Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Promising In Vitro Anti-Toxoplasma gondii Effects of Commercial Chitosan

Author(s): Bahman Rahimi Esboei, Masoud Keighobadi, Hajar Ziaei Hezarjaribi, Mahdi Fakhar*, Ahmad Daryani, Aroona Chabra, Masoud Soosaraei and Rezwan Yalveh

Volume 21, Issue 1, 2021

Published on: 10 May, 2020

Page: [151 - 155] Pages: 5

DOI: 10.2174/1871526520666200511004932

Price: $65

Abstract

Background: Toxoplasmosis is a disease that results from infection with an obligate intracellular T. gondii parasite, one of the world's most common parasites. Considering the complications of chemical drugs and the need for an appropriate drug combination for treatment of toxoplasmosis and considering the antimicrobial potential of chitosan, as a natural source, this study was aimed to evaluate in vitro activity of commercial chitosan (CC) on T. gondii.

Methods: In this experimental study, the tachyzoites of T. gondii were collected from the peritoneal exudates from infected Balb/c mice. The tachyzoites were diluted in phosphate buffer saline (PBS) solution. Chitosan with low molecular weight was commercially purchased. Then, at concentrations of 10, 50, 100, and 200 μg/mL and after 30, 60, 120, and 180 minutes, the viability of tachyzoites was determined by using trypan blue 0.1%. Anti-T.gondii activity of CC in all concentrations was significantly higher than pyrimethamine as the control group (P=0.05).

Results: The concentration of 200 μg/mL of CC had the highest effects and killed 30.5, 52, 59, and 81.5% of tachyzoites after 30, 60, 120, and 180 minutes. Moreover, IC50 values of CC were 515, 171, 12.5, and <10 μg/mL in comparison with pyrimethamine as 58.82 μg/mL for 30, 60, 120, and 180 min of exposure time.

Conclusion: Our results indicate that chitosan in low molecular weight had potent activity against T. gondii tachyzoites and could be an appropriate candidate for the treatment of at least acute toxoplasmosis, certainly, after complementary in vivo experiments.

Keywords: Chitosan, tachyzoites, Toxoplasma gondii, in vitro, commercial chitosan, toxoplasmosis, in vivo.

Graphical Abstract
[1]
Dubey, J.P. The history of Toxoplasma gondii--the first 100 years. J. Eukaryot. Microbiol., 2008, 55(6), 467-475.
[http://dx.doi.org/10.1111/j.1550-7408.2008.00345.x] [PMID: 19120791]
[2]
Gharavi, M. Textbook of clinical protozoology. Mir Publishers: Teimourzadeh, Iran; , 2004.
[3]
Wang, Z-D.; Liu, H-H.; Ma, Z-X.; Ma, H-Y.; Li, Z-Y.; Yang, Z-B.; Zhu, X.Q.; Xu, B.; Wei, F.; Liu, Q. Toxoplasma gondii infection in immunocompromised patients: a systematic review and meta-analysis. Front. Microbiol., 2017, 8, 389.
[http://dx.doi.org/10.3389/fmicb.2017.00389] [PMID: 28337191]
[4]
Alday, P.H.; Doggett, J.S. Drugs in development for toxoplasmosis: advances, challenges, and current status. Drug Des. Devel. Ther., 2017, 11, 273-293.
[http://dx.doi.org/10.2147/DDDT.S60973] [PMID: 28182168]
[5]
Thiébaut, R.; Leproust, S.; Chêne, G.; Gilbert, R. SYROCOT (Systematic Review on Congenital Toxoplasmosis) study group. Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients’ data. Lancet, 2007, 369(9556), 115-122.
[http://dx.doi.org/10.1016/S0140-6736(07)60072-5] [PMID: 17223474]
[6]
C Sepulveda-Arias J A Veloza L, E Mantilla-Muriel L.. Anti-Toxoplasma activity of natural products: a review. Recent Patents Anti-Infect. Drug Disc., 2014, 9(3), 186-194.
[7]
Fakhar, M.; Chabra, A.; Rahimi-Esboei, B.; Rezaei, F. in vitro protoscolicidal effects of fungal chitosan isolated from Penicillium waksmanii and Penicillium citrinum. J. Parasit. Dis., 2015, 39(2), 162-167.
[http://dx.doi.org/10.1007/s12639-013-0300-y] [PMID: 26063992]
[8]
Al Nasr, I.; Ahmed, F.; Pullishery, F.; El-Ashram, S.; Ramaiah, V.V. Toxoplasmosis and anti-Toxoplasma effects of medicinal plant extracts-A mini-review. Asian Pac. J. Trop. Med., 2016, 9(8), 730-734.
[http://dx.doi.org/10.1016/j.apjtm.2016.06.012] [PMID: 27569880]
[9]
Islam, S.; Bhuiyan, M.R.; Islam, M. Chitin and chitosan: structure, properties and applications in biomedical engineering. J. Polym. Environ., 2017, 25(3), 854-866.
[http://dx.doi.org/10.1007/s10924-016-0865-5]
[10]
Kumar, M.N.R. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[11]
Sette-de-Souza, P.H.; de Medeiros, F.D.; de Oliveira Pinto, M.G.; Queiroz, J.C.; de Sousa, R.I.M.; Bento, P.M. Antimicrobial potential of chitosan. Afr. J. Microbiol. Res., 2015, 9(3), 147-154.
[http://dx.doi.org/10.5897/AJMR2014.7235]
[12]
Taheri, A.; Seyfan, A.; Jalalinezhad, S. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus) Shell. J. Fasa Univ. Med. Sci, 2013, 3(1), 49-55.
[13]
Pillai, C.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34(7), 641-678.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[14]
Dubey, J.P. Toxoplasmosis of animals and humans. CRC press; , 2016.
[http://dx.doi.org/10.1201/9781420092370]
[15]
Goy, R.C. Britto Dd, Assis OB. A review of the antimicrobial activity of chitosan. Polímeros, 2009, 19(3), 241-247.
[http://dx.doi.org/10.1590/S0104-14282009000300013]
[16]
Zhang, M.; Tan, T.; Yuan, H.; Rui, C. Insecticidal and fungicidal activities of chitosan and oligo-chitosan. J. Bioact. Compat. Polym., 2003, 18(5), 391-400.
[http://dx.doi.org/10.1177/0883911503039019]
[17]
Coma, V.; Deschamps, A.; Martial‐Gros, A. Bioactive packaging materials from edible chitosan polymer—antimicrobial activity assessment on dairy‐related contaminants. J. Food Sci., 2003, 68(9), 2788-2792.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb05806.x]
[18]
Dutta, P.; Tripathi, S.; Mehrotra, G.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem., 2009, 114(4), 1173-1182.
[http://dx.doi.org/10.1016/j.foodchem.2008.11.047]
[19]
Jeon, Y-J.; Park, P-J.; Kim, S-K. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym., 2001, 44(1), 71-76.
[http://dx.doi.org/10.1016/S0144-8617(00)00200-9]
[20]
No, H.K.; Park, N.Y.; Lee, S.H.; Meyers, S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol., 2002, 74(1-2), 65-72.
[http://dx.doi.org/10.1016/S0168-1605(01)00717-6] [PMID: 11929171]
[21]
Chung, Y-C.; Su, Y.P.; Chen, C-C.; Jia, G.; Wang, H.L.; Wu, J.C.; Lin, J.G. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin., 2004, 25(7), 932-936.
[PMID: 15210068]
[22]
Rahimi, M.T.; Ahmadpour, E.; Rahimi Esboei, B.; Spotin, A.; Kohansal Koshki, M.H.; Alizadeh, A.; Honary, S.; Barabadi, H.; Ali Mohammadi, M. Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. Int. J. Surg., 2015, 19, 128-133.
[http://dx.doi.org/10.1016/j.ijsu.2015.05.043] [PMID: 26028438]
[23]
Esboei, B.R.; Mohebali, M.; Mousavi, P.; Fakhar, M.; Akhoundi, B. Potent antileishmanial activity of chitosan against Iranian strain of Leishmania major (MRHO/IR/75/ER): In vitro and in vivo assay. J. Vector Borne Dis., 2018, 55(2), 111-115.
[http://dx.doi.org/10.4103/0972-9062.242557] [PMID: 30280708]
[24]
Tripathy, S.; Mahapatra, S.K.; Chattopadhyay, S.; Das, S.; Dash, S.K.; Majumder, S.; Pramanik, P.; Roy, S. A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop., 2013, 128(3), 494-503.
[http://dx.doi.org/10.1016/j.actatropica.2013.07.011] [PMID: 23906613]
[25]
Rahimi-Esboei, B.; Fakhar, M.; Chabra, A.; Hosseini, M. in vitro treatments of Echinococcus granulosus with fungal chitosan, as a novel biomolecule. Asian Pac. J. Trop. Biomed., 2013, 3(10), 811-815.
[http://dx.doi.org/10.1016/S2221-1691(13)60160-4] [PMID: 24075347]
[26]
Islam, M.; Masum, S.M.; Mahbub, K.R.; Haque, M. Antibacterial Activity of Crab-Chitosan against Staphylococcus aureus and Escherichia coli. J. Adv. Sci. Res, 2011, 16(4), 291-304.
[27]
Tajdini, F.; Amini, M.A.; Nafissi-Varcheh, N.; Faramarzi, M.A. Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. Int. J. Biol. Macromol., 2010, 47(2), 180-183.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.05.002] [PMID: 20471417]
[28]
Tavassoli, M.; Imani, A.; Tajik, H.; Moradi, M.; Pourseyed, Sh. Novel in vitro efficiency of chitosan biomolecule against Trichomonas gallinae. Iran. J. Parasitol., 2012, 7(1), 92-96.
[PMID: 23133478]
[29]
Yarahmadi, M; Fakhar, M; Ebrahimzadeh, MA; Chabra, A; Rahimi-esboei, B The anti-giardial effectiveness of fungal and commercial chitosan against Giardia intestinalis cysts in vitro. J. parasitic Dis., 2016, 40(1), 75-80.
[http://dx.doi.org/10.1007/s12639-014-0449-z]
[30]
Gaafar, M.R.; Mady, R.F.; Diab, R.G.; Shalaby, T.I. Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Exp. Parasitol., 2014, 143, 30-38.
[http://dx.doi.org/10.1016/j.exppara.2014.05.005] [PMID: 24852215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy