Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Lignin Reactions and Structural Alternations under Typical Biomass Pretreatment Methods

Author(s): Linjiang Zhu, Anjie Xu, Hui Zhang, Yuele Lu, Shijie Liu, Xiaolong Chen and Hanchi Chen*

Volume 23, Issue 20, 2019

Page: [2145 - 2154] Pages: 10

DOI: 10.2174/1385272823666190806100747

Price: $65

Abstract

The utilization of biomass in the production of renewable bioenergy and biomaterials has been a popular topic since the past decades as they are rich in carbohydrates. Most biomasses, such as wood, monocotyledons, and agriculture residues, need to be pretreated before the conversion of carbohydrates in order to break down the recalcitrant cell wall structure and increase the fiber accessibility. To date, a variety of pretreatment methods have been developed that vary from physical to chemical and biological methods. Pretreatment processes affect the cell wall physical structure as well as the chemical structure of the cell wall constituents. Comparing to the studies of the cellulose and hemicelluloses structural changes during pretreatment, such studies on lignin are relatively limited. On the other hand, in order to utilize the part of lignin from biorefinery processes, the understanding of the lignin structural changes during the refining process becomes important. In this study, typical pretreatment methods such as hydrothermal pretreatment, alkaline pretreatment, biodegradation, and oxidative pretreatment are introduced and their corresponding impacts on the lignin structures are reviewed.

Keywords: Biorefinery, pretreatment, lignin reaction, lignin structure, biodegradation, hemicelluloses.

Graphical Abstract
[1]
Nguyen, Q.; Bowyer, J.; Howe, J.; Bratkovich, S.; Groot, H.; Pepke, E.; Fernholz, K. Global production of second generation biofuels: Trends and influences. Accessed on: Available at: http://www.dovetailinc.org/report_pdfs/2017/dovetailbiofuels0117Pdf2017.
[2]
Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage., 2010, 51, 1412-1421.
[http://dx.doi.org/10.1016/j.enconman.2010.01.015]
[3]
Benner, R.; Fogel, M.L.; Sprague, E.K.; Hodson, R.E. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature, 1987, 329, 708-710.
[http://dx.doi.org/10.1038/329708a0]
[4]
Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev., 2010, 14, 578-597.
[http://dx.doi.org/10.1016/j.rser.2009.10.003]
[5]
Jeoh, T.; Ishizawa, C.I.; Davis, M.F.; Himmel, M.E.; Adney, W.S.; Johnson, D.K. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng., 2007, 98(1), 112-122.
[http://dx.doi.org/10.1002/bit.21408] [PMID: 17335064]
[6]
Mosier, N.S.; Hendrickson, R.; Brewer, M.; Ho, N.; Sedlak, M.; Dreshel, R.; Welch, G.; Dien, B.S.; Aden, A.; Ladisch, M.R. Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl. Biochem. Biotechnol., 2005, 125(2), 77-97.
[http://dx.doi.org/10.1385/ABAB:125:2:077] [PMID: 15858233]
[7]
Zhu, J.Y. Physical pretreatment - woody biomass size reduction - for forest biorefinery. ACS Symp. Ser; , 2011, 1067, pp. 89-107.
[http://dx.doi.org/10.1021/bk-2011-1067.ch004]
[8]
Selig, M.J.; Vinzant, T.B.; Himmel, M.E.; Decker, S.R. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol., 2009, 155(1-3), 397-406.
[http://dx.doi.org/10.1007/s12010-008-8511-x] [PMID: 19214798]
[9]
Yan, J.; Joshee, N.; Liu, S. Utilization of hardwood in biorefinery: A kinetic interpretation of pilot-scale hot-water pretreatment of Paulownia elongata woodchips. J. Biobased Mater. Bioenergy, 2006, 10, 339-348.
[http://dx.doi.org/10.1166/jbmb.2016.1609]
[10]
Banerjee, G.; Car, S.; Scott-Craig, J.S.; Borrusch, M.S.; Walton, J.D. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol. Biofuels, 2010, 3, 22.
[http://dx.doi.org/10.1186/1754-6834-3-22] [PMID: 20939889]
[11]
Okano, K.; Kitagawa, M.; Sasaki, Y.; Watanabe, T. Conversion of japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Anim. Feed Sci. Technol., 2005, 120(3-4), 235-243.
[12]
Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 2009, 48, 3713-3729.
[http://dx.doi.org/10.1016/j.anifeedsci.2005.02.03]
[13]
Sjoström, E. Wood chemistry fundamentals and applications. In: ; Academic Press: New York, 1993.
[14]
Lora, J.H.; Glasser, W.G. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. J. Polym. Environ., 2002, 10, 39-48.
[http://dx.doi.org/10.1023/A:1021070006895]
[15]
Chen, H.; Qu, X.; Liu, N.; Wang, S.; Chen, X.; Liu, S. Study of the adsorption process of heavy metals cations on Kraft lignin. Chem. Eng. Res. Des., 2018, 139, 248-258.
[http://dx.doi.org/10.1016/j.cherd.2018.09.028]
[16]
Zhang, Z.; Zhang, Y.; Lin, Z.; Mulyadi, A.; Mu, W.; Deng, Y. Butyric anhydride modified lignin and its oil-water interfacial properties. Chem. Eng. Sci., 2017, 165, 55-64.
[http://dx.doi.org/10.1016/j.ces.2017.02.025]
[17]
Yang, W.; Owczarek, J.S.; Fortunati, E.; Kozanecki, M.; Mazzaglia, A.; Balestra, G.M.; Kenny, J.M.; Torre, L.; Puglia, D. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind. Crops Prod., 2016, 94, 800-811.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.061]
[18]
Froass, P.M.; Ragauskas, A.J.; Jiang, J.E. Chemical structure of residual lignin from kraft pulp. J. Wood Chem. Technol., 1996, 16, 347-365.
[http://dx.doi.org/10.1080/02773819608545820]
[19]
Chakar, F.S.; Ragauskas, A.J. Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod., 2004, 20, 131-141.
[http://dx.doi.org/10.1016/j.indcrop.2004.04.016]
[20]
Hamelinck, C.N.; Van Hooijdonk, G.; Faaij, A.P. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle-and long-term. Biomass Bioenergy, 2005, 28, 384-410.
[http://dx.doi.org/10.1016/j.biombioe.2004.09.002]
[21]
Lee, J.M.; Jameel, H.; Venditti, R.A. A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresour. Technol., 2010, 101(14), 5449-5458.
[http://dx.doi.org/10.1016/j.biortech.2010.02.055] [PMID: 20223654]
[22]
Zhou, S.; Wang, S.; Jin, S.; Li, F.; Zhang, P.; Fan, S. A review of lignocellulose change during hydrothermal pretreatment for bioenergy production. Curr. Org. Chem., 2016, 20, 2799-2809.
[http://dx.doi.org/10.2174/1385272820666160513154113]
[23]
van Hazendonk, J.M.; Reinerik, E.J.; de Waard, P.; van Dam, J.E. Structural analysis of acetylated hemicellulose polysaccharides from fibre flax (Linum usitatissimum L.). Carbohydr. Res., 1996, 291, 141-154.
[http://dx.doi.org/10.1016/S0008-6215(96)00160-7]
[24]
Garrote, G. DomíNguez, H.; Parajó, J. C. Interpretation of deacetylation and hemicellulose hydrolysis during hydrothermal treatments on the basis of the severity factor. Process Biochem., 2002, 37, 1067-1073.
[http://dx.doi.org/10.1016/S0032-9592(01)00315-6]
[25]
Holopainen-Mantila, U.; Marjamaa, K.; Merali, Z.; Käsper, A.; de Bot, P.; Jääskeläinen, A.S.; Waldron, K.; Kruus, K.; Tamminen, T. Impact of hydrothermal pre-treatment to chemical composition, enzymatic digestibility and spatial distribution of cell wall polymers. Bioresour. Technol., 2013, 138, 156-162.
[http://dx.doi.org/10.1016/j.biortech.2013.03.152] [PMID: 23612175]
[26]
de O Buanafina. M.M.; Marcia, M. Feruloylation in grasses: Current and future perspectives. Mol. Plant, 2009, 2(5), 861-872.
[http://dx.doi.org/10.1093/mp/ssp067] [PMID: 19825663]
[27]
Chiang, V.L.; Funaoka, M. The dissolution and condensation reactions of guaiacyl and syringyl units in residual lignin during kraft delignification of sweetgum. Holzforschung, 1990, 44, 147-156.
[http://dx.doi.org/10.1515/hfsg.1990.44.2.147]
[28]
Amidon, T.E.; Liu, S. Water-based woody biorefinery. Biotechnol. Adv., 2009, 27(5), 542-550.
[http://dx.doi.org/10.1016/j.biotechadv.2009.04.012] [PMID: 19393733]
[29]
Pielhop, T.; Larrazábal, G.O.; Studer, M.H.; Brethauer, S.; Seidel, C.M.; von Rohr, P.R. Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation. Green Chem., 2015, 17, 3521-3532.
[http://dx.doi.org/10.1039/C4GC02381A]
[30]
Van Dyk, J.S.; Pletschke, B.I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy. Biotechnol. Adv., 2012, 30(6), 1458-1480.
[http://dx.doi.org/10.1016/j.biotechadv.2012.03.002] [PMID: 22445788]
[31]
Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol., 2005, 96(6), 673-686.
[http://dx.doi.org/10.1016/j.biortech.2004.06.025] [PMID: 15588770]
[32]
Yan, J.; Liu, S. Hot water pretreatment of boreal aspen woodchips in a pilot scale digester. Energies, 2015, 8, 1166-1180.
[http://dx.doi.org/10.3390/en8021166]
[33]
Martínez, J.M.; Reguant, J.; Montero, M.Á.; Montané, D.; Salvadó, J.; Farriol, X. Hydrolytic pretreatment of softwood and almond shells. degree of polymerization and enzymatic digestibility of the cellulose fraction. Ind. Eng. Chem. Res., 1997, 36, 688-696.
[http://dx.doi.org/10.1021/ie960048e]
[34]
Ruiz, H.A.; Ruzene, D.S.; Silva, D.P.; da Silva, F.F.; Vicente, A.A.; Teixeira, J.A. Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl. Biochem. Biotechnol., 2011, 164(5), 629-641.
[http://dx.doi.org/10.1007/s12010-011-9163-9] [PMID: 21274658]
[35]
da Silva Morais, A.P.; Sansígolo, C.A.; de Oliveira Neto, M. Effects of autohydrolysis of Eucalyptus urgrandis and Eucalyptus grandis on influence of chemical components and crystallinity index. Bioresour. Technol., 2016, 214, 623-628.
[http://dx.doi.org/10.1016/j.biortech.2016.04.124] [PMID: 27187566]
[36]
Chen, W.H.; Tu, Y.J.; Sheen, H.K. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. Int. J. Energy Res., 2010, 34, 265-274.
[http://dx.doi.org/10.1002/er.1566]
[37]
Chen, H.; Liu, S. A Kinetic Study of DDGS hemicellulose acid hydrolysis and NMR characterization of DDGS hydrolysate. Appl. Biochem. Biotechnol., 2015, 177(1), 162-174.
[http://dx.doi.org/10.1007/s12010-015-1735-7] [PMID: 26198022]
[38]
Hu, R.; Lin, L.; Liu, T.; Liu, S. Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure. Bioresour. Technol., 2010, 101(10), 3586-3594.
[http://dx.doi.org/10.1016/j.biortech.2010.01.005] [PMID: 20096570]
[39]
Zhou, C.H.; Xia, X.; Lin, C.X.; Tong, D.S.; Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev., 2011, 40(11), 5588-5617.
[http://dx.doi.org/10.1039/c1cs15124j] [PMID: 21863197]
[40]
Meshgini, M.; Sarkanen, K.V. Synthesis and kinetics of acid-catalyzed hydrolysis of some α-aryl ether lignin model compounds. Holzforschung, 1989, 43, 239-243.
[http://dx.doi.org/10.1515/hfsg.1989.43.4.239]
[41]
Overend, W.G.; Rees, C.W.; Sequeira, J.S. Reactions at position 1 of carbohydrates. Part III. The acid-catalysed hydrolysis of glycosides. J. Chem. Soc., 1962, 3429-3440.
[http://dx.doi.org/10.1039/jr9620003429]
[42]
Miles-Barrett, D.M.; Neal, A.R.; Hand, C.; Montgomery, J.R.D.; Panovic, I.; Ojo, O.S.; Lancefield, C.S.; Cordes, D.B.; Slawin, A.M.Z.; Lebl, T.; Westwood, N.J. The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins. Org. Biomol. Chem., 2016, 14(42), 10023-10030.
[http://dx.doi.org/10.1039/C6OB01915C] [PMID: 27725988]
[43]
Borrega, M.; Nieminen, K.; Sixta, H. Effects of hot water extraction in a batch reactor on the delignification of birch wood. BioResources, 2011, 6, 1890-1903.
[44]
Chen, H.; Liu, N.; Qu, X.; Joshee, N.; Liu, S. The effect of hot water pretreatment on the heavy metal adsorption capacity of acid insoluble lignin from Paulownia elongata. J. Chem. Technol. Biotechnol., 2017, 93, 1105-1112.
[http://dx.doi.org/10.1002/jctb.5469]
[45]
Toledano, A.; Serrano, L.; Labidi, J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel, 2014, 116, 617-624.
[http://dx.doi.org/10.1016/j.fuel.2013.08.071]
[46]
Shimada, K.; Hosoya, S.; Ikeda, T. Condensation reactions of softwood and hardwood lignin model compounds under organic acid cooking conditions. J. Wood Chem. Technol., 1997, 17, 57-72.
[http://dx.doi.org/10.1080/02773819708003118]
[47]
Hu, F.; Jung, S.; Ragauskas, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol., 2012, 117, 7-12.
[http://dx.doi.org/10.1016/j.biortech.2012.04.037] [PMID: 22609707]
[48]
Aarum, I.; Devle, H.; Ekeberg, D.; Horn, S.J.; Stenstrøm, Y. Characterization of pseudo-lignin from steam exploded birch. ACS Omega, 2018, 3, 4924-4931.
[http://dx.doi.org/10.1021/acsomega.8b00381]
[49]
Jakobsons, J.; Hortling, B.; Erins, P.; Sundquist, J. Characterization of alkali soluble fraction of steam exploded birch wood. Holzforschung, 1995, 49, 51-59.
[http://dx.doi.org/10.1515/hfsg.1995.49.1.51]
[50]
Sannigrahi, P.; Kim, D.H.; Jung, S.; Ragauskas, A. Pseudo-lignin and pretreatment chemistry. Energy Environ. Sci., 2011, 4, 1306-1310.
[http://dx.doi.org/10.1039/C0EE00378F]
[51]
Shinde, S.D.; Meng, X.; Kumar, R.; Ragauskas, A.J. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem., 2018, 20, 2192-2205.
[http://dx.doi.org/10.1039/C8GC00353J]
[52]
Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol., 2016, 199, 42-48.
[http://dx.doi.org/10.1016/j.biortech.2015.08.085] [PMID: 26341010]
[53]
Zhao, Y.; Wang, Y.; Zhu, J.Y.; Ragauskas, A.; Deng, Y. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol. Bioeng., 2008, 99(6), 1320-1328.
[http://dx.doi.org/10.1002/bit.21712] [PMID: 18023037]
[54]
Park, Y.C.; Kim, J.S. Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy, 2012, 47, 31-35.
[http://dx.doi.org/10.1016/j.energy.2012.08.010]
[55]
Yang, L.; Cao, J.; Jin, Y.; Chang, H.M.; Jameel, H.; Phillips, R.; Li, Z. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. Bioresour. Technol., 2012, 124, 283-291.
[http://dx.doi.org/10.1016/j.biortech.2012.08.041] [PMID: 22989656]
[56]
Kaar, W.E.; Holtzapple, M.T. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy, 2000, 18(3), 189-199.
[http://dx.doi.org/10.1016/S0961-9534(99)00091-4]
[57]
Dale, B.E.; Henk, L.L.; Shiang, M. Fermentation of lignocellulosic materials treated by ammonia freeze-explosion. Dev. Ind. Microbiol., 1984, 26, 223-233.
[58]
Alizadeh, H.; Teymouri, F.; Gilbert, T.I.; Dale, B.E. Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol., 2005, 121-124, 1133-1141.
[http://dx.doi.org/10.1385/ABAB:124:1-3:1133] [PMID: 15930586]
[59]
Teymouri, F.; Laureano-Pérez, L.; Alizadeh, H.; Dale, B.E. Ammonia fiber explosion treatment of corn stover. In: Proceedings the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals; Humana Press: Totowa, NJ, 2004; pp. 951-963.
[http://dx.doi.org/10.1007/978-1-59259-837-3_77]
[60]
Li, X.; Kim, T.H. Low-liquid pretreatment of corn stover with aqueous ammonia. Bioresour. Technol., 2011, 102(7), 4779-4786.
[http://dx.doi.org/10.1016/j.biortech.2011.01.008] [PMID: 21277772]
[61]
Gollapalli, L.E.; Dale, B.E.; Rivers, D.M. Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl. Biochem. Biotechnol., 2002, 98-100, 23-35.
[http://dx.doi.org/10.1385/ABAB:98-100:1-9:23] [PMID: 12018251]
[62]
Jin, Y.; Jameel, H.; Chang, H.M.; Phillips, R. Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed kraft pulp mill. J. Wood Chem. Technol., 2010, 30, 86-104.
[http://dx.doi.org/10.1080/02773810903578360]
[63]
Cruz, G.; Santiago, P.A.; Braz, C.E.M.; Seleghim, P.; Crnkovic, P.M. Investigation into the physical-chemical properties of chemically pretreated sugarcane bagasse. J. Therm. Anal. Calorim., 2018, 132, 1039-1053.
[http://dx.doi.org/10.1007/s10973-018-7041-1]
[64]
Silva, N.L.C.; Betancur, G.J.V.; Vasquez, M.P. Gomes, Ede. B.; Pereira, N. Jr. Ethanol production from residual wood chips of cellulose industry: Acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Appl. Biochem. Biotechnol., 2011, 163(7), 928-936.
[http://dx.doi.org/10.1007/s12010-010-9096-8] [PMID: 20890779]
[65]
Zhao, C.; Huang, J.; Yang, L.; Yue, F.; Lu, F. Revealing structural differences between alkaline and kraft lignins by HSQC NMR. Ind. Eng. Chem. Res., 2019, 58, 5707-5714.
[http://dx.doi.org/10.1021/acs.ieer.9600499]
[66]
Tarasov, D.; Leitch, M.; Fatehi, P. Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnol. Biofuels, 2018, 11, 269.
[http://dx.doi.org/10.1186/s13068-018-1262-1] [PMID: 30288174]
[67]
Carvalho, D.M.; Queiroz, J.H.Q.; Colodette, J.L. Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind. Crops Prod., 2016, 94, 932-941.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.069]
[68]
Scalbert, A.; Monties, B.; Lallemand, J.Y.; Guittet, E.; Rolando, C. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry, 1985, 24, 1359-1362.
[http://dx.doi.org/10.1016/S0031-9422(00)81133-4]
[69]
Isci, A.; Himmelsbach, J.N.; Pometto, A.L., III; Raman, D.R.; Anex, R.P. Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. Appl. Biochem. Biotechnol., 2008, 144(1), 69-77.
[http://dx.doi.org/10.1007/s12010-007-8008-z] [PMID: 18415988]
[70]
Kim, T.H.; Lee, Y.Y. Pretreatment of corn stover by soaking in aqueous ammonia. In: The Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals; Humana Press, 2005; pp. 1119-1131.
[http://dx.doi.org/10.1007/978-1-59259-991-2_93]
[71]
McIntosh, S.; Vancov, T. Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy, 2011, 35, 3094-3103.
[http://dx.doi.org/10.1016/j.biombioe.2011.04.018]
[72]
Gierer, J. The reactions of lignin during pulping. Sven. Papperstidn., 1970, 18, 571-596.
[73]
Buranov, A.U.; Mazza, G. Lignin in straw of herbaceous crops. Ind. Crops Prod., 2008, 28, 237-259.
[http://dx.doi.org/10.1016/j.indcrop.2008.03.008]
[74]
McGinnis, G.D.; Wilson, W.W.; Mullen, C.E. Biomass pretreatment with water and high-pressure oxygen. The wet-oxidation process. Ind. Eng. Chem. Prod. Res. Dev., 1983, 22, 352-357.
[http://dx.doi.org/10.1021/i300010a036]
[75]
Chang, V.S.; Nagwani, M.; Kim, C.H.; Holtzapple, M.T. Oxidative lime pretreatment of high-lignin biomass: Poplar wood and newspaper. Appl. Biochem. Biotechnol., 2001, 94(1), 1-28.
[http://dx.doi.org/10.1385/ABAB:94:1:01] [PMID: 11393353]
[76]
Ayeni, A.O.; Hymore, F.K.; Mudliar, S.N.; Deshmukh, S.C.; Satpute, D.B.; Omoleye, J.A.; Pandey, R.A. Hydrogen peroxide and lime based oxidative pretreatment of wood waste to enhance enzymatic hydrolysis for a biorefinery: Process parameters optimization using response surface methodology. Fuel, 2013, 106, 187-194.
[http://dx.doi.org/10.1016/j.fuel.2012.12.078]
[77]
Shi, J.; Chinn, M.S.; Sharma-Shivappa, R.R. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour. Technol., 2008, 99(14), 6556-6564.
[http://dx.doi.org/10.1016/j.biortech.2007.11.069] [PMID: 18242083]
[78]
Okano, K.; Kitagawa, M.; Sasaki, Y.; Watanabe, T. Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Anim. Feed Sci. Technol., 2005, 120, 235-243.
[http://dx.doi.org/10.1016/j.anifeedsci.2005.02.023]
[79]
Akin, D.E.; Rigsby, L.L.; Sethuraman, A.; Morrison, W.H., III; Gamble, G.R.; Eriksson, K.E. Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl. Environ. Microbiol., 1995, 61(4), 1591-1598.
[PMID: 7747973]
[80]
Ander, P.; Eriksson, K.E. Selective degradation of wood components by white‐rot fungi. Physiol. Plant., 1977, 41, 239-248.
[http://dx.doi.org/10.1111/j.1399-3054.1977.tb04877.x]
[81]
Wong, D.W. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol., 2009, 157(2), 174-209.
[http://dx.doi.org/10.1007/s12010-008-8279-z] [PMID: 18581264]
[82]
Kim, K.H.; Dutta, T.; Walter, E.D.; Isern, N.G.; Cort, J.R.; Simmons, B.A.; Singh, S. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization. ACS Sustain. Chem. Eng., 2017, 5, 3913-3919.
[http://dx.doi.org/10.1021/acssuschemeng.6b03102]
[83]
Zhu, H.; Areskogh, D.; Helander, M.; Henriksson, G. Investigation on enzymatic oxidative polymerization of technical soda lignin. Curr. Org. Chem., 2012, 16, 1850-1854.
[http://dx.doi.org/10.2174/138527212802651287]
[84]
Gold, M.H.; Alic, M. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev., 1993, 57(3), 605-622.
[PMID: 8246842]
[85]
Renganathan, V.; Gold, M.H. Spectral characterization of the oxidized states of lignin peroxidase, an extracellular heme enzyme from the white rot basidiomycete Phanerochaete chrysosporium. Biochemistry, 1986, 25, 1626-1631.
[http://dx.doi.org/10.1021/bi00355a027]
[86]
Wariishi, H.; Dunford, H.B.; MacDonald, I.D.; Gold, M.H. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J. Biol. Chem., 1989, 264(6), 3335-3340.
[PMID: 2914954]
[87]
Huang, H.; Zoppellaro, G.; Sakurai, T. Spectroscopic and kinetic studies on the oxygen-centered radical formed during the four-electron reduction process of dioxygen by Rhus vernicifera laccase. J. Biol. Chem., 1999, 274(46), 32718-32724.
[http://dx.doi.org/10.1074/jbc.274.46.32718] [PMID: 10551829]
[88]
Moreira, P.R.; Duez, C.; Dehareng, D.; Antunes, A.; Almeida-Vara, E.; Frère, J.M.; Malcata, F.X.; Duarte, J.C. Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J. Biotechnol., 2005, 118(4), 339-352.
[http://dx.doi.org/10.1016/j.jbiotec.2005.05.014] [PMID: 16026883]
[89]
Wong, C.M.; Wong, K.H.; Chen, X.D. Glucose oxidase: Natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol., 2008, 78(6), 927-938.
[http://dx.doi.org/10.1007/s00253-008-1407-4] [PMID: 18330562]
[90]
Carpenter, S.; Merkler, D.; Miller, D.; Mehta, N.; Consalvo, A. Glyoxylate assays and their use of inden tifying natural amidated compounds. U.S. Patent Application No. 11/654,211 2007.
[91]
Kersten, P.J.; Kalyanaraman, B.; Hammel, K.E.; Reinhammar, B.; Kirk, T.K. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J., 1990, 268(2), 475-480.
[http://dx.doi.org/10.1042/bj2680475] [PMID: 2163614]
[92]
Eggert, C.; Temp, U.; Dean, J.F.D.; Eriksson, K.E.L. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett., 1996, 391(1-2), 144-148.
[http://dx.doi.org/10.1016/0014-5793(96)00719-3] [PMID: 8706903]
[93]
Tuor, U.; Wariishi, H.; Schoemaker, H.E.; Gold, M.H. Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: Oxidative cleavage of an alpha-carbonyl model compound. Biochemistry, 1992, 31(21), 4986-4995.
[http://dx.doi.org/10.1021/bi00136a011] [PMID: 1599925]
[94]
Bao, W.; Fukushima, Y.; Jensen, K.A., Jr; Moen, M.A.; Hammel, K.E. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett., 1994, 354(3), 297-300.
[http://dx.doi.org/10.1016/0014-5793(94)01146-X] [PMID: 7957943]
[95]
Kawai, S.; Umezawa, T.; Higuchi, T. Degradation mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch. Biochem. Biophys., 1988, 262(1), 99-110.
[http://dx.doi.org/10.1016/0003-9861(88)90172-5] [PMID: 3355177]
[96]
Kawai, S.; Nakagawa, M.; Ohashi, H. Degradation mechanisms of a nonphenolic β-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole. Enzyme Microb. Technol., 2002, 30, 482-489.
[http://dx.doi.org/10.1016/S0141-0229(01)00523-3]
[97]
Li, C.; Wang, L.; Chen, Z.; Li, Y.; Wang, R.; Luo, X.; Cai, G.; Li, Y.; Yu, Q.; Lu, J. Ozonolysis pretreatment of maize stover: The interactive effect of sample particle size and moisture on ozonolysis process. Bioresour. Technol., 2015, 183, 240-247.
[http://dx.doi.org/10.1016/j.biortech.2015.01.042] [PMID: 25746300]
[98]
García-Cubero, M.A.; González-Benito, G.; Indacoechea, I.; Coca, M.; Bolado, S. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour. Technol., 2009, 100(4), 1608-1613.
[http://dx.doi.org/10.1016/j.biortech.2008.09.012] [PMID: 18951781]
[99]
Travaini, R.; Otero, M.D.M.; Coca, M.; Da-Silva, R.; Bolado, S. Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation. Bioresour. Technol., 2013, 133, 332-339.
[http://dx.doi.org/10.1016/j.biortech.2013.01.133] [PMID: 23434810]
[100]
Meza, P.R.; Felissia, F.E.; Area, M.C. Reduction of the recalcitrant COD of high yield pulp mills effluents by AOP. Part 1. Combination of ozone and activated sludge. BioResources, 2011, 6, 1053-1068.
[101]
Lotfi, S.; Boffito, D.C.; Patience, G.S. Gas-solid conversion of lignin to carboxylic acids. React. Chem. Eng., 2016, 1, 397-408.
[http://dx.doi.org/10.1039/C6RE00053C]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy