Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Biomarkers of Cardiovascular Risk in Obese Women and their Relationship with Zinc Status

Author(s): Juliana S. Severo, Jennifer B.S. Morais, Jessica B. Beserra, Kyria J. Clímaco Cruz, Ana R.S. de Oliveira, Loanne R. dos Santos, Emídio M. de Matos Neto, George F.S. de Macedo, Betania de Jesus e Silva de Almendra Freitas, Gilberto S. Henriques and Dilina do Nascimento Marreiro*

Volume 16, Issue 5, 2020

Page: [734 - 742] Pages: 9

DOI: 10.2174/1573401315666191125113128

Price: $65

Abstract

Background: Excessive adipose tissue, in the case of common obesity, has been associated with an endocrine-metabolic alteration that contributes to a manifestation of dyslipidemia. To identify mechanisms which are involved in disorders of lipid metabolism, several nutrients have been studied, especially zinc, which act by regulating transcription factors that are important for synthesis and oxidation of lipids and act as an anti-inflammatory and antioxidant nutrient. Thus, the study makes an assessment of the zinc status and biomarkers of cardiovascular risk in obese women.

Methods: A case-control study enrolling obese (body mass index (BMI) ≥35 kg/m²) and eutrophic (BMI 18.5-24.9 kg/m²) Brazilian women was conducted. Dietary zinc intake was assessed by the three-day food registry. Plasma, erythrocyte and urinary zinc concentrations were determined by inductively coupled plasma optical emission spectrometry. Cardiovascular risk was assessed by plasma concentrations of lipid fractions, and by anthropometric measures.

Results: Both groups showed a dietary zinc intake above the recommendations, with no statistical difference between them (p >0.05). Mean plasma and erythrocyte zinc concentrations were significantly reduced in obese women, compared to the control group (p <0.05). Urinary zinc excretion was significantly higher in obese women (p <0.05), who also had a significantly higher cardiovascular risk when compared to the control group (p <0.05). An inverse correlation between dietary zinc intake and waist-hip ratio was found in obese women.

Conclusion: Obese women presented zinc redistribution characterized by reduced concentrations in plasma and erythrocytes, dietary zinc intake above the recommended, and increased zinc excretion in the urine. This study shows dyshomeostasis of zinc in obesity, a possible role in adiposity control and, consequently, its protective role against cardiovascular risk, due to its influence on risk biomarkers, such as waist-hip ratio.

Keywords: Biomarkers, cardiovascular risk, dyslipidemias, obesity, women, zinc.

Graphical Abstract
[1]
Bays HE, Jones PH, Jacobson TA, et al. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY. J Clin Lipidol 2016; 10(1): 15-32.
[http://dx.doi.org/10.1016/j.jacl.2015.12.003] [PMID: 26892119]
[2]
Koliaki C, Roden M. Alterations of mitochondrial function and insulin sensitivity in human obesity and diabetes mellitus. Annu Rev Nutr 2016; 36: 337-67.
[http://dx.doi.org/10.1146/annurev-nutr-071715-050656] [PMID: 27146012]
[3]
Parish RC, Todman S, Jain SK. Resting heart rate variability, inflammation, and insulin resistance in overweight and obese adolescents. Metab Syndr Relat Disord 2016; 14(6): 291-7.
[http://dx.doi.org/10.1089/met.2015.0140] [PMID: 27182718]
[4]
Chang CJ, Jian DY, Lin MW, Zhao JZ, Ho LT, Juan CC. Evidence in obese children: contribution of hyperlipidemia, obesity-inflammation, and insulin sensitivity. PLoS One 2015; 10(5)e0125935
[http://dx.doi.org/10.1371/journal.pone.0125935] [PMID: 26011530]
[5]
Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am J Physiol Cell Physiol 2010; 298(4): C961-71.
[http://dx.doi.org/10.1152/ajpcell.00547.2009] [PMID: 20107043]
[6]
Oliveira AR, Cruz KJ, Severo JS, et al. Hypomagnesemia and its relation with chronic low-grade inflammation in obesity Rev Assoc Med Bras (1992) 2017; 63(2): 156-63.
[http://dx.doi.org/10.1590/1806-9282.63.02.156]
[7]
Nikolic D, Katsiki N, Montalto G, Isenovic ER, Mikhailidis DP, Rizzo M. Lipoprotein subfractions in metabolic syndrome and obesity: clinical significance and therapeutic approaches. Nutrients 2013; 5(3): 928-48.
[http://dx.doi.org/10.3390/nu5030928] [PMID: 23507795]
[8]
Guptha S, Gupta R, Deedwania P, et al. Cholesterol lipoproteins and prevalence of dyslipidemias in urban Asian Indians: a cross sectional study. Indian Heart J 2014; 66(3): 280-8.
[http://dx.doi.org/10.1016/j.ihj.2014.03.005] [PMID: 24973832]
[9]
Shamai L, Lurix E, Shen M, et al. Association of body mass index and lipid profiles: evaluation of a broad spectrum of body mass index patients including the morbidly obese. Obes Surg 2011; 21(1): 42-7.
[http://dx.doi.org/10.1007/s11695-010-0170-7] [PMID: 20563664]
[10]
Mudabasappagol CD, Kammar KF. Correlation of anthropometric measurements with LDL levels in young adult females. IJBAMR 2015; 4(4): 684-92.
[11]
Al-Ajlan AR. Lipid profile in relation to anthropometric measurements among college male students in Riyadh, Saudi Arabia: a cross-sectional study. Int J Biomed Sci 2011; 7(2): 112-9.
[PMID: 23675226]
[12]
Li X, Guan Y, Shi X, et al. Effects of high zinc levels on the lipid synthesis in rat hepatocytes. Biol Trace Elem Res 2013; 154(1): 97-102.
[http://dx.doi.org/10.1007/s12011-013-9702-z] [PMID: 23695729]
[13]
Tasić NM, Tasić D, Otašević P, et al. Copper and zinc concentrations in atherosclerotic plaque and serum in relation to lipid metabolism in patients with carotid atherosclerosis. Vojnosanit Pregl 2015; 72(9): 801-6.
[http://dx.doi.org/10.2298/VSP140417074T] [PMID: 26554112]
[14]
Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol 2012; 86(4): 521-34.
[http://dx.doi.org/10.1007/s00204-011-0775-1] [PMID: 22071549]
[15]
Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR. Zinc and oxidative stress: current mechanisms. Antioxidants 2017; 6(2)E24
[http://dx.doi.org/10.3390/antiox6020024] [PMID: 28353636]
[16]
Prasad AS, Bao B, Beck FW, Sarkar FH. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-κB. Nutrition 2011; 27(7-8): 816-23.
[http://dx.doi.org/10.1016/j.nut.2010.08.010] [PMID: 21035309]
[17]
Mota Martins L, Soares de Oliveira AR, Clímaco Cruz KJ, et al. Influence of cortisol on zinc metabolism in morbidly obese women. Nutr Hosp 2014; 29(1): 57-63.
[PMID: 24483962]
[18]
Begin-Heick N, Dalpe-Scott M, Rowe J, Heick HM. Zinc supplementation attenuates insulin secretory activity in pancreatic islets of the ob/ob mouse. Diabetes 1985; 34(2): 179-84.
[http://dx.doi.org/10.2337/diab.34.2.179] [PMID: 3881305]
[19]
Foster M, Samman S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 2012; 4(7): 676-94.
[http://dx.doi.org/10.3390/nu4070676] [PMID: 22852057]
[20]
Feitosa MCP, Lima VBS, Marreiro DN. Participação da inflamação sobre o metabolismo do zinco na obesidade. Nutrire 2012; 37(1): 93-104.
[http://dx.doi.org/10.4322/nutrire.2012.008]
[21]
Liuzzi JP, Lichten LA, Rivera S, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA 2005; 102(19): 6843-8.
[http://dx.doi.org/10.1073/pnas.0502257102] [PMID: 15863613]
[22]
Marreiro DN, Geloneze B, Tambascia MA, Lerário AC, Halpern A, Cozzolino SM. Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 2006; 112(2): 109-18.
[http://dx.doi.org/10.1385/BTER:112:2:109] [PMID: 17028377]
[23]
Caleyachetty R, Thomas GN, Toulis KA, et al. Metabolically healthy obese and incident cardiovascular disease events among 3.5 million men and women. J Am Coll Cardiol 2017; 70(12): 1429-37.
[http://dx.doi.org/10.1016/j.jacc.2017.07.763] [PMID: 28911506]
[24]
Brasil Ministério da Saúde Resolução no 466/12 Conselho Nacional de Pesquisa com Seres Humanos Diário Oficial da União Brasília 2012.
[25]
World Health Organization. Obesity: Preventing and managing the global epidemic Technical report series 2000; 8949.
[26]
Anção MS, Cuppari L, Draine AS, Singulem D. Programa de apoio à nutrição Nutwin: versão 15, São Paulo: Departamento de Informática em Saúde, SPDM Unifesp/EPM 2002.
[27]
Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, cooper, iodine, iron, manganese, molybdenun, nickel, silicon, vanadium, and zinc 2001; 650.
[28]
Whitehouse RC, Prasad AS, Rabbani PI, Cossack ZT. Zinc in plasma, neutrophils, lymphocytes, and erythrocytes as determined by flameless atomic absorption spectrophotometry. Clin Chem 1982; 28(3): 475-80.
[PMID: 7067090]
[29]
Gibson RS. Assessment of chromium, copper and zinc status GIBSON. RS Principles of Nutritional Assessment 2005; pp. 711-30.
[30]
Guthrie HA, Picciano MF. Micronutrient minerals. In: Guthrie HA, Picciano MF, Eds. Human nutrition. St. Louis: Mosby 1995; pp. 333-51.
[31]
Van Assendelft OW. The measurement of hemoglobin Modern concepts in hematology. New York: Academic press 1972; pp. 14-25.
[32]
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-502.
[PMID: 4337382]
[33]
Faludi AA, Izar MCO, Saraiva JFK, et al. Atualização da diretriz brasileira de dislipidemias e prevenção da aterosclerose. Arq Bras Cardiol 2017; 109(2): 1-76.
[34]
World Health Organization. Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation 2008.
[35]
Ben-Noun LL, Laor A. Relationship between changes in neck circumference and changes in blood pressure. Am J Hypertens 2004; 17(5 Pt 1): 409-14.
[http://dx.doi.org/10.1016/j.amjhyper.2004.02.005] [PMID: 15110899]
[36]
World Health Organization. Obesity: Preventing and managing the global epidemic Report of a WHO Consulation on Obesity 1998.
[37]
Pitanga FJG, Lessa I. Sensibilidade e especificidade do índice de conicidade como discriminador do risco coronariano de adultos em Salvados, Brasil. Rev Bras Epidemiol 2004; 7(3)
[http://dx.doi.org/10.1590/S1415-790X2004000300004]
[38]
Castelli WP, Abbott RD, McNamara PM. Summary estimates of cholesterol used to predict coronary heart disease. Circulation 1983; 67(4): 730-4.
[http://dx.doi.org/10.1161/01.CIR.67.4.730] [PMID: 6825228]
[39]
Feitosa MC, Lima VB, Moita Neto JM, Marreiro DN. Plasma concentration of IL-6 and TNF-α and its relationship with zincemia in obese women. Rev Assoc Med Bras (1992) 1992; 59(5): 429-34. 2013.
[40]
Cruz KJ, Morais JB, de Oliveira AR, Severo JS, Marreiro DD. The effect of zinc supplementation on insulin resistance in obese subjects: a systematic review. Biol Trace Elem Res 2017; 176(2): 239-43.
[http://dx.doi.org/10.1007/s12011-016-0835-8] [PMID: 27587022]
[41]
Naber TH, van den Hamer CJ, van den Broek WJ, van Tongeren JH. Zinc uptake by blood cells of rats in zinc deficiency and inflammation. Biol Trace Elem Res 1992; 35(2): 137-52.
[http://dx.doi.org/10.1007/BF02783726] [PMID: 1280980]
[42]
Naber TH, van den Hamer CJ, van den Broek WJ, Roelofs H. Zinc exchange by blood cells in nearly physiologic standard conditions. Biol Trace Elem Res 1994; 46(1-2): 29-50.
[http://dx.doi.org/10.1007/BF02790066] [PMID: 7888283]
[43]
Cominetti C, Garrido AB Jr, Cozzolino SM. Zinc nutritional status of morbidly obese patients before and after Roux-en-Y gastric bypass: a preliminary report. Obes Surg 2006; 16(4): 448-53.
[http://dx.doi.org/10.1381/096089206776327305] [PMID: 16608609]
[44]
Kim J, Ahn J. Effect of zinc supplementation on inflammatory markers and adipokines in young obese women. Biol Trace Elem Res 2014; 157(2): 101-6.
[http://dx.doi.org/10.1007/s12011-013-9885-3] [PMID: 24402636]
[45]
Marreiro DN, Fisberg M, Cozzolino SM. Zinc nutritional status and its relationships with hyperinsulinemia in obese children and adolescents. Biol Trace Elem Res 2004; 100(2): 137-49.
[http://dx.doi.org/10.1385/BTER:100:2:137] [PMID: 15326363]
[46]
Kinlaw WB, Levine AS, Morley JE, Silvis SE, McClain CJ. Abnormal zinc metabolism in type II diabetes mellitus. Am J Med 1983; 75(2): 273-7.
[http://dx.doi.org/10.1016/0002-9343(83)91205-6] [PMID: 6881179]
[47]
Baum M. Insulin stimulates volume absorption in the rabbit proximal convoluted tubule. J Clin Invest 1987; 79(4): 1104-9.
[http://dx.doi.org/10.1172/JCI112925] [PMID: 3549779]
[48]
Tubek S. Urinary zinc excretion is normalized in primary arterial hypertension after perindopril treatment. Biol Trace Elem Res 2006; 114(1-3): 127-33.
[http://dx.doi.org/10.1385/BTER:114:1:127] [PMID: 17205995]
[49]
Freire SC, Fisberg M, Cozzolino SM. Dietary intervention causes redistribution of zinc in obese adolescents. Biol Trace Elem Res 2013; 154(2): 168-77.
[http://dx.doi.org/10.1007/s12011-013-9718-4] [PMID: 23784733]
[50]
Cruz KJC, Oliveira ARS, Morais JBS, et al. Relationship between magnesium status and cardiovascular risk in obese women. Nutr Clin Metab 2018; 32(1): 22-6.
[51]
Picon PX, Leitão CB, Gerchman F, et al. Medida da cintura e razão cintura/quadril e identificação de situações de risco cardiovascular: estudo multicêntrico em pacientes com diabetes melito tipo 2. Arq Bras Endocrinol Metabol 2007; 51(3): 443-9.
[http://dx.doi.org/10.1590/S0004-27302007000300013] [PMID: 17546244]
[52]
Revoredo CMS, Aguiar HDSP, Lima SMT, et al. Status do zinco e sua relação com biomarcadores de risco cardiovascular. Int J Card Sci 2016; 29(5): 355-61.
[53]
Foster M, Petocz P, Samman S. Effects of zinc on plasma lipoprotein cholesterol concentrations in humans: a meta-analysis of randomised controlled trials. Atherosclerosis 2010; 210(2): 344-52.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.11.038] [PMID: 20034629]
[54]
Foster M, Herulah UN, Prasad A, Petocz P, Samman S. Zinc status of vegetarians during pregnancy: a systematic review of observational studies and meta-analysis of zinc intake. Nutrients 2015; 7(6): 4512-25.
[http://dx.doi.org/10.3390/nu7064512] [PMID: 26056918]
[55]
Fung EB, Gildengorin G, Talwar S, Hagar L, Lal A. Zinc status affects glucose homeostasis and insulin secretion in patients with thalassemia. Nutrients 2015; 7(6): 4296-307.
[http://dx.doi.org/10.3390/nu7064296] [PMID: 26043030]
[56]
Sakakibara Y, Sato S, Shirato K, et al. Dietary zinc-deficiency and its recovery responses in the thermogenesis of rats. J Toxicol Sci 2011; 36(5): 681-5.
[http://dx.doi.org/10.2131/jts.36.681] [PMID: 22008544]
[57]
Tomat AL, Veiras LC, Aguirre S, et al. Mild zinc deficiency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology. Nutrition 2013; 29(3): 568-73.
[http://dx.doi.org/10.1016/j.nut.2012.09.008] [PMID: 23274096]
[58]
Argani H, Mahdavi R, Ghorbani-haghjo A, Razzaghi R, Nikniaz L, Gaemmaghami SJ. Effects of zinc supplementation on serum zinc and leptin levels, BMI, and body composition in hemodialysis patients. J Trace Elem Med Biol 2014; 28(1): 35-8.
[http://dx.doi.org/10.1016/j.jtemb.2013.09.001] [PMID: 24188897]
[59]
Ferro FE, de Sousa Lima VB, Soares NR, et al. Parameters of metabolic syndrome and its relationship with zincemia and activities of superoxide dismutase and glutathione peroxidase in obese women. Biol Trace Elem Res 2011; 143(2): 787-93.
[http://dx.doi.org/10.1007/s12011-010-8940-6] [PMID: 21210247]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy