Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Review Article

Recognition Sites for Cancer-targeting Drug Delivery Systems

Author(s): Siyu Guan, Qianqian Zhang, Jianwei Bao, Rongfeng Hu, Tori Czech and Jihui Tang*

Volume 20, Issue 10, 2019

Page: [815 - 834] Pages: 20

DOI: 10.2174/1389200220666191003161114

Price: $65

Abstract

Background: Target-homing drug delivery systems are now gaining significant attention for use as novel therapeutic approaches in antitumor targeting for cancer therapy. Numerous targeted drug delivery systems have been designed to improve the targeting effects because these systems can display a range of favorable properties, thus, providing suitable characteristics for clinical applicability of anticancer drugs, such as increasing the solubility, and improving the drug distribution at target sites. The majority of these targeting systems are designed with respect to differences between cancerous and normal tissues, for instance, the low pH of tumor tissues or overexpressed receptors on tumor cell membranes. Due to the growing number of targeting possibilities, it is important to know the tumor-specific recognition strategies for designing novel, targeted, drug delivery systems. Herein, we identify and summarize literature pertaining to various recognition sites for optimizing the design of targeted drug delivery systems to augment current chemotherapeutic approaches.

Objective: This review focuses on the identification of the recognition sites for developing targeted drug delivery systems for use in cancer therapeutics.

Methods: We have reviewed and compiled cancer-specific recognition sites and their abnormal characteristics within tumor tissues (low pH, high glutathione, targetable receptors, etc.), tumor cells (receptor overexpression or tumor cell membrane changes) and tumor cell organelles (nuclear and endoplasmic reticular dysregulation) utilizing existing scientific literature. Moreover, we have highlighted the design of some targeted drug delivery systems that can be used as homing tools for these recognition sites.

Results and Conclusion: Targeted drug delivery systems are a promising therapeutic approach for tumor chemotherapy. Additional research focused on finding novel recognition sites, and subsequent development of targeting moieties for use with drug delivery systems will aid in the evaluation and clinical application of new and improved chemotherapeutics.

Keywords: Recognition sites, targeted drug delivery system, nanoparticles, tumor, ligand, targeting effects.

Graphical Abstract
[1]
Fitzmaurice, C.; Akinyemiju, T.F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; Anderson, B.O.; Aremu, O.; Artaman, A.; Asgedom, S.W.; Assadi, R.; Atey, T.M.; Avila-Burgos, L.; Awasthi, A.; Ba Saleem, H.O.; Barac, A.; Bennett, J.R.; Bensenor, I.M.; Bhakta, N.; Brenner, H.; Cahuana-Hurtado, L.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Choi, J.J.; Christopher, D.J.; Chung, S.C.; Curado, M.P.; Dandona, L.; Dandona, R. das Neves, J.; Dey, S.; Dharmaratne, S.D.; Doku, D.T.; Driscoll, T.R.; Dubey, M.; Ebrahimi, H.; Edessa, D.; El-Khatib, Z.; Endries, A.Y.; Fischer, F.; Force, L.M.; Foreman, K.J.; Gebrehiwot, S.W.; Gopalani, S.V.; Grosso, G.; Gupta, R.; Gyawali, B.; Hamadeh, R.R.; Hamidi, S.; Harvey, J.; Hassen, H.Y.; Hay, R.J.; Hay, S.I.; Heibati, B.; Hiluf, M.K.; Horita, N.; Hosgood, H.D.; Ilesanmi, O.S.; Innos, K.; Islami, F.; Jakovljevic, M.B.; Johnson, S.C.; Jonas, J.B.; Kasaeian, A.; Kassa, T.D.; Khader, Y.S.; Khan, E.A.; Khan, G.; Khang, Y.H.; Khosravi, M.H.; Khubchandani, J.; Kopec, J.A.; Kumar, G.A.; Kutz, M.; Lad, D.P.; Lafranconi, A.; Lan, Q.; Legesse, Y.; Leigh, J.; Linn, S.; Lunevicius, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mantovani, L.G.; McMahon, B.J.; Meier, T.; Melaku, Y.A.; Melku, M.; Memiah, P.; Mendoza, W.; Meretoja, T.J.; Mezgebe, H.B.; Miller, T.R.; Mohammed, S.; Mokdad, A.H.; Moosazadeh, M.; Moraga, P.; Mousavi, S.M.; Nangia, V.; Nguyen, C.T.; Nong, V.M.; Ogbo, F.A.; Olagunju, A.T.; Pa, M.; Park, E.K.; Patel, T.; Pereira, D.M.; Pishgar, F.; Postma, M.J.; Pourmalek, F.; Qorbani, M.; Rafay, A.; Rawaf, S.; Rawaf, D.L.; Roshandel, G.; Safiri, S.; Salimzadeh, H.; Sanabria, J.R.; Santric Milicevic, M.M.; Sartorius, B.; Satpathy, M.; Sepanlou, S.G.; Shackelford, K.A.; Shaikh, M.A.; Sharif-Alhoseini, M.; She, J.; Shin, M.J.; Shiue, I.; Shrime, M.G.; Sinke, A.H.; Sisay, M.; Sligar, A.; Sufiyan, M.B.; Sykes, B.L.; Tabarés-Seisdedos, R.; Tessema, G.A.; Topor-Madry, R.; Tran, T.T.; Tran, B.X.; Ukwaja, K.N.; Vlassov, V.V.; Vollset, S.E.; Weiderpass, E.; Williams, H.C.; Yimer, N.B.; Yonemoto, N.; Younis, M.Z.; Murray, C.J.L.; Naghavi, M. Global burden of disease cancer collaboration. global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 Cancer Groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncol., 2018, 4(11), 1553-1568.
[http://dx.doi.org/10.1001/jamaoncol.2018.2706] [PMID: 29860482]
[2]
Utreja, P.; Jain, S.; Tiwary, A.K. Novel drug delivery systems for sustained and targeted delivery of anti- cancer drugs: Current status and future prospects. Curr. Drug Deliv., 2010, 7(2), 152-161.
[http://dx.doi.org/10.2174/156720110791011783] [PMID: 20158482]
[3]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[4]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[5]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[6]
Kaewkorn, W.; Limpeanchob, N.; Tiyaboonchai, W.; Pongcharoen, S.; Sutheerawattananonda, M. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells. Biol. Res., 2012, 45(1), 45-50.
[http://dx.doi.org/10.4067/S0716-97602012000100006] [PMID: 22688983]
[7]
Srinivasarao, M.; Galliford, C.V.; Low, P.S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov., 2015, 14(3), 203-219.
[http://dx.doi.org/10.1038/nrd4519] [PMID: 25698644]
[8]
Lin, G.; Keshari, K.R.; Park, J.M. Cancer metabolism and tumor heterogeneity: Imaging perspectives using MR imaging and spectroscopy. Contrast Media Mol. Imaging, 2017, 2017(7)6053879
[http://dx.doi.org/10.1155/2017/6053879] [PMID: 29114178]
[9]
Souho, T.; Lamboni, L.; Xiao, L.; Yang, G. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnol. Adv., 2018, 36(7), 1928-1945.
[http://dx.doi.org/10.1016/j.biotechadv.2018.08.001] [PMID: 30077715]
[10]
Bissell, M.J.; Hines, W.C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med., 2011, 17(3), 320-329.
[http://dx.doi.org/10.1038/nm.2328] [PMID: 21383745]
[11]
Lee, E.S.; Oh, K.T.; Kim, D.; Youn, Y.S.; Bae, Y.H. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). J. Control. Release, 2007, 123(1), 19-26.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.006] [PMID: 17826863]
[12]
Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Synthesis and in vitro characterization of carboxymethyl Chitosan-CBA-Doxorubicin conjugate nanoparticles as ph-sensitive drug delivery systems. J. Biomed. Nanotechnol., 2017, 13(9), 1097-1105.
[http://dx.doi.org/10.1166/jbn.2017.2407] [PMID: 31251142]
[13]
Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Self-assembled hyaluronic acid nanoparticles for pH-sensitive release of doxorubicin: Synthesis and in vitro characterization. J. Biomed. Nanotechnol., 2017, 13(9), 1058-1068.
[http://dx.doi.org/10.1166/jbn.2017.2406] [PMID: 31251139]
[14]
Stubbs, M.; McSheehy, P.M.J.; Griffiths, J.R.; Bashford, C.L. Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today, 2000, 6(1), 15-19.
[http://dx.doi.org/10.1016/S1357-4310(99)01615-9] [PMID: 10637570]
[15]
Lee, E.S.; Oh, K.T.; Kim, D.; Youn, Y.S.; Bae, Y.H. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). J. Control. Release, 2007, 123(1), 19-26.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.006] [PMID: 17826863]
[16]
Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9(2), 101-113.
[http://dx.doi.org/10.1038/nmat2614] [PMID: 20094081]
[17]
Yue, Y.M.; Sheng, X.; Wang, P.X. Fabrication and characterization of microstructured and pH sensitive interpenetrating networks hydrogel films and application in drug delivery field. Eur. Polym. J., 2009, 45, 309-315.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.10.038]
[18]
Kang, M.H.; Kang, H.C.; Lee, Y.J.; You, H.B. pH-sensitive polymers for drug delivery. Macromol. Res., 2012, 20(3), 224-233.
[http://dx.doi.org/10.1007/s13233-012-0059-5]
[19]
Chang, Kang. H.; Bae, Y.H. Co-delivery of small interfering RNA and plasmid DNA using a polymeric vector incorporating endosomolytic oligomeric sulfonamide. Biomaterials, 2011, 32(21), 4914-4924.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.042] [PMID: 21489622]
[20]
Risbud, M.V.; Hardikar, A.A.; Bhat, S.V.; Bhonde, R.R. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J. Control. Release, 2000, 68(1), 23-30.
[http://dx.doi.org/10.1016/S0168-3659(00)00208-X] [PMID: 10884576]
[21]
Kim, D.; Lee, E.S.; Oh, K.T.; Gao, Z.G.; Bae, Y.H. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small, 2008, 4(11), 2043-2050.
[http://dx.doi.org/10.1002/smll.200701275] [PMID: 18949788]
[22]
Lee, E.S.; Na, K.; Bae, Y.H. Super pH-sensitive multifunctional polymeric micelle. Nano Lett., 2005, 5(2), 325-329.
[http://dx.doi.org/10.1021/nl0479987] [PMID: 15794620]
[23]
Lee, E.S.; Gao, Z.; Kim, D.; Park, K.; Kwon, I.C.; Bae, Y.H. Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J. Control. Release, 2008, 129(3), 228-236.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.024] [PMID: 18539355]
[24]
Midoux, P.; Pichon, C.; Yaouanc, J.J.; Jaffrès, P.A. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol., 2009, 157(2), 166-178.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00288.x] [PMID: 19459843]
[25]
Wu, H.; Zhu, L.; Torchilin, V.P. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials, 2013, 34(4), 1213-1222.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.072] [PMID: 23102622]
[26]
Lee, E.S.; Na, K.; Bae, Y.H. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release, 2003, 91(1-2), 103-113.
[http://dx.doi.org/10.1016/S0168-3659(03)00239-6] [PMID: 12932642]
[27]
Lee, E.S.; Oh, K.T.; Kim, D.; Youn, Y.S.; Bae, Y.H. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). J. Control. Release, 2007, 123(1), 19-26.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.006] [PMID: 17826863]
[28]
Banerjee, S.S.; Roy, M.; Bose, S. pH tunable fluorescent calcium phosphate nanocomposite for sensing and controlled drug delivery. Adv. Eng. Mater., 2011, 13(1-2), 10-17.
[http://dx.doi.org/10.1002/adem.201080036]
[29]
Barick, K.C.; Nigam, S.; Bahadur, D. Nanoscale assembly of mesoporous ZnO: A potential drug carrier. J. Mater. Chem., 2010, 20(31), 6446-6452.
[http://dx.doi.org/10.1039/c0jm00022a]
[30]
Mark, K.; Yasser, H.; Todd, F.; Arati, S.; Gavin, P.R.; Thomas, T.M.; Erhan, I.A.; Amra, T.; Mylisa, R.P.; Sarah, M.R.; Victor, R.V.; James, H.A. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett., 2008, (12), 4116-4121.
[http://dx.doi.org/10.1021/nl802098g] [PMID: 19367878]
[31]
Muhammad, F.; Guo, M.; Guo, Y.; Qi, W.; Qu, F.; Sun, F.; Zhao, H.; Zhu, G. Acid degradable ZnO quantum dots as a platform for targeted delivery of an anticancer drug. J. Mater. Chem., 2011, 21(35), 13406-13412.
[http://dx.doi.org/10.1039/c1jm12119g]
[32]
Ulbrich, K.; Etrych, T.; Chytil, P.; Pechar, M.; Jelinkova, M.; Rihova, B. Polymeric anticancer drugs with pH-controlled activation. Int. J. Pharm., 2004, 277(1-2), 63-72.
[http://dx.doi.org/10.1016/j.ijpharm.2003.02.001] [PMID: 15158969]
[33]
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126(3), 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[34]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[35]
Gao, W.; Chan, J.M.; Farokhzad, O.C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm., 2010, 7(6), 1913-1920.
[http://dx.doi.org/10.1021/mp100253e] [PMID: 20836539]
[36]
Romberg, B.; Hennink, W.E.; Storm, G. Sheddable coatings for long-circulating nanoparticles. Pharm. Res., 2008, 25(1), 55-71.
[http://dx.doi.org/10.1007/s11095-007-9348-7] [PMID: 17551809]
[37]
Ding, M.; Song, N.; He, X.; Li, J.; Zhou, L.; Tan, H.; Fu, Q.; Gu, Q. Toward the next-generation nanomedicines: Design of multifunctional multiblock polyurethanes for effective cancer treatment. ACS Nano, 2013, 7(3), 1918-1928.
[http://dx.doi.org/10.1021/nn4002769] [PMID: 23411462]
[38]
Gurski, L.A.; Jha, A.K.; Zhang, C.; Jia, X.; Farach-Carson, M.C. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials, 2009, 30(30), 6076-6085.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.054] [PMID: 19695694]
[39]
Wang, F.; Wang, Y.C.; Dou, S.; Xiong, M.H.; Sun, T.M.; Wang, J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5(5), 3679-3692.
[http://dx.doi.org/10.1021/nn200007z] [PMID: 21462992]
[40]
Kakinoki, A.; Kaneo, Y.; Ikeda, Y.; Tanaka, T.; Fujita, K. Synthesis of poly(vinyl alcohol)-doxorubicin conjugates containing cis-aconityl acid-cleavable bond and its isomer dependent doxorubicin release. Biol. Pharm. Bull., 2008, 31(1), 103-110.
[http://dx.doi.org/10.1248/bpb.31.103] [PMID: 18175951]
[41]
Liu, T.; Li, X.; Qian, Y.; Hu, X.; Liu, S. Multifunctional pH-disintegrable micellar nanoparticles of asymmetrically functionalized β-cyclodextrin-based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties. Biomaterials, 2012, 33(8), 2521-2531.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.013] [PMID: 22204981]
[42]
Kim, J.K.; Garripelli, V.K.; Jeong, U.H.; Park, J.S.; Repka, M.A.; Jo, S. Novel pH-sensitive polyacetal-based block copolymers for controlled drug delivery. Int. J. Pharm., 2010, 401(1-2), 79-86.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.029] [PMID: 20801203]
[43]
Heffernan, M.J.; Murthy, N. Polyketal nanoparticles: A new pH-sensitive biodegradable drug delivery vehicle. Bioconjug. Chem., 2005, 16(6), 1340-1342.
[http://dx.doi.org/10.1021/bc050176w] [PMID: 16287226]
[44]
Choi, C.; Su, Y.C.; Kim, T.H.; Kweon, J.K.; Chong, S.C.; Jang, M.K.; Nah, J.W. Synthesis and physicochemical characterization of Amphiphilic block copolymer self-aggregates formed by poly(ethylene glycol)-block-poly(epsilon-caprolactone). J. Appl. Polym. Sci., 2010, 99(6), 3520-3527.
[http://dx.doi.org/10.1002/app.22979]
[45]
Liu, J.; Ma, H.; Wei, T.; Liang, X.J. CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chem. Commun. (Camb.), 2012, 48(40), 4869-4871.
[http://dx.doi.org/10.1039/c2cc31697h] [PMID: 22498879]
[46]
Ke, C.J.; Su, T.Y.; Chen, H.L.; Liu, H.L.; Chiang, W.L.; Chu, P.C.; Xia, Y.; Sung, H.W. Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angew. Chem. Int. Ed. Engl., 2011, 50(35), 8086-8089.
[http://dx.doi.org/10.1002/anie.201102852] [PMID: 21751316]
[47]
Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134(3), 489-492.
[http://dx.doi.org/10.1093/jn/134.3.489] [PMID: 14988435]
[48]
Chen, X.C.; Wei, X.T.; Guan, J.H.; Shu, H.; Chen, D. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism. Oncotarget, 2017, 8(39), 65969-65982.
[http://dx.doi.org/10.18632/oncotarget.19622] [PMID: 29029486]
[49]
Chen, Z.; Hu, T.; Zhu, S.; Mukaisho, K.; El-Rifai, W.; Peng, D.F. Glutathione peroxidase 7 suppresses cancer cell growth and is hypermethylated in gastric cancer. Oncotarget, 2017, 8(33), 54345-54356.
[http://dx.doi.org/10.18632/oncotarget.17527] [PMID: 28903346]
[50]
Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release, 2011, 152(1), 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[51]
Kuppusamy, P.; Li, H.; Ilangovan, G.; Cardounel, A.J.; Zweier, J.L.; Yamada, K.; Krishna, M.C.; Mitchell, J.B. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res., 2002, 62(1), 307-312.
[PMID: 11782393]
[52]
Meng, F.; Hennink, W.E.; Zhong, Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 2009, 30(12), 2180-2198.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.026] [PMID: 19200596]
[53]
Li, R.; Xie, Y. Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. J. Control. Release, 2017, 251, 49-67.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.020] [PMID: 28232226]
[54]
Ran, M.; Zhen, G. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today, 2016, 19(5), 274-283.
[http://dx.doi.org/10.1016/j.mattod.2015.11.025]
[55]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[56]
Lee, S.Y.; Kim, S.; Tyler, J.Y.; Park, K.; Cheng, J.X. Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)4-PDLLA micelles for chemotherapy. Biomaterials, 2013, 34(2), 552-561.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.065] [PMID: 23079665]
[57]
Lee, M.H.; Sessler, J.L.; Kim, J.S. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery. Acc. Chem. Res., 2015, 48(11), 2935-2946.
[http://dx.doi.org/10.1021/acs.accounts.5b00406] [PMID: 26513450]
[58]
Saito, G.; Swanson, J.A.; Lee, K.D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: Role and site of cellular reducing activities. Adv. Drug Deliv. Rev., 2003, 55(2), 199-215.
[http://dx.doi.org/10.1016/S0169-409X(02)00179-5] [PMID: 12564977]
[59]
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126(3), 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[60]
Chen, F.; Zhang, J.; He, Y.; Fang, X.; Wang, Y.; Chen, M. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater. Sci., 2016, 4(1), 167-182.
[http://dx.doi.org/10.1039/C5BM00224A] [PMID: 26484363]
[61]
Kumar, P.; Wasim, L.; Chopra, M.; Chhikara, A. Co-delivery of vorinostat and etoposide via disulfide cross-linked biodegradable polymeric nanogels: Synthesis, characterization, biodegradation, and anticancer activity. AAPS PharmSciTech, 2018, 19(2), 634-647.
[http://dx.doi.org/10.1208/s12249-017-0863-5] [PMID: 28948528]
[62]
Tian, J.; Han, M.; Yue, W.; Kang, Q.; Xue, K.; Ci, T. Reduction responsive modification induced higher efficiency for attenuation of tumor metastasis of low molecular weight heparin functionalized liposomes. RSC Advances, 2016, 6, 49250-49262.
[http://dx.doi.org/10.1039/C5RA27227K]
[63]
Xia, J.; Du, Y.; Huang, L.; Chaurasiya, B.; Tu, J.; Webster, T.J.; Sun, C. Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma. Nanomedicine (Lond.), 2018, 14(3), 713-723.
[http://dx.doi.org/10.1016/j.nano.2017.12.017] [PMID: 29317344]
[64]
Tang, L.Y.; Wang, Y.C.; Li, Y.; Du, J.Z.; Wang, J. Shell-detachable micelles based on disulfide-linked block copolymer as potential carrier for intracellular drug delivery. Bioconjug. Chem., 2009, 20(6), 1095-1099.
[http://dx.doi.org/10.1021/bc900144m] [PMID: 19438224]
[65]
Bao, Y.; Guo, Y.; Zhuang, X.; Li, D.; Cheng, B.; Tan, S.; Zhang, Z. D-α-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells. Mol. Pharm., 2014, 11(9), 3196-3209.
[http://dx.doi.org/10.1021/mp500384d] [PMID: 25102234]
[66]
Luo, C.; Sun, J.; Sun, B.; Liu, D.; Miao, L.; Goodwin, T.J.; Huang, L.; He, Z. Facile fabrication of tumor redox-sensitive nanoassemblies of small-molecule oleate prodrug as potent chemotherapeutic nanomedicine. Small, 2016, 12(46), 6353-6362.
[http://dx.doi.org/10.1002/smll.201601597] [PMID: 27689847]
[67]
Sun, J.J.; Chen, Y.C.; Huang, Y.X.; Zhao, W.C.; Liu, Y.H.; Venkataramanan, R.; Lu, B.F.; Li, S. Programmable co-delivery of the immune checkpoint inhibitor NLG919 and chemotherapeutic doxorubicin via a redox-responsive immunostimulatory polymeric prodrug carrier. Acta Pharmacol. Sin., 2017, 38(6), 823-834.
[http://dx.doi.org/10.1038/aps.2017.44] [PMID: 28504251]
[68]
Zhao, Y.; Adjei, A.A. Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[69]
Tugues, S.; Koch, S.; Gualandi, L.; Li, X.; Claesson-Welsh, L. Vascular endothelial growth factors and receptors: Anti-angiogenic therapy in the treatment of cancer. Mol. Aspects Med., 2011, 32(2), 88-111.
[http://dx.doi.org/10.1016/j.mam.2011.04.004] [PMID: 21565214]
[70]
Jo, D.H.; Kim, S.; Kim, D.; Kim, J.H.; Jon, S.; Kim, J.H. VEGF-binding aptides and the inhibition of choroidal and retinal neovascularization. Biomaterials, 2014, 35(9), 3052-3059.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.031] [PMID: 24388818]
[71]
Campochiaro, P.A. Molecular targets for retinal vascular diseases. J. Cell. Physiol., 2007, 210(3), 575-581.
[http://dx.doi.org/10.1002/jcp.20893] [PMID: 17133346]
[72]
Bae, D.G.; Kim, T.D.; Li, G.; Yoon, W.H.; Chae, C.B. Anti-flt1 peptide, a vascular endothelial growth factor receptor 1-specific hexapeptide, inhibits tumor growth and metastasis. Clin. Cancer Res., 2005, 11(7), 2651-2661.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1564] [PMID: 15814646]
[73]
Seo, S.J.; Lee, S.H.; Kim, K.H.; Kim, J.K. Anti-Flt1 peptide and cyanine-conjugated gold nanoparticles for the concurrent antiangiogenic and endothelial cell proton treatment. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(4), 1272-1283.
[http://dx.doi.org/10.1002/jbm.b.34220] [PMID: 30199611]
[74]
Li, H.; Teng, Y.; Xu, X.; Liu, J. Enhanced rapamycin delivery to hemangiomas by lipid polymer nanoparticles coupled with anti-VEGFR antibody. Int. J. Mol. Med., 2018, 41(6), 3586-3596.
[http://dx.doi.org/10.3892/ijmm.2018.3518] [PMID: 29512710]
[75]
Zhu, X.; Guo, X.; Liu, D.; Gong, Y.; Sun, J.; Dong, C. Promotion of propranolol delivery to hemangiomas by using anti-VEGFR antibody-conjugated poly(lactic-co-glycolic acid) nanoparticles. J. Biomed. Nanotechnol., 2017, 13(12), 1694-1705.
[http://dx.doi.org/10.1166/jbn.2017.2449] [PMID: 29490757]
[76]
Foubert, P.; Varner, J.A. Integrins in tumor angiogenesis and lymphangiogenesis. Methods Mol. Biol., 2012, 757, 471-486.
[http://dx.doi.org/10.1007/978-1-61779-166-6_27] [PMID: 21909928]
[77]
Liu, P.; Qin, L.; Wang, Q.; Sun, Y.; Zhu, M.; Shen, M.; Duan, Y. cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer. Biomaterials, 2012, 33(28), 6739-6747.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.008] [PMID: 22763223]
[78]
Pierschbacher, M.D.; Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984, 309(5963), 30-33.
[http://dx.doi.org/10.1038/309030a0] [PMID: 6325925]
[79]
Kapp, T.G.; Rechenmacher, F.; Neubauer, S.; Maltsev, O.V.; Cavalcanti-Adam, E.A.; Zarka, R.; Reuning, U.; Notni, J.; Wester, H.J.; Mas-Moruno, C.; Spatz, J.; Geiger, B.; Kessler, H. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci. Rep., 2017, 7, 39805.
[http://dx.doi.org/10.1038/srep39805] [PMID: 28074920]
[80]
Sugahara, K.N.; Braun, G.B.; De Mendoza, T.H.; Kotamraju, V.R.; French, R.P.; Lowy, A.M.; Teesalu, T.; Ruoslahti, E. Tumor-penetrating iRGD peptide inhibits metastasis. Mol. Cancer Ther., 2015, 14(1), 120-128.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0366] [PMID: 25392370]
[81]
Xiong, X.B.; Ma, Z.; Lai, R.; Lavasanifar, A. The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin. Biomaterials, 2010, 31(4), 757-768.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.080] [PMID: 19818492]
[82]
Graf, N.; Bielenberg, D.R.; Kolishetti, N.; Muus, C.; Banyard, J.; Farokhzad, O.C.; Lippard, S.J. α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano, 2012, 6(5), 4530-4539.
[http://dx.doi.org/10.1021/nn301148e] [PMID: 22584163]
[83]
Zhang, X.; Li, X.; Hua, H.; Wang, A.; Liu, W.; Li, Y.; Fu, F.; Shi, Y.; Sun, K. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue. Int. J. Nanomedicine, 2017, 12, 5717-5732.
[http://dx.doi.org/10.2147/IJN.S138501] [PMID: 28848349]
[84]
Zhan, C.; Gu, B.; Xie, C.; Li, J.; Liu, Y.; Lu, W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J. Control. Release, 2010, 143(1), 136-142.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.020] [PMID: 20056123]
[85]
Jiang, X.; Sha, X.; Xin, H.; Chen, L.; Gao, X.; Wang, X.; Law, K.; Gu, J.; Chen, Y.; Jiang, Y.; Ren, X.; Ren, Q.; Fang, X. Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors. Biomaterials, 2011, 32(35), 9457-9469.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.055] [PMID: 21911250]
[86]
Latil, A.; Bièche, I.; Pesche, S.; Valéri, A.; Fournier, G.; Cussenot, O.; Lidereau, R. VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int. J. Cancer, 2000, 89(2), 167-171.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000320)89:2<167:AID-IJC11>3.0.CO;2-9] [PMID: 10754495]
[87]
Mamluk, R.; Gechtman, Z.; Kutcher, M.E.; Gasiunas, N.; Gallagher, J.; Klagsbrun, M. Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain. J. Biol. Chem., 2002, 277(27), 24818-24825.
[http://dx.doi.org/10.1074/jbc.M200730200] [PMID: 11986311]
[88]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16(6), 510-520.
[http://dx.doi.org/10.1016/j.ccr.2009.10.013] [PMID: 19962669]
[89]
Jubb, A.M.; Strickland, L.A.; Liu, S.D.; Mak, J.; Schmidt, M.; Koeppen, H. Neuropilin-1 expression in cancer and development. J. Pathol., 2012, 226(1), 50-60.
[http://dx.doi.org/10.1002/path.2989] [PMID: 22025255]
[90]
Grandclement, C.; Borg, C. Neuropilins: a new target for cancer therapy. Cancers (Basel), 2011, 3(2), 1899-1928.
[http://dx.doi.org/10.3390/cancers3021899] [PMID: 24212788]
[91]
Lambert, S.; Bouttier, M.; Vassy, R.; Seigneuret, M.; Petrow-Sadowski, C.; Janvier, S.; Heveker, N.; Ruscetti, F.W.; Perret, G.; Jones, K.S.; Pique, C. HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165. Blood, 2009, 113(21), 5176-5185.
[http://dx.doi.org/10.1182/blood-2008-04-150342] [PMID: 19270265]
[92]
Teesalu, T.; Sugahara, K.N.; Kotamraju, V.R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16157-16162.
[http://dx.doi.org/10.1073/pnas.0908201106] [PMID: 19805273]
[93]
Bielenberg, D.R.; Pettaway, C.A.; Takashima, S.; Klagsbrun, M. Neuropilins in neoplasms: Expression, regulation, and function. Exp. Cell Res., 2006, 312(5), 584-593.
[http://dx.doi.org/10.1016/j.yexcr.2005.11.024] [PMID: 16445911]
[94]
Kumar, A.; Ma, H.; Zhang, X.; Huang, K.; Jin, S.; Liu, J.; Wei, T.; Cao, W.; Zou, G.; Liang, X.J. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials, 2012, 33(4), 1180-1189.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.058] [PMID: 22056754]
[95]
Mozhi, A.; Ahmad, I.; Kaleem, Q.M.; Tuguntaev, R.G.; Eltahan, A.S.; Wang, C.; Yang, R.; Li, C.; Liang, X.J. Nrp-1 receptor targeting peptide-functionalized TPGS micellar nanosystems to deliver 10-hydroxycampothecin for enhanced cancer chemotherapy. Int. J. Pharm., 2018, 547(1-2), 582-592.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.074] [PMID: 29859925]
[96]
Thomas, E.; Colombeau, L.; Gries, M.; Peterlini, T.; Mathieu, C.; Thomas, N.; Boura, C.; Frochot, C.; Vanderesse, R.; Lux, F.; Barberi-Heyob, M.; Tillement, O. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma. Int. J. Nanomedicine, 2017, 12, 7075-7088.
[http://dx.doi.org/10.2147/IJN.S141559] [PMID: 29026302]
[97]
Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R. Galectin-1: A small protein with major functions. Glycobiology, 2006, 16(11), 137R-157R.
[http://dx.doi.org/10.1093/glycob/cwl025] [PMID: 16840800]
[98]
Astorgues-Xerri, L.; Riveiro, M.E.; Tijeras-Raballand, A.; Serova, M.; Neuzillet, C.; Albert, S.; Raymond, E.; Faivre, S. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat. Rev., 2014, 40(2), 307-319.
[http://dx.doi.org/10.1016/j.ctrv.2013.07.007] [PMID: 23953240]
[99]
Croci, D.O.; Salatino, M.; Rubinstein, N.; Cerliani, J.P.; Cavallin, L.E.; Leung, H.J.; Ouyang, J.; Ilarregui, J.M.; Toscano, M.A.; Domaica, C.I.; Croci, M.C.; Shipp, M.A.; Mesri, E.A.; Albini, A.; Rabinovich, G.A. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J. Exp. Med., 2012, 209(11), 1985-2000.
[http://dx.doi.org/10.1084/jem.20111665] [PMID: 23027923]
[100]
Kuo, P.L.; Hung, J.Y.; Huang, S.K.; Chou, S.H.; Cheng, D.E.; Jong, Y.J.; Hung, C.H.; Yang, C.J.; Tsai, Y.M.; Hsu, Y.L.; Huang, M.S. Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway. J. Immunol., 2011, 186(3), 1521-1530.
[http://dx.doi.org/10.4049/jimmunol.1002940] [PMID: 21191065]
[101]
Dalotto-Moreno, T.; Croci, D.O.; Cerliani, J.P.; Martinez-Allo, V.C.; Dergan-Dylon, S.; Méndez-Huergo, S.P.; Stupirski, J.C.; Mazal, D.; Osinaga, E.; Toscano, M.A.; Sundblad, V.; Rabinovich, G.A.; Salatino, M. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res., 2013, 73(3), 1107-1117.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2418] [PMID: 23204230]
[102]
Shalom-Feuerstein, R.; Cooks, T.; Raz, A.; Kloog, Y. Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res., 2005, 65(16), 7292-7300.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0775] [PMID: 16103080]
[103]
Koopmans, S.M.; Bot, F.J.; Schouten, H.C.; Janssen, J.; Van Marion, A.M. The involvement of galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia. Am. J. Blood Res., 2012, 2(2), 119-127.
[PMID: 22762031]
[104]
Kim, H.J.; Do, I.G.; Jeon, H.K.; Cho, Y.J.; Park, Y.A.; Choi, J.J.; Sung, C.O.; Lee, Y.Y.; Choi, C.H.; Kim, T.J.; Kim, B.G.; Lee, J.W.; Bae, D.S. Galectin 1 expression is associated with tumor invasion and metastasis in stage IB to IIA cervical cancer. Hum. Pathol., 2013, 44(1), 62-68.
[http://dx.doi.org/10.1016/j.humpath.2012.04.010] [PMID: 22939954]
[105]
Astorgues-Xerri, L.; Riveiro, M.E.; Tijeras-Raballand, A.; Serova, M.; Neuzillet, C.; Albert, S.; Raymond, E.; Faivre, S. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat. Rev., 2014, 40(2), 307-319.
[http://dx.doi.org/10.1016/j.ctrv.2013.07.007] [PMID: 23953240]
[106]
Roda, O.; Ortiz-Zapater, E.; Martínez-Bosch, N.; Gutiérrez-Gallego, R.; Vila-Perelló, M.; Ampurdanés, C.; Gabius, H.J.; André, S.; Andreu, D.; Real, F.X.; Navarro, P. Galectin-1 is a novel functional receptor for tissue plasminogen activator in pancreatic cancer. Gastroenterology, 2009, 136(4), 1379-1390, e1-e5.
[http://dx.doi.org/10.1053/j.gastro.2008.12.039] [PMID: 19171142]
[107]
Rosenberger, I.; Strauss, A.; Dobiasch, S.; Weis, C.; Szanyi, S.; Gil-Iceta, L.; Alonso, E.; González Esparza, M.; Gómez-Vallejo, V.; Szczupak, B.; Plaza-García, S.; Mirzaei, S.; Israel, L.L.; Bianchessi, S.; Scanziani, E.; Lellouche, J.P.; Knoll, P.; Werner, J.; Felix, K.; Grenacher, L.; Reese, T.; Kreuter, J.; Jiménez-González, M. Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer. J. Control. Release, 2015, 214(1), 76-84.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.017] [PMID: 26192099]
[108]
García Calavia, P.; Chambrier, I.; Cook, M.J.; Haines, A.H.; Field, R.A.; Russell, D.A. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J. Colloid Interface Sci., 2018, 512, 249-259.
[http://dx.doi.org/10.1016/j.jcis.2017.10.030] [PMID: 29073466]
[109]
Powers, C.J.; McLeskey, S.W.; Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer, 2000, 7(3), 165-197.
[http://dx.doi.org/10.1677/erc.0.0070165] [PMID: 11021964]
[110]
Terada, T.; Mizobata, M.; Kawakami, S.; Yamashita, F.; Hashida, M. Optimization of tumor-selective targeting by basic fibroblast growth factor-binding peptide grafted PEGylated liposomes. J. Control. Release, 2007, 119(3), 262-270.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.018] [PMID: 17467100]
[111]
Terada, T.; Mizobata, M.; Kawakami, S.; Yabe, Y.; Yamashita, F.; Hashida, M. Basic fibroblast growth factor-binding peptide as a novel targeting ligand of drug carrier to tumor cells. J. Drug Target., 2006, 14(8), 536-545.
[http://dx.doi.org/10.1080/10611860600849498] [PMID: 17050120]
[112]
Wang, X.; Deng, L.; Chen, X.; Pei, H.; Cai, L.; Zhao, X.; Wei, Y.; Chen, L. Truncated bFGF-mediated cationic liposomal paclitaxel for tumor-targeted drug delivery: Improved pharmacokinetics and biodistribution in tumor-bearing mice. J. Pharm. Sci., 2011, 100(3), 1196-1205.
[http://dx.doi.org/10.1002/jps.22348] [PMID: 20860011]
[113]
Chen, X.; Wang, X.; Wang, Y.; Yang, L.; Hu, J.; Xiao, W.; Fu, A.; Cai, L.; Li, X.; Ye, X.; Liu, Y.; Wu, W.; Shao, X.; Mao, Y.; Wei, Y.; Chen, L. Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J. Control. Release, 2010, 145(1), 17-25.
[http://dx.doi.org/10.1016/j.jconrel.2010.03.007] [PMID: 20307599]
[114]
Shchors, K.; Evan, G. Tumor angiogenesis: Cause or consequence of cancer? Cancer Res., 2007, 67(15), 7059-7061.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2053] [PMID: 17671171]
[115]
Murphy, E.A.; Majeti, B.K.; Barnes, L.A.; Makale, M.; Weis, S.M.; Lutu-Fuga, K.; Wrasidlo, W.; Cheresh, D.A. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(27), 9343-9348.
[http://dx.doi.org/10.1073/pnas.0803728105] [PMID: 18607000]
[116]
Pastorino, F.; Brignole, C.; Di Paolo, D.; Nico, B.; Pezzolo, A.; Marimpietri, D.; Pagnan, G.; Piccardi, F.; Cilli, M.; Longhi, R.; Ribatti, D.; Corti, A.; Allen, T.M.; Ponzoni, M. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res., 2006, 66(20), 10073-10082.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2117] [PMID: 17047071]
[117]
Luo, Z.; Peng, X.; Shi, H.; Gong, C.; Qian, Z.; Yang, L. Comparison of the protective effects of truncated bFGF and native bFGF against murine lung carcinoma. Int. J. Mol. Med., 2011, 28(1), 3-8.
[PMID: 21503566]
[118]
Xu, B.; Jin, Q.; Zeng, J.; Yu, T.; Chen, Y.; Li, S.; Gong, D.; He, L.; Tan, X.; Yang, L.; He, G.; Wu, J.; Song, X. Combined tumor- and neovascular “dual targeting” gene/chemo-therapy suppresses tumor growth and angiogenesis. ACS Appl. Mater. Interfaces, 2016, 8(39), 25753-25769.
[http://dx.doi.org/10.1021/acsami.6b08603] [PMID: 27615739]
[119]
D’Souza, A.A.; Devarajan, P.V. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J. Control. Release, 2015, 203, 126-139.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.022] [PMID: 25701309]
[120]
Thapa, B.; Kumar, P.; Zeng, H.; Narain, R. Asialoglycoprotein receptor-mediated gene delivery to hepatocytes using galactosylated polymers. Biomacromolecules, 2015, 16(9), 3008-3020.
[http://dx.doi.org/10.1021/acs.biomac.5b00906] [PMID: 26258607]
[121]
Petrov, R.A.; Maklakova, S.Y.; Ivanenkov, Y.A.; Petrov, S.A.; Sergeeva, O.V.; Yamansarov, E.Y.; Saltykova, I.V.; Kireev, I.I.; Alieva, I.B.; Deyneka, E.V.; Sofronova, A.A.; Aladinskaia, A.V.; Trofimenko, A.V.; Yamidanov, R.S.; Kovalev, S.V.; Kotelianski, V.E.; Zatsepin, T.S.; Beloglazkina, E.K.; Majouga, A.G. Synthesis and biological evaluation of novel mono- and bivalent ASGP-R-targeted drug-conjugates. Bioorg. Med. Chem. Lett., 2018, 28(3), 382-387.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.032] [PMID: 29269214]
[122]
Craparo, E.F.; Sardo, C.; Serio, R.; Zizzo, M.G.; Bondì, M.L.; Giammona, G.; Cavallaro, G. Galactosylated polymeric carriers for liver targeting of sorafenib. Int. J. Pharm., 2014, 466(1-2), 172-180.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.047] [PMID: 24607205]
[123]
Li, M.; Zhang, W.; Wang, B.; Gao, Y.; Song, Z.; Zheng, Q.C. Ligand-based targeted therapy: A novel strategy for hepatocellular carcinoma. Int. J. Nanomedicine, 2016, 11, 5645-5669.
[http://dx.doi.org/10.2147/IJN.S115727] [PMID: 27920520]
[124]
Oh, H.R.; Jo, H.Y.; Park, J.S.; Kim, D.E.; Cho, J.Y.; Kim, P.H.; Kim, K.S. Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin sirna to hepatocellular carcinoma. Nanomaterials (Basel), 2016, 6(8), 141.
[http://dx.doi.org/10.3390/nano6080141] [PMID: 28335269]
[125]
Shen, Z.; Wei, W.; Tanaka, H.; Kohama, K.; Ma, G.; Dobashi, T.; Maki, Y.; Wang, H.; Bi, J.; Dai, S. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol. Res., 2011, 64(4), 410-419.
[http://dx.doi.org/10.1016/j.phrs.2011.06.015] [PMID: 21723392]
[126]
Khorev, O.; Stokmaier, D.; Schwardt, O.; Cutting, B.; Ernst, B. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorg. Med. Chem., 2008, 16(9), 5216-5231.
[http://dx.doi.org/10.1016/j.bmc.2008.03.017] [PMID: 18358727]
[127]
Korin, E.; Bejerano, T.; Cohen, S. GalNAc bio-functionalization of nanoparticles assembled by electrostatic interactions improves siRNA targeting to the liver. J. Control. Release, 2017, 266, 310-320.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.001] [PMID: 28987883]
[128]
Wei, M.; Guo, X.; Tu, L.; Zou, Q.; Li, Q.; Tang, C.; Chen, B.; Xu, Y.; Wu, C. Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma. Int. J. Nanomedicine, 2015, 10, 5123-5137.
[http://dx.doi.org/10.2147/IJN.S87011] [PMID: 26316745]
[129]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[130]
Bates, D.O.; Hillman, N.J.; Williams, B.; Neal, C.R.; Pocock, T.M. Regulation of microvascular permeability by vascular endothelial growth factors. J. Anat., 2002, 200(6), 581-597.
[http://dx.doi.org/10.1046/j.1469-7580.2002.00066.x] [PMID: 12162726]
[131]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[132]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26(1), 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015] [PMID: 18190833]
[133]
Ma, X.; Xiong, Y.; Lee, L.T.O. Application of nanoparticles for targeting G protein-coupled receptors. Int. J. Mol. Sci., 2018, 19(7), 2006.
[http://dx.doi.org/10.3390/ijms19072006] [PMID: 29996469]
[134]
Padera, T.P.; Stoll, B.R.; Tooredman, J.B.; Capen, D.; di Tomaso, E.; Jain, R.K. Pathology: Cancer cells compress intratumour vessels. Nature, 2004, 427(6976), 695.
[http://dx.doi.org/10.1038/427695a] [PMID: 14973470]
[135]
Kulkarni, S.A.; Feng, S.S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm. Res., 2013, 30(10), 2512-2522.
[http://dx.doi.org/10.1007/s11095-012-0958-3] [PMID: 23314933]
[136]
Jain, V.; Jain, S.; Mahajan, S.C. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. Curr. Drug Deliv., 2015, 12(2), 177-191.
[http://dx.doi.org/10.2174/1567201811666140822112516] [PMID: 25146439]
[137]
Liu, Y.; Hardie, J.; Zhang, X.; Rotello, V.M. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol., 2017, 34, 25-32.
[http://dx.doi.org/10.1016/j.smim.2017.09.011] [PMID: 28985993]
[138]
Reddy, S.T.; van der Vlies, A.J.; Simeoni, E.; Angeli, V.; Randolph, G.J.; O’Neil, C.P.; Lee, L.K.; Swartz, M.A.; Hubbell, J.A. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol., 2007, 25(10), 1159-1164.
[http://dx.doi.org/10.1038/nbt1332] [PMID: 17873867]
[139]
Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol., 2008, 38(5), 1404-1413.
[http://dx.doi.org/10.1002/eji.200737984] [PMID: 18389478]
[140]
Son, Y.J.; Kim, H.; Leong, K.W.; Yoo, H.S. Multifunctional nanorods serving as nanobridges to modulate T cell-mediated immunity. ACS Nano, 2013, 7(11), 9771-9779.
[http://dx.doi.org/10.1021/nn403275p] [PMID: 24088178]
[141]
Moyano, D.F.; Goldsmith, M.; Solfiell, D.J.; Landesman-Milo, D.; Miranda, O.R.; Peer, D.; Rotello, V.M. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc., 2012, 134(9), 3965-3967.
[http://dx.doi.org/10.1021/ja2108905] [PMID: 22339432]
[142]
Mellman, I.; Steinman, R.M. Dendritic cells: Specialized and regulated antigen processing machines. Cell, 2001, 106(3), 255-258.
[http://dx.doi.org/10.1016/S0092-8674(01)00449-4] [PMID: 11509172]
[143]
Kwon, Y.J.; Standley, S.M.; Goh, S.L.; Fréchet, J.M. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J. Control. Release, 2005, 105(3), 199-212.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.027] [PMID: 15935507]
[144]
Fytianos, K.; Chortarea, S.; Rodriguez-Lorenzo, L.; Blank, F.; Von Garnier, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. ACS Nano, 2017, 11(1), 375-383.
[http://dx.doi.org/10.1021/acsnano.6b06061] [PMID: 27973764]
[145]
Xu, Y.; Sherwood, J.A.; Lackey, K.H.; Qin, Y.; Bao, Y. The responses of immune cells to iron oxide nanoparticles. J. Appl. Toxicol., 2016, 36(4), 543-553.
[http://dx.doi.org/10.1002/jat.3282] [PMID: 26817529]
[146]
Yang, A.; Liu, W.; Li, Z.; Jiang, L.; Xu, H.; Yang, X. Influence of polyethyleneglycol modification on phagocytic uptake of polymeric nanoparticles mediated by immunoglobulin G and complement activation. J. Nanosci. Nanotechnol., 2010, 10(1), 622-628.
[http://dx.doi.org/10.1166/jnn.2010.1738] [PMID: 20352902]
[147]
Parker, N.; Turk, M.J.; Westrick, E.; Lewis, J.D.; Low, P.S.; Leamon, C.P. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem., 2005, 338(2), 284-293.
[http://dx.doi.org/10.1016/j.ab.2004.12.026] [PMID: 15745749]
[148]
Daniels, R.A.; Turley, H.; Kimberley, F.C.; Liu, X.S.; Mongkolsapaya, J. Ch’En, P.; Xu, X.N.; Jin, B.Q.; Pezzella, F.; Screaton, G.R. Expression of TRAIL and TRAIL receptors in normal and malignant tissues. Cell Res., 2005, 15(6), 430-438.
[http://dx.doi.org/10.1038/sj.cr.7290311] [PMID: 15987601]
[149]
Müller, C.; Schubiger, P.A.; Schibli, R. In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(10), 1162-1170.
[http://dx.doi.org/10.1007/s00259-006-0118-2] [PMID: 16721570]
[150]
Cirstoiu-Hapca, A.; Bossy-Nobs, L.; Buchegger, F.; Gurny, R.; Delie, F. Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int. J. Pharm., 2007, 331(2), 190-196.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.002] [PMID: 17196347]
[151]
Rapoport, N.; Gao, Z.; Kennedy, A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J. Natl. Cancer Inst., 2007, 99(14), 1095-1106.
[http://dx.doi.org/10.1093/jnci/djm043] [PMID: 17623798]
[152]
Ponce, A.M.; Vujaskovic, Z.; Yuan, F.; Needham, D.; Dewhirst, M.W. Hyperthermia mediated liposomal drug delivery. Int. J. Hyperthermia, 2006, 22(3), 205-213.
[http://dx.doi.org/10.1080/02656730600582956] [PMID: 16754340]
[153]
Ko, J.; Park, K.; Kim, Y.S.; Kim, M.S.; Han, J.K.; Kim, K.; Park, R.W.; Kim, I.S.; Song, H.K.; Lee, D.S.; Kwon, I.C. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly(beta-amino ester) block copolymer micelles for cancer therapy. J. Control. Release, 2007, 123(2), 109-115.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.012] [PMID: 17894942]
[154]
Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed. Engl., 2003, 42(38), 4640-4643.
[http://dx.doi.org/10.1002/anie.200250653] [PMID: 14533151]
[155]
Wang, J.; Yu, X.; Boriskina, S.V.; Reinhard, B.M. Quantification of differential ErbB1 and ErbB2 cell surface expression and spatial nanoclustering through plasmon coupling. Nano Lett., 2012, 12(6), 3231-3237.
[http://dx.doi.org/10.1021/nl3012227] [PMID: 22587495]
[156]
Shinozaki, E.; Yoshino, T.; Yamazaki, K.; Muro, K.; Yamaguchi, K.; Nishina, T.; Yuki, S.; Shitara, K.; Bando, H.; Mimaki, S.; Nakai, C.; Matsushima, K.; Suzuki, Y.; Akagi, K.; Yamanaka, T.; Nomura, S.; Fujii, S.; Esumi, H.; Sugiyama, M.; Nishida, N.; Mizokami, M.; Koh, Y.; Abe, Y.; Ohtsu, A.; Tsuchihara, K. Clinical significance of BRAF non-V600E mutations on the therapeutic effects of anti-EGFR monoclonal antibody treatment in patients with pretreated metastatic colorectal cancer: the Biomarker Research for anti-EGFR monoclonal Antibodies by Comprehensive Cancer genomics (BREAC) study. Br. J. Cancer, 2017, 117(10), 1450-1458.
[http://dx.doi.org/10.1038/bjc.2017.308] [PMID: 28972961]
[157]
Aratani, K.; Komatsu, S.; Ichikawa, D.; Ohashi, T.; Miyamae, M.; Okajima, W.; Imamura, T.; Kiuchi, J.; Nishibeppu, K.; Kosuga, T.; Konishi, H.; Shiozaki, A.; Fujiwara, H.; Okamoto, K.; Tsuda, H.; Otsuji, E. Overexpression of EGFR as an Independent prognostic factor in adenocarcinoma of the esophagogastric junction. Anticancer Res., 2017, 37(6), 3129-3135.
[PMID: 28551654]
[158]
Zhang, X.; Li, Y.; Wei, M.; Liu, C.; Yang, J. Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer. Drug Deliv., 2019, 26(1), 129-136.
[http://dx.doi.org/10.1080/10717544.2018.1564403] [PMID: 30798640]
[159]
Groysbeck, N.; Stoessel, A.; Donzeau, M.; da Silva, E.C.; Lehmann, M.; Strub, J.M.; Cianferani, S.; Dembélé, K.; Zuber, G. Synthesis and biological evaluation of 2.4 nm thiolate-protected gold nanoparticles conjugated to Cetuximab for targeting glioblastoma cancer cells via the EGFR. Nanotechnology, 2019, 30(18)184005
[http://dx.doi.org/10.1088/1361-6528/aaff0a] [PMID: 30650397]
[160]
Du, C.; Qi, Y.; Zhang, Y.; Wang, Y.; Zhao, X.; Min, H.; Han, X.; Lang, J.; Qin, H.; Shi, Q.; Zhang, Z.; Tian, X.; Anderson, G.J.; Zhao, Y.; Nie, G.; Yang, Y. Epidermal growth factor receptor-targeting peptide nanoparticles simultaneously deliver gemcitabine and olaparib to treat pancreatic cancer with breast cancer 2 (BRCA2) Mutation. ACS Nano, 2018, 12(11), 10785-10796.
[http://dx.doi.org/10.1021/acsnano.8b01573] [PMID: 30407790]
[161]
Franklin, M.C.; Carey, K.D.; Vajdos, F.F.; Leahy, D.J.; de Vos, A.M.; Sliwkowski, M.X. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell, 2004, 5(4), 317-328.
[http://dx.doi.org/10.1016/S1535-6108(04)00083-2] [PMID: 15093539]
[162]
Etienne-Manneville, S.; Hall, A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature, 2003, 421(6924), 753-756.
[http://dx.doi.org/10.1038/nature01423] [PMID: 12610628]
[163]
Ross, J.S.; Fletcher, J.A.; Linette, G.P.; Stec, J.; Clark, E.; Ayers, M.; Symmans, W.F.; Pusztai, L.; Bloom, K.J. The Her-2/neu gene and protein in breast cancer 2003: Biomarker and target of therapy. Oncologist, 2003, 8(4), 307-325.
[http://dx.doi.org/10.1634/theoncologist.8-4-307] [PMID: 12897328]
[164]
Ménard, S.; Pupa, S.M.; Campiglio, M.; Tagliabue, E. Biologic and therapeutic role of HER2 in cancer. Oncogene, 2003, 22(42), 6570-6578.
[http://dx.doi.org/10.1038/sj.onc.1206779] [PMID: 14528282]
[165]
Mitri, Z.; Constantine, T.; O’Regan, R. The HER2 receptor in breast cancer: Pathophysiology, clinical use, and new advances in therapy. Chemother. Res. Pract., 2012, 2012743193
[http://dx.doi.org/10.1155/2012/743193] [PMID: 23320171]
[166]
Luo, H.; Xu, X.; Ye, M.; Sheng, B.; Zhu, X. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS One, 2018, 13(1)e0191972
[http://dx.doi.org/10.1371/journal.pone.0191972] [PMID: 29381731]
[167]
Meng, L.X.; Ren, Q.; Meng, Q.; Zheng, Y.X.; He, M.L.; Sun, S.Y.; Ding, Z.J.; Li, B.C.; Wang, H.Y. Cui, F.B.; Li, R.T.; Liu, Q.; Jiang, X.D.; Li, X.M.; Zheng, J.N. Enhanced antiproliferative activity of antibodyfunctionalized polymeric nanoparticles for targeted delivery of anti-miR-21 to HER2 positive gastric cancer. Oncotarget, 2017, 8(40), 67189-67202.
[http://dx.doi.org/10.18632/oncotarget.18066] [PMID: 28978026]
[168]
Wu, F.L.; Zhang, J.; Li, W.; Bian, B.X.; Hong, Y.D.; Song, Z.Y.; Wang, H.Y.; Cui, F.B.; Li, R.T.; Liu, Q.; Jiang, X.D.; Li, X.M.; Zheng, J.N. Enhanced antiproliferative activity of antibody-functionalized polymeric nanoparticles for targeted delivery of anti-miR-21 to HER2 positive gastric cancer. Oncotarget, 2017, 8(40), 67189-67202.
[http://dx.doi.org/10.18632/oncotarget.18066] [PMID: 28978026]
[169]
Sonali; Agrawal, P.; Singh, R.P.; Rajesh, C.V.; Singh, S.; Vijayakumar, M.R.; Pandey, B.L.; Muthu, M.S. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: Preparation, characterization and brain distribution in rats. Drug Deliv., 2016, 23(5), 1788-1798.
[http://dx.doi.org/10.3109/10717544.2015.1094681] [PMID: 26431064]
[170]
Schonberg, D.L.; Miller, T.E.; Wu, Q.; Flavahan, W.A.; Das, N.K.; Hale, J.S.; Hubert, C.G.; Mack, S.C.; Jarrar, A.M.; Karl, R.T.; Rosager, A.M.; Nixon, A.M.; Tesar, P.J.; Hamerlik, P.; Kristensen, B.W.; Horbinski, C.; Connor, J.R.; Fox, P.L.; Lathia, J.D.; Rich, J.N. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell, 2015, 28(4), 441-455.
[http://dx.doi.org/10.1016/j.ccell.2015.09.002] [PMID: 26461092]
[171]
Choi, C.H.J.; Alabi, C.A.; Webster, P.; Davis, M.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107(3), 1235-1240.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[172]
Cui, Y.N.; Xu, Q.X.; Davoodi, P.; Wang, D.P.; Wang, C.H. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin. Acta Pharmacol. Sin., 2017, 38(6), 943-953.
[http://dx.doi.org/10.1038/aps.2017.45] [PMID: 28552909]
[173]
Williams, K.; Motiani, K.; Giridhar, P.V.; Kasper, S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp. Biol. Med. (Maywood), 2013, 238(3), 324-338.
[http://dx.doi.org/10.1177/1535370213480714] [PMID: 23598979]
[174]
Bachar, G.; Cohen, K.; Hod, R.; Feinmesser, R.; Mizrachi, A.; Shpitzer, T.; Katz, O.; Peer, D. Hyaluronan-grafted particle clusters loaded with Mitomycin C as selective nanovectors for primary head and neck cancers. Biomaterials, 2011, 32(21), 4840-4848.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.040] [PMID: 21482433]
[175]
Mero, A.; Campisi, M. Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymers (Basel), 2014, 6(2), 346-369.
[http://dx.doi.org/10.3390/polym6020346]
[176]
Cho, H.J.; Yoon, I.S.; Yoon, H.Y.; Koo, H.; Jin, Y.J.; Ko, S.H.; Shim, J.S.; Kim, K.; Kwon, I.C.; Kim, D.D. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials, 2012, 33(4), 1190-1200.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.064] [PMID: 22074664]
[177]
Iczkowski, K.A. Cell adhesion molecule CD44: Its functional roles in prostate cancer. Am. J. Transl. Res., 2010, 3(1), 1-7.
[PMID: 21139802]
[178]
Atala, A. Re: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med., 2011, 17(2), 211-215.
[http://dx.doi.org/10.1038/nm.2284] [PMID: 21240262]
[179]
Chu, J.E.; Xia, Y.; Chin-Yee, B.; Goodale, D.; Croker, A.K.; Allan, A.L. Lung-derived factors mediate breast cancer cell migration through CD44 receptor-ligand interactions in a novel ex vivo system for analysis of organ-specific soluble proteins. Neoplasia, 2014, 16(2), 180-191.
[http://dx.doi.org/10.1593/neo.132076] [PMID: 24709425]
[180]
Hwang, D.W.; Kim, H.Y.; Li, F.; Park, J.Y.; Kim, D.; Park, J.H.; Han, H.S.; Byun, J.W.; Lee, Y.S.; Jeong, J.M.; Char, K.; Lee, D.S. In vivo visualization of endogenous miR-21 using hyaluronic acid-coated graphene oxide for targeted cancer therapy. Biomaterials, 2017, 121, 144-154.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.028] [PMID: 28088076]
[181]
Shen, H.; Shi, S.; Zhang, Z.; Gong, T.; Sun, X. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics, 2015, 5(7), 755-771.
[http://dx.doi.org/10.7150/thno.10804] [PMID: 25897340]
[182]
Yang, X.Y.; Li, Y.X.; Li, M.; Zhang, L.; Feng, L.X.; Zhang, N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett., 2013, 334(2), 338-345.
[http://dx.doi.org/10.1016/j.canlet.2012.07.002] [PMID: 22776563]
[183]
Yao, J.; Li, Y.; Sun, X.; Dahmani, F.Z.; Liu, H.; Zhou, J. Nanoparticle delivery and combination therapy of gambogic acid and all-trans retinoic acid. Int. J. Nanomedicine, 2014, 9, 3313-3324.
[http://dx.doi.org/10.2147/IJN.S62793] [PMID: 25045262]
[184]
Gupta, B.; Poudel, B.K.; Ruttala, H.B.; Regmi, S.; Pathak, S.; Gautam, M.; Jin, S.G.; Jeong, J.H.; Choi, H.G.; Ku, S.K.; Yong, C.S.; Kim, J.O. Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Acta Biomater., 2018, 80, 364-377.
[http://dx.doi.org/10.1016/j.actbio.2018.09.006] [PMID: 30201431]
[185]
Sargazi, A.; Shiri, F.; Keikha, S.; Majd, M.H. Hyaluronan magnetic nanoparticle for mitoxantrone delivery toward CD44-positive cancer cells. Colloids Surf. B Biointerfaces, 2018, 171, 150-158.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.025] [PMID: 30025377]
[186]
Lin, W.J.; Lee, W.C. Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery. Int. J. Nanomedicine, 2018, 13, 3989-4002.
[http://dx.doi.org/10.2147/IJN.S163149] [PMID: 30022822]
[187]
Mosafer, J.; Mokhtarzadeh, A. Cell surface nucleolin as a promising receptor for effective AS1411 aptamer-mediated targeted drug delivery into cancer cells. Curr. Drug Deliv., 2018, 15(9), 1323-1329.
[http://dx.doi.org/10.2174/1567201815666180724104451] [PMID: 30039760]
[188]
Zhang, F.; Correia, A.; Mäkilä, E.; Li, W.; Salonen, J.; Hirvonen, J.J.; Zhang, H.; Santos, H.A. Receptor-mediated surface charge inversion platform based on porous silicon nanoparticles for efficient cancer cell recognition and combination therapy. ACS Appl. Mater. Interfaces, 2017, 9(11), 10034-10046.
[http://dx.doi.org/10.1021/acsami.7b02196] [PMID: 28248078]
[189]
Brasky, T.M.; White, E.; Chen, C.L. Long-Term, Supplemental, one-carbon metabolism-related vitamin B use in relation to lung cancer risk in the Vitamins and Lifestyle (VITAL) Cohort. J. Clin. Oncol., 2017, 35(30), 3440-3448.
[http://dx.doi.org/10.1200/JCO.2017.72.7735] [PMID: 28829668]
[190]
Fanidi, A.; Muller, D.C.; Yuan, J.M.; Stevens, V.L.; Weinstein, S.J.; Albanes, D.; Prentice, R.; Thomsen, C.A.; Pettinger, M.; Cai, Q.; Blot, W.J.; Wu, J.; Arslan, A.A.; Zeleniuch-Jacquotte, A.; McCullough, M.L.; Le Marchand, L.; Wilkens, L.R.; Haiman, C.A.; Zhang, X.; Han, J.; Stampfer, M.J.; Smith-Warner, S.A.; Giovannucci, E.; Giles, G.G.; Hodge, A.M.; Severi, G.; Johansson, M.; Grankvist, K.; Langhammer, A.; Krokstad, S.; Næss, M.; Wang, R.; Gao, Y.T.; Butler, L.M.; Koh, W.P.; Shu, X.O.; Xiang, Y.B.; Li, H.; Zheng, W.; Lan, Q.; Visvanathan, K.; Bolton, J.H.; Ueland, P.M.; Midttun, Ø.; Ulvik, A.; Caporaso, N.E.; Purdue, M.; Ziegler, R.G.; Freedman, N.D.; Buring, J.E.; Lee, I.M.; Sesso, H.D.; Gaziano, J.M.; Manjer, J.; Ericson, U.; Relton, C.; Brennan, P.; Johansson, M. Circulating folate, vitamin B6, and methionine in relation to lung cancer risk in the lung cancer cohort consortium (LC3). J. Natl. Cancer Inst., 2018, 110(1)djx119
[http://dx.doi.org/10.1093/jnci/djx119] [PMID: 28922778]
[191]
Quici, S.; Casoni, A.; Foschi, F.; Armelao, L.; Bottaro, G.; Seraglia, R.; Bolzati, C.; Salvarese, N.; Carpanese, D.; Rosato, A. Folic acid-conjugated europium complexes as luminescent probes for selective targeting of cancer cells. J. Med. Chem., 2015, 58(4), 2003-2014.
[http://dx.doi.org/10.1021/jm501945w] [PMID: 25602505]
[192]
Ledermann, J.A.; Canevari, S.; Thigpen, T. Targeting the folate receptor: Diagnostic and therapeutic approaches to personalize cancer treatments. Ann. Oncol., 2015, 26(10), 2034-2043.
[http://dx.doi.org/10.1093/annonc/mdv250] [PMID: 26063635]
[193]
Lynn, R.C.; Poussin, M.; Kalota, A.; Feng, Y.; Low, P.S.; Dimitrov, D.S.; Powell, D.J., Jr Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood, 2015, 125(22), 3466-3476.
[http://dx.doi.org/10.1182/blood-2014-11-612721] [PMID: 25887778]
[194]
Chen, C.; Ke, J.; Zhou, X.E.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.L.; Xu, H.E.; Melcher, K. Structural basis for molecular recognition of folic acid by folate receptors. Nature, 2013, 500(7463), 486-489.
[http://dx.doi.org/10.1038/nature12327] [PMID: 23851396]
[195]
Xia, W.; Hilgenbrink, A.R.; Matteson, E.L.; Lockwood, M.B.; Cheng, J.X.; Low, P.S. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood, 2009, 113(2), 438-446.
[http://dx.doi.org/10.1182/blood-2008-04-150789] [PMID: 18952896]
[196]
Puig-Kröger, A.; Sierra-Filardi, E.; Domínguez-Soto, A.; Samaniego, R.; Corcuera, M.T.; Gómez-Aguado, F.; Ratnam, M.; Sánchez-Mateos, P.; Corbí, A.L. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res., 2009, 69(24), 9395-9403.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2050] [PMID: 19951991]
[197]
Kurahara, H.; Takao, S.; Kuwahata, T.; Nagai, T.; Ding, Q.; Maeda, K.; Shinchi, H.; Mataki, Y.; Maemura, K.; Matsuyama, T.; Natsugoe, S. Clinical significance of folate receptor β-expressing tumor-associated macrophages in pancreatic cancer. Ann. Surg. Oncol., 2012, 19(7), 2264-2271.
[http://dx.doi.org/10.1245/s10434-012-2263-0] [PMID: 22350599]
[198]
Sun, J.Y.; Shen, J.; Thibodeaux, J.; Huang, G.; Wang, Y.; Gao, J.; Low, P.S.; Dimitrov, D.S.; Sumer, B.D. In vivo optical imaging of folate receptor-β in head and neck squamous cell carcinoma. Laryngoscope, 2014, 124(8), E312-E319.
[http://dx.doi.org/10.1002/lary.24606] [PMID: 24448885]
[199]
Zwicke, G.L.; Mansoori, G.A.; Jeffery, C.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev., 2012, 3, 3.
[http://dx.doi.org/10.3402/nano.v3i0.18496] [PMID: 23240070]
[200]
Elnakat, H.; Ratnam, M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv. Drug Deliv. Rev., 2004, 56(8), 1067-1084.
[http://dx.doi.org/10.1016/j.addr.2004.01.001] [PMID: 15094207]
[201]
Xia, W.; Hilgenbrink, A.R.; Matteson, E.L.; Lockwood, M.B.; Cheng, J.X.; Low, P.S. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood, 2009, 113(2), 438-446.
[http://dx.doi.org/10.1182/blood-2008-04-150789] [PMID: 18952896]
[202]
Matherly, L.H.; Hou, Z.; Deng, Y. Human reduced folate carrier: Translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev., 2007, 26(1), 111-128.
[http://dx.doi.org/10.1007/s10555-007-9046-2] [PMID: 17334909]
[203]
Hong, W.; Hu, R.; Huang, X.; Lu, X.; Czech, T.; Tang, J. In vivo pharmacokinetics and biodistribution of novel all-trans retinoic acid derivative-loaded, folate-modified poly (l -amino acid) micelles. J. Drug Deliv. Sci. Technol., 2017, 41, 436-443.
[http://dx.doi.org/10.1016/j.jddst.2017.09.007]
[204]
Wang, M.; Hu, H.; Sun, Y.; Qiu, L.; Zhang, J.; Guan, G.; Zhao, X.; Qiao, M.; Cheng, L.; Cheng, L.; Chen, D. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan - PAMAM-plasmid DNA complexes for cancer cell targeting. Biomaterials, 2013, 34(38), 10120-10132.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.006] [PMID: 24094823]
[205]
Lai, C.; Yu, X.; Zhuo, H.; Zhou, N.; Xie, Y.; He, J.; Peng, Y.; Xie, X.; Luo, G.; Zhou, S.; Zhao, Y.; Lu, X. Anti-tumor immune response of folate-conjugated chitosan nanoparticles containing the IP-10 gene in mice with hepatocellular carcinoma. J. Biomed. Nanotechnol., 2014, 10(12), 3576-3589.
[http://dx.doi.org/10.1166/jbn.2014.2051] [PMID: 26000371]
[206]
Tavakolifard, S.; Biazar, E.; Pourshamsian, K.; Moslemin, M.H. Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent. Artif. Cells Nanomed. Biotechnol., 2016, 44(5), 1247-1253.
[http://dx.doi.org/10.3109/21691401.2015.1019670] [PMID: 25783856]
[207]
Tang, J.; Liu, Z.; Ji, F.; Li, Y.; Liu, J.; Song, J.; Li, J.; Zhou, J. The role of the cell cycle in the cellular uptake of folate-modified poly(L-amino acid) micelles in a cell population. Nanoscale, 2015, 7(48), 20397-20404.
[http://dx.doi.org/10.1039/C5NR03850B] [PMID: 26463458]
[208]
Yang, B.; Ni, X.; Chen, L.; Zhang, H.; Ren, P.; Feng, Y.; Chen, Y.; Fu, S.; Wu, J. Honokiol-loaded polymeric nanoparticles: An active targeting drug delivery system for the treatment of nasopharyngeal carcinoma. Drug Deliv., 2017, 24(1), 660-669.
[http://dx.doi.org/10.1080/10717544.2017.1303854] [PMID: 28368206]
[209]
Anjali, A.K.; Lakshmi, S. Gopinath, K.S.; Radhakantha, A. Riboflavin carrier protein: A serum and tissue marker for breast carcinoma. Int. J. Cancer, 2001, 95, 277-281.
[http://dx.doi.org/10.1002/1097-0215(20010920)95:5<277:AID-IJC1047>3.0.CO;2-Y] [PMID: 11494224]
[210]
Witte, A.B.; Leistra, A.N.; Wong, P.T.; Bharathi, S.; Refior, K.; Smith, P.; Kaso, O.; Sinniah, K.; Choi, S.K. Atomic force microscopy probing of receptor-nanoparticle interactions for riboflavin receptor targeted gold-dendrimer nanocomposites. J. Phys. Chem. B, 2014, 118(11), 2872-2882.
[http://dx.doi.org/10.1021/jp412053w] [PMID: 24571134]
[211]
Went, P.; Vasei, M.; Bubendorf, L.; Terracciano, L.; Tornillo, L.; Riede, U.; Kononen, J.; Simon, R.; Sauter, G.; Baeuerle, P.A. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br. J. Cancer, 2006, 94(1), 128-135.
[http://dx.doi.org/10.1038/sj.bjc.6602924] [PMID: 16404366]
[212]
Spizzo, G.; Fong, D.; Wurm, M.; Ensinger, C.; Obrist, P.; Hofer, C.; Mazzoleni, G.; Gastl, G.; Went, P. EpCAM expression in primary tumour tissues and metastases: An immunohistochemical analysis. J. Clin. Pathol., 2011, 64(5), 415-420.
[http://dx.doi.org/10.1136/jcp.2011.090274] [PMID: 21415054]
[213]
Osta, W.A.; Chen, Y.; Mikhitarian, K.; Mitas, M.; Salem, M.; Hannun, Y.A.; Cole, D.J.; Gillanders, W.E. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res., 2004, 64(16), 5818-5824.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0754] [PMID: 15313925]
[214]
Shigdar, S.; Qian, C.; Lv, L.; Pu, C.; Li, Y.; Li, L.; Marappan, M.; Lin, J.; Wang, L.; Duan, W. The use of sensitive chemical antibodies for diagnosis: Detection of low levels of EpCAM in breast cancer. PLoS One, 2013, 8(2)e57613
[http://dx.doi.org/10.1371/journal.pone.0057613] [PMID: 23460885]
[215]
Yao, J.; Feng, J.; Gao, X.; Wei, D.; Kang, T.; Zhu, Q.; Jiang, T.; Wei, X.; Chen, J. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer. Biomaterials, 2017, 113, 1-17.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.033] [PMID: 27794222]
[216]
Sakurai, Y.; Mizumura, W.; Murata, M.; Hada, T.; Yamamoto, S.; Ito, K.; Iwasaki, K.; Katoh, T.; Goto, Y.; Takagi, A.; Kohara, M.; Suga, H.; Harashima, H. Efficient siRNA delivery by lipid nanoparticles modified with a non-standard macrocyclic peptide for EpCAM-targeting. Mol. Pharm., 2017, 14(10), 3290-3298.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00362] [PMID: 28789523]
[217]
Marconescu, A.; Thorpe, P.E. Coincident exposure of phosphatidylethanolamine and anionic phospholipids on the surface of irradiated cells. Biochim. Biophys. Acta, 2008, 1778(10), 2217-2224.
[http://dx.doi.org/10.1016/j.bbamem.2008.05.006] [PMID: 18570887]
[218]
Vallabhapurapu, S.D.; Blanco, V.M.; Sulaiman, M.K.; Vallabhapurapu, S.L.; Chu, Z.; Franco, R.S.; Qi, X. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget, 2015, 6(33), 34375-34388.
[http://dx.doi.org/10.18632/oncotarget.6045] [PMID: 26462157]
[219]
Zhao, S.; Chu, Z.; Blanco, V.M.; Nie, Y.; Hou, Y.; Qi, X. SapC-DOPS nanovesicles as targeted therapy for lung cancer. Mol. Cancer Ther., 2015, 14(2), 491-498.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0661] [PMID: 25670331]
[220]
Chu, Z.; Abu-Baker, S.; Palascak, M.B.; Ahmad, S.A.; Franco, R.S.; Qi, X. Targeting and cytotoxicity of SapC-DOPS nanovesicles in pancreatic cancer. PLoS One, 2013, 8(10)e75507
[http://dx.doi.org/10.1371/journal.pone.0075507] [PMID: 24124494]
[221]
Wojton, J.; Chu, Z.; Mathsyaraja, H.; Meisen, W.H.; Denton, N.; Kwon, C.H.; Chow, L.M.; Palascak, M.; Franco, R.; Bourdeau, T.; Thornton, S.; Ostrowski, M.C.; Kaur, B.; Qi, X. Systemic delivery of SapC-DOPS has antiangiogenic and antitumor effects against glioblastoma. Mol. Ther., 2013, 21(8), 1517-1525.
[http://dx.doi.org/10.1038/mt.2013.114] [PMID: 23732993]
[222]
Luster, T.A.; He, J.; Huang, X.; Maiti, S.N.; Schroit, A.J.; De Groot, P.G.; Thorpe, P.E. Plasma protein beta-2-glycoprotein 1 mediates interaction between the anti-tumor monoclonal antibody 3G4 and anionic phospholipids on endothelial cells. J. Biol. Chem., 2006, 281(40), 29863-29871.
[http://dx.doi.org/10.1074/jbc.M605252200] [PMID: 16905548]
[223]
Zhou, H.; Stafford, J.H.; Hallac, R.R.; Zhang, L.; Huang, G.; Mason, R.P.; Gao, J.; Thorpe, P.E.; Zhao, D. Phosphatidylserine-targeted molecular imaging of tumor vasculature by magnetic resonance imaging. J. Biomed. Nanotechnol., 2014, 10(5), 846-855.
[http://dx.doi.org/10.1166/jbn.2014.1851] [PMID: 24734537]
[224]
Zhang, L.; Zhou, H.; Belzile, O.; Thorpe, P.; Zhao, D. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J. Control. Release, 2014, 183(1), 114-123.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.043] [PMID: 24698945]
[225]
Zhao, M.; Li, Z. A single-step kit formulation for the (99m) Tc-labeling of HYNIC-Duramycin. Nucl. Med. Biol., 2012, 39(7), 1006-1011.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.03.006] [PMID: 22858374]
[226]
Hong, W.; Guan, S.; Zhang, Q.; Bao, J.; Dai, H.; Liu, L.; Li, W.; Kong, W.; Hu, R.; Tang, J.A. G2/M-phase specific drug delivery system based on increased exposure of phosphatidylethanolamine on mitotic cancer cells and low pH in tumor tissues. J. Drug Deliv. Sci. Technol., 2019, 52, 224-235.
[http://dx.doi.org/10.1016/j.jddst.2019.04.016]
[227]
Iwamoto, K.; Hayakawa, T.; Murate, M.; Makino, A.; Ito, K.; Fujisawa, T.; Kobayashi, T. Curvature-dependent recognition of ethanolamine phospholipids by duramycin and cinnamycin. Biophys. J., 2007, 93(5), 1608-1619.
[http://dx.doi.org/10.1529/biophysj.106.101584] [PMID: 17483159]
[228]
Noy, N. Between death and survival: Retinoic acid in regulation of apoptosis. Annu. Rev. Nutr., 2010, 30(1), 201-217.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155509] [PMID: 20415582]
[229]
Sessler, R.J.; Noy, N. A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-II. Mol. Cell, 2005, 18(3), 343-353.
[http://dx.doi.org/10.1016/j.molcel.2005.03.026] [PMID: 15866176]
[230]
Geiger, T.; Madden, S.F.; Gallagher, W.M.; Cox, J.; Mann, M. Proteomic portrait of human breast cancer progression identifies novel prognostic markers. Cancer Res., 2012, 72(9), 2428-2439.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3711] [PMID: 22414580]
[231]
Hibbs, K.; Skubitz, K.M.; Pambuccian, S.E.; Casey, R.C.; Burleson, K.M.; Oegema, T.R., Jr; Thiele, J.J.; Grindle, S.M.; Bliss, R.L.; Skubitz, A.P.N. Differential gene expression in ovarian carcinoma: Identification of potential biomarkers. Am. J. Pathol., 2004, 165(2), 397-414.
[http://dx.doi.org/10.1016/S0002-9440(10)63306-8] [PMID: 15277215]
[232]
Gupta, A.; Williams, B.R.; Hanash, S.M.; Rawwas, J. Cellular retinoic acid-binding protein II is a direct transcriptional target of MycN in neuroblastoma. Cancer Res., 2006, 66(16), 8100-8108.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4519] [PMID: 16912187]
[233]
Jin, B.Y.; Fu, G.H.; Jiang, X.; Pan, H.; Zhou, D.K.; Wei, X.Y.; Zhou, L.; Chung, L.; Zheng, S.S. CRABP2 and FABP5 identified by 2D DIGE profiling are upregulated in human bladder cancer. Chin. Med. J. (Engl.), 2013, 126(19), 3787-3789.
[PMID: 24112183]
[234]
Campos, B.; Centner, F.S.; Bermejo, J.L.; Ali, R.; Dorsch, K.; Wan, F.; Felsberg, J.; Ahmadi, R.; Grabe, N.; Reifenberger, G.; Unterberg, A.; Burhenne, J.; Herold-Mende, C. Aberrant expression of retinoic acid signaling molecules influences patient survival in astrocytic gliomas. Am. J. Pathol., 2011, 178(5), 1953-1964.
[http://dx.doi.org/10.1016/j.ajpath.2011.01.051] [PMID: 21514413]
[235]
Hou, L.; Yao, J.; Zhou, J.; Zhang, Q. Pharmacokinetics of a paclitaxel-loaded low molecular weight heparin-all-trans-retinoid acid conjugate ternary nanoparticulate drug delivery system. Biomaterials, 2012, 33(21), 5431-5440.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.070] [PMID: 22521488]
[236]
Pizzo, P.; Pozzan, T. Mitochondria-endoplasmic reticulum choreography: Structure and signaling dynamics. Trends Cell Biol., 2007, 17(10), 511-517.
[http://dx.doi.org/10.1016/j.tcb.2007.07.011] [PMID: 17851078]
[237]
Ma, Y.; Hendershot, L.M. ER chaperone functions during normal and stress conditions. J. Chem. Neuroanat., 2004, 28(1-2), 51-65.
[http://dx.doi.org/10.1016/j.jchemneu.2003.08.007] [PMID: 15363491]
[238]
Kim, I.; Xu, W.; Reed, J.C. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov., 2008, 7(12), 1013-1030.
[http://dx.doi.org/10.1038/nrd2755] [PMID: 19043451]
[239]
Raina, K.; Noblin, D.J.; Serebrenik, Y.V.; Adams, A.; Zhao, C.; Crews, C.M. Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nat. Chem. Biol., 2014, 10(11), 957-962.
[http://dx.doi.org/10.1038/nchembio.1638] [PMID: 25242550]
[240]
Maly, D.J.; Papa, F.R. Druggable sensors of the unfolded protein response. Nat. Chem. Biol., 2014, 10(11), 892-901.
[http://dx.doi.org/10.1038/nchembio.1664] [PMID: 25325700]
[241]
Wang, M.; Kaufman, R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature, 2016, 529(7586), 326-335.
[http://dx.doi.org/10.1038/nature17041] [PMID: 26791723]
[242]
Smith, M.H.; Ploegh, H.L.; Weissman, J.S. Road to ruin: Targeting proteins for degradation in the endoplasmic reticulum. Science, 2011, 334(6059), 1086-1090.
[http://dx.doi.org/10.1126/science.1209235] [PMID: 22116878]
[243]
Ghosh, C.; Nandi, A.; Basu, S. Supramolecular self-assembly of triazine-based small molecules: Targeting the endoplasmic reticulum in cancer cells. Nanoscale, 2019, 11(7), 3326-3335.
[http://dx.doi.org/10.1039/C8NR08682F] [PMID: 30724283]
[244]
Park, W.; Heo, Y.J.; Han, D.K. New opportunities for nanoparticles in cancer immunotherapy. Biomater. Res., 2018, 22, 24.
[http://dx.doi.org/10.1186/s40824-018-0133-y] [PMID: 30275967]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy