of pyrimidines as inhibitors of SARS-CoV 3CL protease. Bioorg. Med. Chem. Lett., 2010, 20(12), 3569-3572.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.118] [PMID: 20494577]
[135]
Shimamoto, Y.; Hattori, Y.; Kobayashi, K.; Teruya, K.; Sanjoh, A.; Nakagawa, A.; Yamashita, E.; Akaji, K. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors. Bioorg. Med. Chem., 2015, 23(4), 876-890.
[http://dx.doi.org/10.1016/j.bmc.2014.12.028] [PMID: 25614110]
[136]
Sun, Y.; Zhang, N.; Wang, J.; Guo, Y.; Sun, B.; Liu, W.; Zhou, H.; Yang, C. Synthesis and biological evaluation of quinolinone compounds as SARS CoV 3CLpro inhibitors. Chin. J. Chem., 2013, 31(9), 1199-1206.
[PMID: 32313409]
[137]
Teruya, K.; Hattori, Y.; Shimamoto, Y.; Kobayashi, K.; Sanjoh, A.; Nakagawa, A.; Yamashita, E.; Akaji, K. Structural basis for the development of SARS 3CL protease inhibitors from a peptide mimic to an aza-decaline scaffold. Biopolymers, 2016, 106(4), 391-403.
[http://dx.doi.org/10.1002/bip.22773] [PMID: 26572934]
[138]
Thanigaimalai, P.; Konno, S.; Yamamoto, T.; Koiwai, Y.; Taguchi, A.; Takayama, K.; Yakushiji, F.; Akaji, K.; Chen, S.E.; Naser-Tavakolian, A.; Schön, A.; Freire, E.; Hayashi, Y. Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: Design, synthesis, biological evaluation, and docking studies. Eur. J. Med. Chem., 2013, 68, 372-384.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.037] [PMID: 23994330]
[139]
Thanigaimalai, P.; Konno, S.; Yamamoto, T.; Koiwai, Y.; Taguchi, A.; Takayama, K.; Yakushiji, F.; Akaji, K.; Kiso, Y.; Kawasaki, Y.; Chen, S.E.; Naser-Tavakolian, A.; Schön, A.; Freire, E.; Hayashi, Y. Design, synthesis, and biological evaluation of novel dipeptide-type SARS-CoV 3CL protease inhibitors: Structure-activity relationship study. Eur. J. Med. Chem., 2013, 65, 436-447.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.005] [PMID: 23747811]
[140]
Turlington, M.; Chun, A.; Tomar, S.; Eggler, A.; Grum-Tokars, V.; Jacobs, J.; Daniels, J.S.; Dawson, E.; Saldanha, A.; Chase, P.; Baez-Santos, Y.M.; Lindsley, C.W.; Hodder, P.; Mesecar, A.D.; Stauffer, S.R. Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: Identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett., 2013, 23(22), 6172-6177.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.112] [PMID: 24080461]
[141]
Wang, L.; Bao, B.B.; Song, G.Q.; Chen, C.; Zhang, X.M.; Lu, W.; Wang, Z.; Cai, Y.; Li, S.; Fu, S.; Song, F.H.; Yang, H.; Wang, J.G. Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: Chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study. Eur. J. Med. Chem., 2017, 137(8), 450-461.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.045] [PMID: 28624700]
[142]
Yang, C.W.; Lee, Y.Z.; Kang, I.J.; Barnard, D.L.; Jan, J.T.; Lin, D.; Huang, C.W.; Yeh, T.K.; Chao, Y.S.; Lee, S.J. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res., 2010, 88(2), 160-168.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.009] [PMID: 20727913]
[143]
Yoshizawa, S.I.; Hattori, Y.; Kobayashi, K.; Akaji, K. Evaluation of an octahydroisochromene scaffold used as a novel SARS 3CL protease inhibitor. Bioorg. Med. Chem., 2020, 28(4), 115273.
[http://dx.doi.org/10.1016/j.bmc.2019.115273] [PMID: 31926775]
[144]
Dai, W.; Jochmans, D.; Xie, H.; Yang, H.; Li, J.; Su, H.; Chang, D.; Wang, J.; Peng, J.; Zhu, L.; Nian, Y.; Hilgenfeld, R.; Jiang, H.; Chen, K.; Zhang, L.; Xu, Y.; Neyts, J.; Liu, H. Design, synthesis, and biological evaluation of peptidomimetic aldehydes as broad-spectrum inhibitors against enterovirus and SARS-Cov-2. J. Med. Chem., 2022, 65(4), 2794-2808.
[PMID: 33872498]
[145]
Pfizer initiates phase 1 study of novel oral antiviral therapeutic agent against SARS-CoV-2. Available from: https://www.linkedin.com/pulse/pfizer-initiates-phase-1-study-novel-oral-antiviral-agent-barhate (Accessed on: Nov 24, 2021).
[146]
Zhao, Y.; Fang, C.; Zhang, Q.; Zhang, R.; Zhao, X.; Duan, Y.; Wang, H.; Zhu, Y.; Feng, L.; Zhao, J.; Shao, M.; Yang, X.; Zhang, L.; Peng, C.; Yang, K.; Ma, D.; Rao, Z.; Yang, H. Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein Cell, 2021, 1-5.
[http://dx.doi.org/10.1007/s13238-021-00883-2] [PMID: 34687004]
[147]
Painter, W.P.; Holman, W.; Bush, J.A.; Almazedi, F.; Malik, H.; Eraut, N.C.J.E.; Morin, M.J.; Szewczyk, L.J.; Painter, G.R. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARSCoV-2. Antimicrob. Agents Chemother., 2021, 65(5), AAC.02428-20.
[http://dx.doi.org/10.1128/AAC.02428-20] [PMID: 33649113]
[148]
Merck and Ridgeback Biotherapeutics Provide Update on Progress of Clinical Development Program for Molnupiravir, an Investigational Oral Therapeutic for the Treatment of Mild-to-ModerateCOVID-19 - Merck. com. Available from: https://www.merck.com/news/merck-and-ridgeback-biotherapeutics-provide-update-on-progress-of-clinical-development-program-for-molnupiravir-an-investigational-oral-therapeutic-for-the-treatment-of-mild-to-moderate-covid-19/ (Accessed on: Nov 24, 2021).
[149]
Paymode, D.; Vasudevan, N.; Ahmad, S.; Kadam, A.; Cardoso, F.; Burns, J.; Cook, D.; Stringham, R.; Snead, D. Toward a practical, two-step process for molnupiravir: Direct hydroxamination of cytidine followed by selective esterification. Org. Process Res. Dev., 2021, 25(8), 1822-1830.
[http://dx.doi.org/10.1021/acs.oprd.1c00033]
[150]
Gediz Erturk, A.; Sahin, A.; Bati Ay, E.; Pelit, E.; Bagdatli, E.; Kulu, I.; Gul, M.; Mesci, S.; Eryilmaz, S.; Oba Ilter, S.; Yildirim, T. A multidisciplinary approach to coronavirus disease (COVID-19). Molecules, 2021, 26(12), 3526.
[http://dx.doi.org/10.3390/molecules26123526] [PMID: 34207756]
[151]
Cao, Y.C.; Deng, Q.X.; Dai, S.X. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis., 2020, 35, 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[152]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[153]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from middle east respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[154]
Lin, H.X.J.; Cho, S.; Meyyur Aravamudan, V.; Sanda, H.Y.; Palraj, R.; Molton, J.S.; Venkatachalam, I. Remdesivir in Coronavirus Disease 2019 (COVID-19) treatment: A review of evidence. Infection, 2021, 49(3), 401-410.
[http://dx.doi.org/10.1007/s15010-020-01557-7] [PMID: 33389708]
[155]
Veklury - European Medicines Agency. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/ (Accessed on: Nov 24, 2021).
[156]
Cusinato, J.; Cau, Y.; Calvani, A.; Mori, M. Repurposing drugs for the management of COVID-19. Expert Opin. Ther. Pat., 2020, 31(4), 295-307.
[157]
Schooley, R.T.; Carlin, A.F.; Beadle, J.R.; Valiaeva, N.; Zhang, X.Q.; Clark, A.E.; McMillan, R.E.; Leibel, S.L.; McVicar, R.N.; Xie, J.; Garretson, A.F.; Smith, V.I.; Murphy, J.; Hostetler, K.Y. Rethinking Remdesivir: Synthesis, antiviral activity, and pharmacokinetics of oral lipid prodrugs. Antimicrob. Agents Chemother., 2021, 65(10), e0115521.
[http://dx.doi.org/10.1128/AAC.01155-21] [PMID: 34310217]
[158]
Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent. Sci., 2020, 6(5), 672-683.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[159]
Winkler, A.M.; Koepsell, S.A. The use of convalescent plasma to treat emerging infectious diseases: Focus on Ebola virus disease. Curr. Opin. Hematol., 2015, 22(6), 521-526.
[http://dx.doi.org/10.1097/MOH.0000000000000191] [PMID: 26457963]
[160]
Wang, C.; Li, W.; Drabek, D.; Okba, N.; van Haperen, R.; Osterhaus, A.; van Kuppeveld, F.; Haagmans, B.; Grosveld, F.; Bosch, B. A human monoclonal antibody blocking SARS-Cov-2 infection. Nat. Commun., 2020, 11(1), 2251.
[http://dx.doi.org/10.1038/s41467-020-16256-y]
[161]
Both, L.; Banyard, A.C.; van Dolleweerd, C.; Wright, E.; Ma, J.K.; Fooks, A.R. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine, 2013, 31(12), 1553-1559.
[http://dx.doi.org/10.1016/j.vaccine.2013.01.025] [PMID: 23370150]
[162]
Deb, P.; Molla, M.M.A.; Saif-Ur-Rahman, K.M. An update to monoclonal antibody as therapeutic option against COVID-19. Biosafety and Health, 2021, 3(2), 87-91.
[http://dx.doi.org/10.1016/j.bsheal.2021.02.001] [PMID: 33585808]
[163]
DeFrancesco, L. COVID-19 antibodies on trial. Nat. Biotechnol., 2020, 38(11), 1242-1252.
[http://dx.doi.org/10.1038/s41587-020-0732-8] [PMID: 33087898]
[164]
ACTIV-5 / Big Effect Trial (BET-B) for the Treatment of COVID-19 - Full Text View - ClinicalTrials.gov. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04583969 (Accessed on: Nov 24, 2021).
[165]
Temesgen, Z.; Assi, M.; Shweta, F.N.U.; Vergidis, P.; Rizza, S.A.; Bauer, P.R.; Pickering, B.W.; Razonable, R.R.; Libertin, C.R.; Burger, C.D.; Orenstein, R.; Vargas, H.E.; Palraj, R.; Dababneh, A.S.; Chappell, G.; Chappell, D.; Ahmed, O.; Sakemura, R.; Durrant, C.; Kenderian, S.S.; Badley, A.D. GM-CSF neutralization with lenzilumab in severe COVID-19 pneumonia: A case-cohort study. Mayo Clin. Proc., 2020, 95(11), 2382-2394.
[http://dx.doi.org/10.1016/j.mayocp.2020.08.038] [PMID: 33153629]
[166]
GmbH, K. A Study to Assess the Efficacy and Safety of Gimsilumab in Subjects With Lung Injury or Acute Respiratory Distress Syndrome Secondary to COVID-19 (BREATHE). Available from: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-NCT04351243 (Accessed on: Nov 24, 2021).
[167]
Here’s How the AstraZeneca COVID-19 Vaccine Compares to Those Available in the U.S. 2021. Available from: https://www.prevention.com/health/a35118263/astrazeneca-vs-pfizervs-moderna-covid-19-vaccine/ (Accessed on: Nov 24, 2021).
[168]
Covid-19: China approves Sinopharm vaccine for general use. Available from: https://www.bbc.com/news/world-asia-china-55498197 (Accessed on: Nov 24, 2021).
[169]
U.S. Food & Drug Administration. Pfizer-BioNTech COVID-19 vaccine., 2020. Available from: https://www. fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/ (Accessed on: Nov 24, 2021).
[171]
[172]
Petter, E.; Mor, O.; Zuckerman, N.; Oz-Levi, D.; Younger, A.; Aran, D.; Erlich, Y. Initial real world evidence for lower viral load of individuals who have been vaccinated by Bnt162b2. medRxiv, 2021.
[http://dx.doi.org/10.1101/2021.02.08.21251329]
[173]
Huff, H.V.; Singh, A. Asymptomatic transmission during the coronavirus disease 2019 pandemic and implications for public health strategies. Clin. Infect. Dis., 2020, 71(10), 2752-2756.
[http://dx.doi.org/10.1093/cid/ciaa654] [PMID: 32463076]
[174]
Wang, R.; Chen, J.; Hozumi, Y.; Yin, C.; Wei, G.W. Decoding asymptomatic COVID-19 infection and transmission. J. Phys. Chem. Lett., 2020, 11(23), 10007-10015.
[http://dx.doi.org/10.1021/acs.jpclett.0c02765] [PMID: 33179934]
[175]
Chung, Y.H.; Beiss, V.; Fiering, S.N.; Steinmetz, N.F. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano, 2020, 14(10), 12522-12537.
[http://dx.doi.org/10.1021/acsnano.0c07197] [PMID: 33034449]
[176]
Liu, Y.; Wang, K.; Massoud, T.F.; Paulmurugan, R. SARS-CoV-2 vaccine development: An overview and perspectives. ACS Pharmacol. Transl. Sci., 2020, 3(5), 844-858.
[http://dx.doi.org/10.1021/acsptsci.0c00109] [PMID: 33062951]
[177]
Baxter, R.; Bartlett, J.; Fireman, B.; Lewis, E.; Klein, N.P. Effectiveness of vaccination during pregnancy to prevent infant pertussis. Pediatrics, 2017, 139(5), e20164091.
[http://dx.doi.org/10.1542/peds.2016-4091] [PMID: 28557752]
[178]
Summary of the Public Assessment Report for COVID-19 Vaccine Pfizer/BioNTech. Available from: https://www.gov.uk/government/publications/regulatory-approval-of-pfizer-biontech-vaccine-for-covid-19/summary-public-assessment-report-for-pfizerbiontech-covid-19-vaccine (Accessed on: Nov 24, 2021).
[179]
Food and Drug Administration. Fact sheet for healthcare providers administering vaccine (vaccination providers): Emergency use authorization (EUA) of the Janssen COVID-19 vaccine to prevent coronavirus disease 2019 (COVID-19). 2021. Available from: https://www.fda.gov/media/144637/download (Accessed on: Nov 24, 2021).
[180]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[181]
Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 2021, 384(5), 403-416.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[182]
Michael Greenwood, M. An Overview of the COVID-19 Vaccines., Available from: https://www.news-medical.net/health/An-Overview-of-the-SARS-CoV-2-Vaccines.aspx (accessed Nov 24, 2021).
[183]
Hu, X.; Valentin, A.; Cai, Y.; Dayton, F.; Rosati, M.; Ramírez-Salazar, E.G.; Kulkarni, V.; Broderick, K.E.; Sardesai, N.Y.; Wyatt, L.S.; Earl, P.L.; Moss, B.; Mullins, J.I.; Pavlakis, G.N.; Felber, B.K. DNA vaccine-induced long-lasting cytotoxic T cells targeting conserved elements of human immunodeficiency virus gag are boosted upon DNA or recombinant modified vaccinia Ankara vaccination. Hum. Gene Ther., 2018, 29(9), 1029-1043.
[http://dx.doi.org/10.1089/hum.2018.065] [PMID: 29869530]
[184]
National Institutes of Health | COVID-19 Vaccine Studies and Clinical Trials. Available from: https://covid19.nih.gov/treatments-and-vaccines/covid-19-vaccines (accessed Nov 24, 2021).
[185]
Wang, K.; Kang, S.; Tian, R.; Zhang, X.; Zhang, X.; Wang, Y. Imaging manifestations and diagnostic value of chest CT of coronavirus disease 2019 (COVID-19) in the Xiaogan area. Clin. Radiol., 2020, 75(5), 341-347.
[http://dx.doi.org/10.1016/j.crad.2020.03.004] [PMID: 32216961]
[186]
Pandey, L.M. Design of engineered surfaces for prospective detection of SARS-CoV-2 using quartz crystal microbalance-based techniques. Expert Rev. Proteomics, 2020, 17(6), 425-432.
[http://dx.doi.org/10.1080/14789450.2020.1794831] [PMID: 32654533]
[187]
Falzone, L.; Musso, N.; Gattuso, G.; Bongiorno, D.; Palermo, C.I.; Scalia, G.; Libra, M.; Stefani, S. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int. J. Mol. Med., 2020, 46(3), 957-964.
[http://dx.doi.org/10.3892/ijmm.2020.4673] [PMID: 32705153]
[188]
Versteeg, G.A.; Bredenbeek, P.J.; van den Worm, S.H.; Spaan, W.J. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology, 2007, 361(1), 18-26.
[http://dx.doi.org/10.1016/j.virol.2007.01.020] [PMID: 17316733]
[189]
Beisswenger, M.; Cabrele, C. Self-recognition behavior of a helix-loop-helix domain by a fragment scan. Biochim. Biophys. Acta, 2014, 1844(9), 1675-1683.
[http://dx.doi.org/10.1016/j.bbapap.2014.06.015] [PMID: 24981796]
[190]
Sawaya, M.R.; Sambashivan, S.; Nelson, R.; Ivanova, M.I.; Sievers, S.A.; Apostol, M.I.; Thompson, M.J.; Balbirnie, M.; Wiltzius, J.J.W.; McFarlane, H.T.; Madsen, A.Ø.; Riekel, C.; Eisenberg, D. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature, 2007, 447(7143), 453-457.
[http://dx.doi.org/10.1038/nature05695] [PMID: 17468747]
[191]
Cochran, A.G.; Skelton, N.J.; Starovasnik, M.A. Tryptophan zippers: stable, monomeric β -hairpins. Proc. Natl. Acad. Sci. USA, 2001, 98(10), 5578-5583.
[http://dx.doi.org/10.1073/pnas.091100898] [PMID: 11331745]
[192]
Zhang, S.M.; Liao, Y.; Neo, T.L.; Lu, Y.; Liu, D.X.; Vahlne, A.; Tam, J.P. Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein. Int. J. Biochem. Cell Biol., 2018, 101, 103-112.
[http://dx.doi.org/10.1016/j.biocel.2018.05.012] [PMID: 29800727]
[193]
Hsu, H.J.; Fischer, W.B. In silico investigations of possible routes of assembly of ORF 3a from SARS-CoV. J. Mol. Model., 2012, 18(2), 501-514.
[http://dx.doi.org/10.1007/s00894-011-1092-6] [PMID: 21541740]
[194]
Liang, X.; Li, Z.Y. Ion channels as antivirus targets. Virol. Sin., 2010, 25(4), 267-280.
[http://dx.doi.org/10.1007/s12250-010-3136-y] [PMID: 20960300]
[195]
Yu, X.; Chen, S.; Hou, P.; Wang, M.; Chen, Y.; Guo, D. VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability. Biochem. Biophys. Res. Commun., 2015, 459(2), 270-276.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.097] [PMID: 25732088]
[196]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[197]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. DAlbaiu, Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[198]
Hui, D.S. Epidemic and Emerging Coronaviruses (Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome). Clin. Chest Med., 2017, 38(1), 71-86.
[http://dx.doi.org/10.1016/j.ccm.2016.11.007] [PMID: 28159163]
[199]
Xu, J.; Zhao, S.; Teng, T.; Abdalla, A.E.; Zhu, W.; Xie, L.; Wang, Y.; Guo, X. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 2020, 12(2), 244.
[http://dx.doi.org/10.3390/v12020244] [PMID: 32098422]
[200]
Grubaugh, N.D.; Petrone, M.E.; Holmes, E.C. We shouldn’t worry when a virus mutates during disease outbreaks. Nat. Microbiol., 2020, 5(4), 529-530.
[http://dx.doi.org/10.1038/s41564-020-0690-4] [PMID: 32071422]
[201]
Daniloski, Z.; Guo, X.; Sanjana, N.E. The D614G mutation in SARS-CoV-2 Spike increases transduction of multiple human cell types. BioRxiv, 2020.
[202]
Korber, B.; Fischer, W.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Foley, B.; Giorgi, E.; Bhattacharya, T.; Parker, M.D.; Partridge, D.G.; Evans, C.M.; Freeman, T.M.; De Silva, T.I.; LaBranche, C.; Montefiori, D.C. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.29.069054]
[203]
Schwarz, S.; Wang, K.; Yu, W.; Sun, B.; Schwarz, W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res., 2011, 90(1), 64-69.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]
[204]
Burrell, C.J.; Howard, C.R.; Murphy, F.A. Laboratory diagnosis of virus diseases. Fenner and White's Medical Virol, 2017, 135-154.
[205]
Zhou, Y.; Yang, G.D.; Feng, K.; Huang, H.; Yun, Y.X.; Mou, X.Y.; Wang, L.F. Clinical features and chest CT findings of coronavirus disease 2019 in infants and young children. Zhongguo Dang Dai Er Ke Za Zhi, 2020, 22(3), 215-220.
[PMID: 32204756]
[206]
Poncette, A.S.; Mosch, L.; Spies, C.; Schmieding, M.; Schiefenhövel, F.; Krampe, H.; Balzer, F. Improvements in Patient Monitoring in the Intensive Care Unit: Survey Study. J. Med. Internet Res., 2020, 22(6), e19091.
[http://dx.doi.org/10.2196/19091] [PMID: 32459655]
[207]
Szunerits, S.; Nait Saada, T.; Meziane, D.; Boukherroub, R. Magneto optical nanostructures for viral sensing. Nanomaterials (Basel), 2020, 10(7), 1271.
[http://dx.doi.org/10.3390/nano10071271] [PMID: 32610549]
[208]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[209]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[210]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[211]
Kumar, V.; Jung, Y.S.; Liang, P.H. Anti-SARS coronavirus agents: A patent review (2008 - present). Expert Opin. Ther. Pat., 2013, 23(10), 1337-1348.
[http://dx.doi.org/10.1517/13543776.2013.823159] [PMID: 23905913]
[212]
Broadbent, A.J.; Boonnak, K.; Subbarao, K. Respiratory virus vaccines. Mucosal Immunol., 2015, 1129-1170.
[213]
Mahmoudi, M. Emerging biomolecular testing to assess risk of mortality from COVID-19 infection. Mol. Pharm., 2021, 18(2), 476-482.
[214]
Kumar, R.; Nagpal, S.; Kaushik, S.; Mendiratta, S. COVID-19 diagnostic approaches: Different roads to the same destination. Virusdisease, 2020, 31(2), 97-105.
[http://dx.doi.org/10.1007/s13337-020-00599-7] [PMID: 32656306]
[215]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[216]
Adem, S.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Ali, M. Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against CORONA. Preprints, 2020, 2020030333.
[217]
Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[218]
Kumar, V.; Dhanjal, J.K.; Kaul, S.C.; Wadhwa, R.; Sundar, D. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. J. Biomol. Struct. Dyn., 2021, 39(11), 3842-3854.
[http://dx.doi.org/10.1080/07391102.2020.1772108] [PMID: 32431217]
[219]
Liu, S.; Zheng, Q.; Wang, Z. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics, 2020, 36(11), 3295-3298.
[http://dx.doi.org/10.1093/bioinformatics/btaa224] [PMID: 32239142]
[220]
Ai, Y.; Yu, L.; Tan, X.; Chai, X.; Liu, S. Discovery of covalent ligands via noncovalent docking by dissecting covalent docking based on a “Steric-Clashes Alleviating Receptor (SCAR)” strategy. J. Chem. Inf. Model., 2016, 56(8), 1563-1575.
[http://dx.doi.org/10.1021/acs.jcim.6b00334] [PMID: 27411028]
[221]
Cheng, B.; Li, T. Discovery of alliin as a putative inhibitor of the main protease of SARS-CoV-2 by molecular docking. Biotechniques, 2020, 69(2), 108-112.
[http://dx.doi.org/10.2144/btn-2020-0038] [PMID: 32459144]
[222]
Kil, J.; Lobarinas, E.; Spankovich, C.; Griffiths, S.K.; Antonelli, P.J.; Lynch, E.D.; Le Prell, C.G. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 2017, 390(10098), 969-979.
[http://dx.doi.org/10.1016/S0140-6736(17)31791-9] [PMID: 28716314]
[223]
Welter, A. Benzisoselenazolonyl derivatives and processes for the treatment of rheumatic disease. U.S. Patent 4774252A, September 27;1988
[224]
Dickey, S.W.; Cheung, G.Y.C.; Otto, M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov., 2017, 16(7), 457-471.
[http://dx.doi.org/10.1038/nrd.2017.23] [PMID: 28337021]
[225]
Balakrishnan, V.; Lakshminarayanan, K. Screening of FDA approved drugs against COVID-19 main protease: Coronavirus disease. Int. J. Pept. Res. Ther., 2020, 27(1), 651-658.
[226]
Pathak, Y.; Mishra, A.; Tripathi, V. Rifampicin may be repurposed for COVID-19 treatment: Insights from an in-silico study. Research Square, 2020.
[227]
Khater, I.; Nassar, A. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Biochem. Biophys. Rep., 2021, 27, 101032.
[http://dx.doi.org/10.1016/j.bbrep.2021.101032] [PMID: 34099985]
[228]
Farag, A.; Wang, P.; Ahmed, M.; Sadek, H. Identification of FDA approved drugs targeting COVID-19 virus by structure-based drug repositioning (Version 2). ChemRxiv, 2020.
[229]
Pendyala, B.; Patras, A. In silico screening of food bioactive compounds to predict potential inhibitors Of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (Rdrp). ChemRxiv, 2020.
[230]
Mittal, L.; Kumari, A.; Srivastava, M.; Singh, M.; Asthana, S. Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. J. Biomol. Struct. Dyn., 2021, 39(10), 3662-3680.
[http://dx.doi.org/10.1080/07391102.2020.1768151] [PMID: 32396769]
[231]
Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M.M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J. Biomol. Struct. Dyn., 2021, 39(7), 2673-2678.
[http://dx.doi.org/10.1080/07391102.2020.1752802] [PMID: 32248766]
[232]
Gimeno, A.; Mestres-Truyol, J.; Ojeda-Montes, M.J.; Macip, G.; Saldivar-Espinoza, B.; Cereto-Massagué, A.; Pujadas, G.; Garcia-Vallvé, S. Prediction of novel inhibitors of the main protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition. Int. J. Mol. Sci., 2020, 21(11), 3793.
[http://dx.doi.org/10.3390/ijms21113793] [PMID: 32471205]
[233]
Panda, P.K.; Arul, M.N.; Patel, P.; Verma, S.K.; Luo, W.; Rubahn, H.G.; Mishra, Y.K.; Suar, M.; Ahuja, R. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci. Adv., 2020, 6(28), eabb8097.
[http://dx.doi.org/10.1126/sciadv.abb8097] [PMID: 32691011]
[234]
Bhardwaj, V.K.; Singh, R.; Sharma, J.; Rajendran, V.; Purohit, R.; Kumar, S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn., 2021, 39(10), 3449-3458.
[http://dx.doi.org/10.1080/07391102.2020.1766572] [PMID: 32397940]
[235]
Tonge, P.J. Drug-target kinetics in drug discovery. ACS Chem. Neurosci., 2018, 9(1), 29-39.
[http://dx.doi.org/10.1021/acschemneuro.7b00185] [PMID: 28640596]
[236]
Lu, H.; Tonge, P.J. Drug-target residence time: Critical information for lead optimization. Curr. Opin. Chem. Biol., 2010, 14(4), 467-474.
[http://dx.doi.org/10.1016/j.cbpa.2010.06.176] [PMID: 20663707]
[237]
Banerjee, R.; Perera, L.; Tillekeratne, L.M.V. Potential SARS-CoV-2 main protease inhibitors. Drug Discov. Today, 2021, 26(3), 804-816.
[http://dx.doi.org/10.1016/j.drudis.2020.12.005] [PMID: 33309533]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy