Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Serum Uric Acid Levels Are Associated With Macula Microvasculature Changes In Hypertensive White Matter Hyperintensity Patients

Author(s): Ruili Wei, Jianyang Xie, Fangxia Meng, Fangping He, Jiang Liu, Yitian Zhao* and Hui Liang*

Volume 20, Issue 1, 2023

Published on: 21 November, 2022

Page: [132 - 139] Pages: 8

DOI: 10.2174/1567202620666221027095220

open access plus

Abstract

Purpose: To characterize the macula microvasculature using fractal dimension (FD) in hypertensive white matter hyperintensity (WMH) participants and explore the association between the microvascular changes and serum uric acid levels.

Methods: Thirty-eight WMH participants were dementia and stroke-free, and 37 healthy controls were enrolled. Optical coherence tomographic angiography (OCTA) was used to image the superficial vascular complex (SVC), deep vascular complex (DVC), and inner vascular complex (IVC) in a 2.5-mm diameter concentric circle (excluding the foveal avascular zone FAZ). A commercial algorithm was used to quantify the complexity and density of the three capillary layers by fractal analysis.

Results: WMH participants showed significantly lower FD value in the SVC (P = 0.002), DVC (P < 0.001) and IVC (P = 0.012) macula microvasculature compared with control group. After adjusting for risk factors (hypertension, diabetes, age and gender) SVC (P = 0.035) and IVC (P = 0.030) significantly correlated with serum uric acid.

Conclusion: Serum uric acid levels are associated with microvascular changes in WMH. Fractal dimension based on OCTA imaging could help quantitatively characterize the macula microvasculature changes in WMH and may be a potential screening tool to detect serum uric acid level changes.

Keywords: Serum uric acid, macula, white matter hyperintensity, optical coherence tomography, Fazekas scale, microvasculature.

[1]
Mok VCT, Lam BYK, Wong A, Ko H, Markus HS, Wong LKS. Early-onset and delayed-onset poststroke dementia - revisiting the mechanisms. Nat Rev Neurol 2017; 13(3): 148-59.
[http://dx.doi.org/10.1038/nrneurol.2017.16] [PMID: 28211452]
[2]
Cai W, Duan XM, Liu Y, et al. Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway. BioMed Res Int 2017; 2017: 4391920.
[http://dx.doi.org/10.1155/2017/4391920] [PMID: 28116308]
[3]
Choi YJ, Yoon Y, Lee KY, et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J 2014; 28(7): 3197-204.
[http://dx.doi.org/10.1096/fj.13-247148] [PMID: 24652948]
[4]
Perlstein TS, Gumieniak O, Williams GH, et al. Uric acid and the development of hypertension: the normative aging study. Hypertension 2006; 48(6): 1031-6.
[http://dx.doi.org/10.1161/01.HYP.0000248752.08807.4c] [PMID: 17060508]
[5]
Nishio S, Maruyama Y, Sugano N, Hosoya T, Yokoo T, Kuriyama S. Gender interaction of uric acid in the development of hypertension. Clin Exp Hypertens 2018; 40(5): 446-51.
[http://dx.doi.org/10.1080/10641963.2017.1392556] [PMID: 29182449]
[6]
Nakanishi N, Okamoto M, Yoshida H, Matsuo Y, Suzuki K, Tatara K. Serum uric acid and risk for development of hypertension and impaired fasting glucose or Type II diabetes in Japanese male office workers. Eur J Epidemiol 2002; 18(6): 523-30.
[http://dx.doi.org/10.1023/A:1024600905574] [PMID: 12908717]
[7]
Vannorsdall TD, Jinnah HA, Gordon B, Kraut M, Schretlen DJ. Cerebral ischemia mediates the effect of serum uric acid on cognitive function. Stroke 2008; 39(12): 3418-20.
[http://dx.doi.org/10.1161/STROKEAHA.108.521591] [PMID: 18772442]
[8]
Heo SH, Lee SH. High levels of serum uric acid are associated with silent brain infarction. J Neurol Sci 2010; 297(1-2): 6-10.
[http://dx.doi.org/10.1016/j.jns.2010.07.007] [PMID: 20674933]
[9]
Verhaaren BFJ, Vernooij MW, Dehghan A, et al. The relation of uric acid to brain atrophy and cognition: the Rotterdam Scan Study. Neuroepidemiology 2013; 41(1): 29-34.
[http://dx.doi.org/10.1159/000346606] [PMID: 23548762]
[10]
Sun M-J, Li B-H, Long C-Y, et al. Association between serum uric acid levels and cerebral white matter lesions in Chinese individuals. Int J Neurosci 2016; 126(12): 1103-11.
[http://dx.doi.org/10.3109/00207454.2015.1128903]
[11]
Schretlen DJ, Inscore AB, Vannorsdall TD, et al. Serum uric acid and brain ischemia in normal elderly adults. Neurology 2007; 69(14): 1418-23.
[http://dx.doi.org/10.1212/01.wnl.0000277468.10236.f1] [PMID: 17909154]
[12]
Shih CY, Chen CY, Wen CJ, Liu HM, Kuo HK. Relationship between serum uric acid and cerebral white matter lesions in the elderly. Nutr Metab Cardiovasc Dis 2012; 22(2): 154-9.
[http://dx.doi.org/10.1016/j.numecd.2010.06.005] [PMID: 20708913]
[13]
London A, Benhar I, Schwartz M. The retina as a window to the brain from eye research to CNS disorders. Nat Rev Neurol 2013; 9(1): 44-53.
[http://dx.doi.org/10.1038/nrneurol.2012.227] [PMID: 23165340]
[14]
Savastano MC, Lumbroso B, Rispoli M. 2015.
[http://dx.doi.org/10.1097/IAE.0000000000000635]
[15]
Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133(1): 45-50.
[http://dx.doi.org/10.1001/jamaophthalmol.2014.3616] [PMID: 25317632]
[16]
Kaidonis G, Silva RA, Sanislo SR, Leng T. The superficial and deep retinal capillary plexus in cases of fovea plana imaged by spectral domain optical coherence tomography angiography. Am J Ophthalmol Case Rep 2017; 6: 41-4.
[http://dx.doi.org/10.1016/j.ajoc.2016.09.007] [PMID: 29260054]
[17]
Patton N, Aslam T, MacGillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 2005; 206(4): 319-48.
[http://dx.doi.org/10.1111/j.1469-7580.2005.00395.x] [PMID: 15817102]
[18]
Qu M, Kwapong WR, Peng C, et al. Retinal sublayer defect is independently associated with the severity of hypertensive white matter hyperintensity. Brain Behav 2020; 2020: e01521.
[http://dx.doi.org/10.1002/brb3.1521]
[19]
Liew G, Baker ML, Wong TY, et al. Differing associations of white matter lesions and lacunar infarction with retinal microvascular signs. Int J Stroke 2014; 9(7): 921-5.
[http://dx.doi.org/10.1111/j.1747-4949.2012.00865.x] [PMID: 22988830]
[20]
Tak AZA, Sengul Y. Bilak Ş. Evaluation of white matter hyperintensities and retinal fiber layer, ganglion cell layer, inner-plexiform layer, and choroidal layer in migraine patients. Neurol Sci 2018; 39(3): 489-96.
[http://dx.doi.org/10.1007/s10072-017-3234-9] [PMID: 29302814]
[21]
Fitó M, Biosca C, Hernandez JM, Galimany R. Potential interfering substances on Falcor-600 and Dax-48 analytical systems. Eur J Clin Chem Clin Biochem 1997; 35(10): 787-92.
[PMID: 9368798]
[22]
Ma Y, Hao H, Xie J, et al. ROSE: A retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans Med Imaging 2021; 40(3): 928-39.
[http://dx.doi.org/10.1109/TMI.2020.3042802] [PMID: 33284751]
[23]
Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 2017; 7(1): 42201.
[http://dx.doi.org/10.1038/srep42201] [PMID: 28186181]
[24]
Wei R, Xie J, Wu H, et al. Superficial macula capillary complexity changes are associated with disability in neuromyelitis optica spectrum disorders. Front Neurol 2021; 12: 724946.
[http://dx.doi.org/10.3389/fneur.2021.724946] [PMID: 34630300]
[25]
Cabrera DeBuc D, Somfai GM, Koller A. Retinal microvascular network alterations: potential biomarkers of cerebrovascular and neural diseases. Am J Physiol Heart Circ Physiol 2017; 312(2): H201-12.
[http://dx.doi.org/10.1152/ajpheart.00201.2016] [PMID: 27923786]
[26]
McGrory S, Ballerini L, Doubal FN, et al. Retinal microvasculature and cerebral small vessel disease in the lothian birth cohort 1936 and mild stroke study. Sci Rep-Uk 2019; 9(1): 6320.
[http://dx.doi.org/10.1038/s41598-019-42534-x]
[27]
Ong YT, De Silva DA, Cheung CY, et al. Microvascular structure and network in the retina of patients with ischemic stroke. Stroke 2013; 44(8): 2121-7.
[http://dx.doi.org/10.1161/STROKEAHA.113.001741] [PMID: 23715958]
[28]
Wu H, Wang C, Chen C, et al. Association between retinal vascular geometric changes and cognitive impairment: a systematic review and meta analysis. J Clin Neurol 2020; 16(1): 19-28.
[http://dx.doi.org/10.3988/jcn.2020.16.1.19] [PMID: 31942754]
[29]
Mutlu U, Cremers LGM, de Groot M, et al. Retinal microvasculature and white matter microstructure. Neurology 2016; 87(10): 1003-10.
[http://dx.doi.org/10.1212/WNL.0000000000003080] [PMID: 27511186]
[30]
Hughes AD, Falaschetti E, Witt N, et al. Association of retinopathy and retinal microvascular abnormalities with stroke and cerebrovascular disease. Stroke 2016; 47(11): 2862-4.
[http://dx.doi.org/10.1161/STROKEAHA.116.014998] [PMID: 27729577]
[31]
van de Kreeke JA, Nguyen HT, Konijnenberg E, et al. Retinal and cerebral microvasculopathy: relationships and their genetic contributions. Invest Ophthalmol Vis Sci 2018; 59(12): 5025-31.
[http://dx.doi.org/10.1167/iovs.18-25341] [PMID: 30326071]
[32]
Gao Y, Kwapong WR, Zhang Y, et al. Retinal microvascular changes in white matter hyperintensities investigated by swept source optical coherence tomography angiography. BMC Ophthalmol 2022; 22(1): 77-7.
[http://dx.doi.org/10.1186/s12886-021-02143-7] [PMID: 35168582]
[33]
Peng C, Kwapong WR, Xu S, et al. Structural and microvascular changes in the macular are associated with severity of white matter lesions. Front Neurol 2020; 11: 521-1.
[http://dx.doi.org/10.3389/fneur.2020.00521] [PMID: 32714262]
[34]
Erskine L, Herrera E. Connecting the retina to the brain. ASN Neuro 2014; 6(6)
[http://dx.doi.org/10.1177/1759091414562107] [PMID: 25504540]
[35]
Kim M, Park KH, Kwon JW, Jeoung JW, Kim TW, Kim DM. Retinal nerve fiber layer defect and cerebral small vessel disease. Invest Ophthalmol Vis Sci 2011; 52(9): 6882-6.
[http://dx.doi.org/10.1167/iovs.11-7276] [PMID: 21791593]
[36]
Tak AZA, Sengul Y. Bilak Ş. Assessment of the outer retina and choroid in white matter lesions participants using swept-source optical coherence tomography. Brain Behav 2021; 11(8): e2240.
[http://dx.doi.org/10.1002/brb3.2240]
[37]
Newman EA. Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters. Philos T R Soc B 2014; 1672: 370.
[http://dx.doi.org/10.1098/rstb.2014.0195]
[38]
Palkovits S, Lasta M, Told R, et al. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker. Sci Rep-Uk 2015; 5: 18291.
[http://dx.doi.org/10.1038/srep18291]
[39]
Cheung N, Mosley T, Islam A, et al. Retinal microvascular abnormalities and subclinical magnetic resonance imaging brain infarct: a prospective study. Brain 2010; 133(7): 1987-93.
[http://dx.doi.org/10.1093/brain/awq127] [PMID: 20519327]
[40]
Lee J-Y, Kim JP, Jang H, et al. Optical coherence tomography angiography as a potential screening tool for cerebral small vessel diseases. Alzheimer's Res Ther 2020; 12(1): 73.
[http://dx.doi.org/10.1186/s13195-020-00638-x]

© 2024 Bentham Science Publishers | Privacy Policy