Review Article

查尔酮对反应物种产生主要来源的影响:糖尿病的治疗意义

卷 28, 期 8, 2021

发表于: 24 May, 2020

页: [1625 - 1669] 页: 45

弟呕挨: 10.2174/0929867327666200525010007

价格: $65

摘要

糖尿病的特征是由胰岛素分泌缺陷、胰岛素作用或两者都引起的高血糖。高脂血症和氧化应激(OS),即反应氧/氮物质(ROS/RNS)的产生,积极导致糖尿病的发展和恶化。胆饼,也被称为苯并乙酚或苯并乙酮,存在一种1,3-二醇-2-亲-1-1支架,已被证明在新的抗氧化化合物的开发中很有前景。考虑到抗氧化治疗的潜在兴趣,本综述仔细审查了糖尿病过程中ROS/RNS生产的主要来源的作用。查尔锥对烟酰胺腺苷酸二核苷酸(NADPH)氧化酶、黄嘌呤氧化酶、线粒体呼吸链和一氧化氮氧化酶的调节作用,尽可能建立了结构-活性关系(SAR)。从SAR分析可以看出,焦茶酚支架中儿茶酚基、羟基和甲氧基取代基的存在改善了它们的调节。

关键词: 查尔酮,糖尿病,氧化应激,NADPH氧化酶,黄嘌呤氧化酶,线粒体呼吸链,一氧化氮合酶。

« Previous
[1]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[2]
Aouacheri, O.; Saka, S.; Krim, M.; Messaadia, A.; Maidi, I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can. J. Diabetes, 2015, 39(1), 44-49.
[http://dx.doi.org/10.1016/j.jcjd.2014.03.002] [PMID: 25065473]
[3]
Yang, H.; Jin, X.; Kei Lam, C.W.; Yan, S.K. Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med., 2011, 49(11), 1773-1782.
[http://dx.doi.org/10.1515/cclm.2011.250] [PMID: 21810068]
[4]
Mahapatra, D.K.; Asati, V.; Bharti, S.K. Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. Eur. J. Med. Chem., 2015, 92, 839-865.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.051] [PMID: 25638569]
[5]
Harreiter, J.; Roden, M. [Diabetes mellitus-definition, classification, diagnosis, screening and prevention (Update 2019) Wien. Klin. Wochenschr., 2019, 131(Suppl. 1), 6-15.
[http://dx.doi.org/10.1007/s00508-019-1450-4] [PMID: 30980151]
[6]
Gorin, Y.; Block, K. Nox as a target for diabetic complications. Clin. Sci. (Lond.), 2013, 125(8), 361-382.
[http://dx.doi.org/10.1042/CS20130065] [PMID: 23767990]
[7]
Martinez, L.C.; Sherling, D.; Holley, A. The screening and prevention of diabetes mellitus. Prim. Care, 2019, 46(1), 41-52.
[http://dx.doi.org/10.1016/j.pop.2018.10.006] [PMID: 30704659]
[8]
Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes mellitus and inflammation. Curr. Diab. Rep., 2013, 13(3), 435-444.
[http://dx.doi.org/10.1007/s11892-013-0375-y] [PMID: 23494755]
[9]
Altas, I.D.F. Diabetes atlas ,9th edition; International Diabetes Federation: Brussels, 2019. Available at: www.diabetesatlas. org/en/ (Accessed Date: 3rd September, 2019).
[10]
Atlas, I.D.F. 8th; International Diabetes Federation: Brussels, 2017. Available at: http://www.diabetesatlas.org/en/www.diabetesatlas.org/en/ (Accessed in 15 September, 2019).
[11]
Tokarz, V.L.; MacDonald, P.E.; Klip, A. The cell biology of systemic insulin function. J. Cell Biol., 2018, 217(7), 2273-2289.
[http://dx.doi.org/10.1083/jcb.201802095] [PMID: 29622564]
[12]
Poretsky, L. Principles of diabetes mellitus, 2nd ed; Springer, 2010.
[http://dx.doi.org/10.1007/978-0-387-09841-8]
[13]
Klöppel, G.; Löhr, M.; Habich, K.; Oberholzer, M.; Heitz, P.U. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv. Synth. Pathol. Res., 1985, 4(2), 110-125.
[http://dx.doi.org/10.1159/000156969] [PMID: 3901180]
[14]
Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad. Med. J., 2016, 92(1084), 63-69.
[http://dx.doi.org/10.1136/postgradmedj-2015-133281] [PMID: 26621825]
[15]
Ribeiro, D.; Freitas, M.; Lima, L.F.C. J.; Fernandes, E. Proinflammatory pathways: the modulation by flavonoids. Med. Res. Rev., 2015, 35(5), 877-936.
[http://dx.doi.org/10.1002/med.21347] [PMID: 25926332]
[16]
Zatalia, S.R.; Sanusi, H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med. Indones., 2013, 45(2), 141-147.
[PMID: 23770795]
[17]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[18]
Drews, G.; Krippeit-Drews, P.; Düfer, M. Oxidative stress and beta-cell dysfunction. Pflugers Arch., 2010, 460(4), 703-718.
[http://dx.doi.org/10.1007/s00424-010-0862-9] [PMID: 20652307]
[19]
Oguntibeju, O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(3), 45-63.
[PMID: 31333808]
[20]
Folli, F.; Corradi, D.; Fanti, P.; Davalli, A.; Paez, A.; Giaccari, A.; Perego, C.; Muscogiuri, G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev., 2011, 7(5), 313-324.
[http://dx.doi.org/10.2174/157339911797415585] [PMID: 21838680]
[21]
Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J., 2012, 12(1), 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[22]
Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis., 2018, 9(2), 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[23]
Babior, B.M. NADPH oxidase: an update. Blood, 1999, 93(5), 1464-1476.
[http://dx.doi.org/10.1182/blood.V93.5.1464] [PMID: 10029572]
[24]
Tang, Y.; Long, J.; Liu, J. Chapter 8 - Hyperglycemiaassociated oxidative stress induces autophagy: involvement of the ROS-ERK/JNK-p53 Pathway. In: Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Elsevier Inc. Vol. 1, , 2013.
[http://dx.doi.org/10.1016/B978-0-12-405530-8.00008-X]
[25]
Osto, E.; Cosentino, F. The role of oxidative stress in endothelial dysfunction and vascular inflammation.Nitric Oxide, 2nd ed; Elsevier, 2010, pp. 705-754.
[http://dx.doi.org/10.1016/B978-0-12-373866-0.00022-8]
[26]
Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[27]
Fakhruddin, S.; Alanazi, W.; Jackson, K.E. Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J. Diabetes Res., 2017.20178379327
[http://dx.doi.org/10.1155/2017/8379327] [PMID: 28164134]
[28]
Sedeek, M.; Nasrallah, R.; Touyz, R.M.; Hébert, R.L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol., 2013, 24(10), 1512-1518.
[http://dx.doi.org/10.1681/ASN.2012111112] [PMID: 23970124]
[29]
Belambri, S.A.; Rolas, L.; Raad, H.; Hurtado-Nedelec, M.; Dang, P.M.; El-Benna, J. NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits. Eur. J. Clin. Invest., 2018, 48(Suppl. 2)e12951
[http://dx.doi.org/10.1111/eci.12951] [PMID: 29757466]
[30]
Wu, Y.; Tang, L.; Chen, B. Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid. Med. Cell. Longev., 2014, 2014752387
[http://dx.doi.org/10.1155/2014/752387] [PMID: 25180070]
[31]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[32]
Trager, W.F. 5.05 - Principles of drug metabolism 1: Redox Reactions A2 - Taylor, John B.Comprehensive Medicinal Chemistry II; Triggle, D.J., Ed.; Elsevier: Oxford, 2007, pp. 87-132.
[http://dx.doi.org/10.1016/B0-08-045044-X/00119-X ]
[33]
Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev., 2006, 58(1), 87-114.
[http://dx.doi.org/10.1124/pr.58.1.6] [PMID: 16507884]
[34]
Johansen, J.S.; Harris, A.K.; Rychly, D.J.; Ergul, A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol., 2005, 4(1), 5.
[http://dx.doi.org/10.1186/1475-2840-4-5] [PMID: 15862133]
[35]
Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta, 2014, 1840(9), 2709-2729.
[http://dx.doi.org/10.1016/j.bbagen.2014.05.017] [PMID: 24905298]
[36]
Vorbach, C.; Harrison, R.; Capecchi, M.R. Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol., 2003, 24(9), 512-517.
[http://dx.doi.org/10.1016/S1471-4906(03)00237-0] [PMID: 12967676]
[37]
Tabet, F.; Touyz, R.M. Chapter 30- Reactive oxygen species, oxidative stress, and vascular biology in hypertension. In: In: Comprehensive Hypertension; , 2007; pp. (337)344-.
[http://dx.doi.org/10.1016/B978-0-323-03961-1.50033-7]
[38]
Rahimi, R.; Nikfar, S.; Larijani, B.; Abdollahi, M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed. Pharmacother., 2005, 59(7), 365-373.
[http://dx.doi.org/10.1016/j.biopha.2005.07.002] [PMID: 16081237]
[39]
McNally, J.S.; Saxena, A.; Cai, H.; Dikalov, S.; Harrison, D.G. Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arterioscler. Thromb. Vasc. Biol., 2005, 25(8), 1623-1628.
[http://dx.doi.org/10.1161/01.ATV.0000170827.16296.6e] [PMID: 15905466]
[40]
Bonini, M.G.; Miyamoto, S.; Di Mascio, P.; Augusto, O. Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate. J. Biol. Chem., 2004, 279(50), 51836-51843.
[http://dx.doi.org/10.1074/jbc.M406929200] [PMID: 15448145]
[41]
Knowles, R.G.; Moncada, S. Nitric oxide synthases in mammals. Biochem. J., 1994, 298(Pt 2), 249-258.
[http://dx.doi.org/10.1042/bj2980249] [PMID: 7510950]
[42]
Förstermann, U.; Sessa, W.C. Nitric oxide synthases: regulation and function. Eur. Heart J, 2012, 33(7), 829-837. 837a-837d.
[http://dx.doi.org/10.1093/eurheartj/ehr304] [PMID: 21890489]
[43]
Katusic, Z.S. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am. J. Physiol. Heart Circ. Physiol., 2001, 281(3), H981-H986.
[http://dx.doi.org/10.1152/ajpheart.2001.281.3.h981] [PMID: 11514262]
[44]
Hoang, H.H.; Padgham, S.V.; Meininger, C.J. L-arginine, tetrahydrobiopterin, nitric oxide and diabetes. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(1), 76-82.
[http://dx.doi.org/10.1097/MCO.0b013e32835ad1ef] [PMID: 23164986]
[45]
Buse, M.G. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab., 2006, 290(1), E1-E8.
[http://dx.doi.org/10.1152/ajpendo.00329.2005] [PMID: 16339923]
[46]
Rahimi-Madiseh, M.; Malekpour-Tehrani, A.; Bahmani, M.; Rafieian-Kopaei, M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pac. J. Trop. Med., 2016, 9(9), 825-831.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.001] [PMID: 27633293]
[47]
Vásquez-Vivar, J.; Kalyanaraman, B.; Martásek, P.; Hogg, N.; Masters, B.S.S.; Karoui, H.; Tordo, P.; Pritchard, K.A., Jr Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9220-9225.
[http://dx.doi.org/10.1073/pnas.95.16.9220] [PMID: 9689061]
[48]
Luo, S.; Lei, H.; Qin, H.; Xia, Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr. Pharm. Des., 2014, 20(22), 3548-3553.
[http://dx.doi.org/10.2174/13816128113196660746] [PMID: 24180388]
[49]
DiMauro, S.; Schon, E.A. Mitochondrial respiratory-chain diseases. N. Engl. J. Med., 2003, 348(26), 2656-2668.
[http://dx.doi.org/10.1056/NEJMra022567] [PMID: 12826641]
[50]
Lazo-de-la-Vega, M-L.; Fernández-Mejía, C. Oxidative stress in diabetes mellitus and the role of vitamins with antioxidant actions.Oxidative Stress and Chronic Degenerative Diseases-A Role for Antioxidants; InTech, 2013.
[http://dx.doi.org/10.5772/51788]
[51]
Kumar, V.; Abbas, A.K.; Fausto, N.; Aster, J.C. Robbins and cotran pathologic basis of disease, professional, Edition E-Book; Elsevier Health Sciences, 2014.
[52]
Blake, R.; Trounce, I.A. Mitochondrial dysfunction and complications associated with diabetes. Biochim. Biophys. Acta, 2014, 1840(4), 1404-1412.
[http://dx.doi.org/10.1016/j.bbagen.2013.11.007] [PMID: 24246956]
[53]
Sivitz, W.I.; Yorek, M.A. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox Signal., 2010, 12(4), 537-577.
[http://dx.doi.org/10.1089/ars.2009.2531] [PMID: 19650713]
[54]
Litvinova, L.; Atochin, D.N.; Fattakhov, N.; Vasilenko, M.; Zatolokin, P.; Kirienkova, E. Nitric oxide and mitochondria in metabolic syndrome. Front. Physiol., 2015, 6, 20.
[http://dx.doi.org/10.3389/fphys.2015.00020] [PMID: 25741283]
[55]
Geto, Z.; Molla, M.D.; Challa, F.; Belay, Y.; Getahun, T. mitochondrial dynamic dysfunction as a main triggering factor for inflammation associated chronic non-communicable diseases. J. Inflamm. Res., 2020, 13, 97-107.
[http://dx.doi.org/10.2147/JIR.S232009] [PMID: 32110085]
[56]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. chalcone: a privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[57]
Karimi-Sales, E.; Mohaddes, G.; Alipour, M.R. Chalcones as putative hepatoprotective agents: Preclinical evidence and molecular mechanisms. Pharmacol. Res., 2018, 129, 177-187.
[http://dx.doi.org/10.1016/j.phrs.2017.11.022] [PMID: 29175112]
[58]
Kostanecki, S.; Tambor, J. Ueber die sechs isomeren Monoxybenzalacetophenone (Monoxychalcone). Chem. Ber., 1899, 32, 1921-1926.
[http://dx.doi.org/10.1002/cber.18990320293 ]
[59]
Chopra, P.G. Chalcones: a brief review. Int. J. Res. Eng. Appl. Sci., 2016, 6(5), 173-185.
[60]
Katsori, A.M.; Hadjipavlou-Litina, D. Recent progress in therapeutic applications of chalcones. Expert Opin. Ther. Pat., 2011, 21(10), 1575-1596.
[http://dx.doi.org/10.1517/13543776.2011.596529] [PMID: 21711087]
[61]
Taiz, L.; Zeiger, E. Plant physiology; Publishers Sunderland; Sinauer Associates, Inc.: Massachusetts, 1998.
[http://dx.doi.org/10.1093/aob/mcg079]
[62]
Diaz-Tielas, C.; Grana, E.; Reigosa, M.; Sanchez-Moreiras, A. Biological activities and novel applications of chalcones. Planta Daninha, 2016, 34(3), 607-616.
[http://dx.doi.org/10.1590/s0100-83582016340300022]
[63]
Kontogiorgis, C.; Mantzanidou, M.; Hadjipavlou-Litina, D. Chalcones and their potential role in inflammation. Mini Rev. Med. Chem., 2008, 8(12), 1224-1242.
[http://dx.doi.org/10.2174/138955708786141034] [PMID: 18855737]
[64]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[http://dx.doi.org/10.1007/s12263-011-0210-5] [PMID: 21484163]
[65]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Totre, J.V.; Khobragade, C.N. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem., 2010, 18(3), 1364-1370.
[http://dx.doi.org/10.1016/j.bmc.2009.11.066] [PMID: 20064725]
[66]
Opletalová, V. Chalcones and their heterocyclic analogs as potential therapeutic agents in bacterial diseases Ceska Slov. Farm., 2000, 49(6), 278-284.
[PMID: 11367546]
[67]
Liu, M.; Wilairat, P.; Go, M-L. Antimalarial alkoxylated and hydroxylated chalcones [corrected]: structure-activity relationship analysis. J. Med. Chem., 2001, 44(25), 4443-4452.
[http://dx.doi.org/10.1021/jm0101747] [PMID: 11728189]
[68]
Patel, N.B.; Patel, H.R. Synthesis and antibacterial and antifungal studies of novel nitrogen containing heterocycles from 5-ethylpyridin-2-ethanol. Indian J. Pharm. Sci., 2010, 72(5), 613-620.
[http://dx.doi.org/10.4103/0250-474X.78531] [PMID: 21694994]
[69]
Lee, S.H.; Nan, J.X.; Zhao, Y.Z.; Woo, S.W.; Park, E.J.; Kang, T.H.; Seo, G.S.; Kim, Y.C.; Sohn, D.H. The chalcone butein from Rhus verniciflua shows antifibrogenic activity. Planta Med., 2003, 69(11), 990-994.
[http://dx.doi.org/10.1055/s-2003-45143] [PMID: 14735434]
[70]
Lin, Y.M.; Zhou, Y.; Flavin, M.T.; Zhou, L.M.; Nie, W.; Chen, F.C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem., 2002, 10(8), 2795-2802.
[http://dx.doi.org/10.1016/S0968-0896(02)00094-9] [PMID: 12057669]
[71]
Barfod, L.; Kemp, K.; Hansen, M.; Kharazmi, A. Chalcones from Chinese liquorice inhibit proliferation of T cells and production of cytokines. Int. Immunopharmacol., 2002, 2(4), 545-555.
[http://dx.doi.org/10.1016/S1567-5769(01)00202-8] [PMID: 11962733]
[72]
Boumendjel, A.; Boccard, J.; Carrupt, P.A.; Nicolle, E.; Blanc, M.; Geze, A.; Choisnard, L.; Wouessidjewe, D.; Matera, E.L.; Dumontet, C. Antimitotic and antiproliferative activities of chalcones: forward structure-activity relationship. J. Med. Chem., 2008, 51(7), 2307-2310.
[http://dx.doi.org/10.1021/jm0708331] [PMID: 18293907]
[73]
Narender, T.; Khaliq, T. Shweta; Nishi; Goyal, N.; Gupta, S. Synthesis of chromenochalcones and evaluation of their in vitro antileishmanial activity. Bioorg. Med. Chem., 2005, 13(23), 6543-6550.
[http://dx.doi.org/10.1016/j.bmc.2005.07.005] [PMID: 16185885]
[74]
Bonesi, M.; Loizzo, M.R.; Statti, G.A.; Michel, S.; Tillequin, F.; Menichini, F. The synthesis and angiotensin converting enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(6), 1990-1993.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.113] [PMID: 20167484]
[75]
Hayat, F.; Moseley, E.; Salahuddin, A.; Van Zyl, R.L.; Azam, A. Antiprotozoal activity of chloroquinoline based chalcones. Eur. J. Med. Chem., 2011, 46(5), 1897-1905.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.004] [PMID: 21377771]
[76]
Cai, C-Y.; Rao, L.; Rao, Y.; Guo, J-X.; Xiao, Z-Z.; Cao, J-Y.; Huang, Z-S.; Wang, B. Analogues of xanthones--Chalcones and bis-chalcones as α-glucosidase inhibitors and anti-diabetes candidates. Eur. J. Med. Chem., 2017, 130, 51-59.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.007] [PMID: 28242551]
[77]
Rammohan, A.; Bhaskar, B.V.; Venkateswarlu, N.; Gu, W.; Zyryanov, G.V. Design, synthesis, docking and biological evaluation of chalcones as promising antidiabetic agents. Bioorg. Chem., 2020, 95103527
[http://dx.doi.org/10.1016/j.bioorg.2019.103527] [PMID: 31911298]
[78]
Johnson, D. A.; Johnson, J. A. Nrf2--a therapeutic target for the treatment of neurodegenerative diseases. Free Radic. Biol. Med., 2015, 88(Pt B), 253-267.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.07.147] [PMID: 26281945]
[79]
Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: promising starting points for drug design. Molecules, 2017, 22(8), 1210.
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
[80]
Wang, J-P.; Tsao, L-T.; Raung, S-L.; Lin, C-N. Investigation of the inhibitory effect of broussochalcone A on respiratory burst in neutrophils. Eur. J. Pharmacol., 1997, 320(2-3), 201-208.
[http://dx.doi.org/10.1016/S0014-2999(96)00888-6] [PMID: 9059855]
[81]
Wang, J.P.; Chang, L.C.; Hsu, M.F.; Lin, C.N. The blockade of formyl peptide-induced respiratory burst by 2′,5′-dihydroxy-2-furfurylchalcone involves phospholipase D signaling in neutrophils. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 368(3), 166-174.
[http://dx.doi.org/10.1007/s00210-003-0782-8] [PMID: 12928764]
[82]
Itoh, T.; Ninomiya, M.; Nozawa, Y.; Koketsu, M. Chalcone glycosides isolated from aerial parts of Brassica rapa L. ‘hidabeni’ suppress antigen-stimulated degranulation in rat basophilic leukemia RBL-2H3 cells. Bioorg. Med. Chem., 2010, 18(19), 7052-7057.
[http://dx.doi.org/10.1016/j.bmc.2010.08.008] [PMID: 20801664]
[83]
Perez, M.K.; Piedimonte, G. Metabolic asthma: is there a link between obesity, diabetes, and asthma? Immunol. Allergy Clin. North Am., 2014, 34(4), 777-784.
[http://dx.doi.org/10.1016/j.iac.2014.07.002] [PMID: 25282290]
[84]
Chen, Y.H.; Lin, C.L.; Bau, D.T.; Hung, Y.C. Risk of allergic conjunctivitis in patients with type 1 diabetes mellitus: a population-based retrospective cohort study. BMJ Open, 2017, 7(6)e015795
[http://dx.doi.org/10.1136/bmjopen-2016-015795] [PMID: 28630085]
[85]
Haraguchi, H.; Ishikawa, H.; Mizutani, K.; Tamura, Y.; Kinoshita, T. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem., 1998, 6(3), 339-347.
[http://dx.doi.org/10.1016/S0968-0896(97)10034-7] [PMID: 9568287]
[86]
Ponce, A.M.; Blanco, S.E.; Molina, A.S.; García-Domenech, R.; Gálvez, J. Study of the action of flavonoids on xanthine-oxidase by molecular topology. J. Chem. Inf. Comput. Sci., 2000, 40(4), 1039-1045.
[http://dx.doi.org/10.1021/ci000020k] [PMID: 10955535]
[87]
Niu, Y.; Zhu, H.; Liu, J.; Fan, H.; Sun, L.; Lu, W.; Liu, X.; Li, L. 3,5,2′,4′-Tetrahydroxychalcone, a new non-purine xanthine oxidase inhibitor. Chem. Biol. Interact., 2011, 189(3), 161-166.
[http://dx.doi.org/10.1016/j.cbi.2010.12.004] [PMID: 21167141]
[88]
Niu, Y.; Zhou, Y.; Lin, H.; Gao, L.H.; Xiong, W.; Zhu, H.; Zou, C.G.; Li, L. Inhibition of 3,5,2′,4′-tetrahydroxychalcone on production of uric acid in hypoxanthine-induced hyperuricemic mice. Biol. Pharm. Bull., 2018, 41(1), 99-105.
[http://dx.doi.org/10.1248/bpb.b17-00655] [PMID: 29093325]
[89]
Hofmann, E.; Webster, J.; Do, T.; Kline, R.; Snider, L.; Hauser, Q.; Higginbottom, G.; Campbell, A.; Ma, L.; Paula, S. Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers. Bioorg. Med. Chem., 2016, 24(4), 578-587.
[http://dx.doi.org/10.1016/j.bmc.2015.12.024] [PMID: 26762836]
[90]
Li, C.; Hsieh, M.C.; Chang, S.J. Metabolic syndrome, diabetes, and hyperuricemia. Curr. Opin. Rheumatol., 2013, 25(2), 210-216.
[http://dx.doi.org/10.1097/BOR.0b013e32835d951e] [PMID: 23370374]
[91]
Kim, D.W.; Curtis-Long, M.J.; Yuk, H.J.; Wang, Y.; Song, Y.H.; Jeong, S.H.; Park, K.H. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition. Food Chem., 2014, 153, 20-27.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.026] [PMID: 24491695]
[92]
Bui, T.H.; Nguyen, N.T.; Dang, P.H.; Nguyen, H.X.; Nguyen, M.T. Design and synthesis of chalcone derivatives as potential non-purine xanthine oxidase inhibitors. Springerplus, 2016, 5(1), 1789.
[http://dx.doi.org/10.1186/s40064-016-3485-6] [PMID: 27795931]
[93]
Xie, Z.; Luo, X.; Zou, Z.; Zhang, X.; Huang, F.; Li, R.; Liao, S.; Liu, Y. Synthesis and evaluation of hydroxychalcones as multifunctional non-purine xanthine oxidase inhibitors for the treatment of hyperuricemia. Bioorg. Med. Chem. Lett., 2017, 27(15), 3602-3606.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.053] [PMID: 28655421]
[94]
Rojas, J.; Domínguez, J.N.; Charris, J.E.; Lobo, G.; Payá, M.; Ferrándiz, M.L. Synthesis and inhibitory activity of dimethylamino-chalcone derivatives on the induction of nitric oxide synthase. Eur. J. Med. Chem., 2002, 37(8), 699-705.
[http://dx.doi.org/10.1016/S0223-5234(02)01387-9] [PMID: 12161067]
[95]
Ko, H.H.; Tsao, L.T.; Yu, K.L.; Liu, C.T.; Wang, J.P.; Lin, C.N. Structure-activity relationship studies on chalcone derivatives. the potent inhibition of chemical mediators release. Bioorg. Med. Chem., 2003, 11(1), 105-111.
[http://dx.doi.org/10.1016/S0968-0896(02)00312-7] [PMID: 12467713]
[96]
Ban, H.S.; Suzuki, K.; Lim, S.S.; Jung, S.H.; Lee, S.; Ji, J.; Lee, H.S.; Lee, Y.S.; Shin, K.H.; Ohuchi, K. Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase and tumor necrosis factor-α by 2′-hydroxychalcone derivatives in RAW 264.7 cells. Biochem. Pharmacol., 2004, 67(8), 1549-1557.
[http://dx.doi.org/10.1016/j.bcp.2003.12.016] [PMID: 15041472]
[97]
Furusawa, J.; Funakoshi-Tago, M.; Mashino, T.; Tago, K.; Inoue, H.; Sonoda, Y.; Kasahara, T. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-kappaB p65 in LPS signaling pathway. Int. Immunopharmacol., 2009, 9(4), 499-507.
[http://dx.doi.org/10.1016/j.intimp.2009.01.031] [PMID: 19291859]
[98]
Hara, H.; Nakamura, Y.; Ninomiya, M.; Mochizuki, R.; Kamiya, T.; Aizenman, E.; Koketsu, M.; Adachi, T. Inhibitory effects of chalcone glycosides isolated from Brassica rapa L. ‘hidabeni’ and their synthetic derivatives on LPS-induced NO production in microglia. Bioorg. Med. Chem., 2011, 19(18), 5559-5568.
[http://dx.doi.org/10.1016/j.bmc.2011.07.036] [PMID: 21856162]
[99]
Hara, H.; Ikeda, R.; Ninomiya, M.; Kamiya, T.; Koketsu, M.; Adachi, T. Newly synthesized ‘hidabeni’ chalcone derivatives potently suppress LPS-induced NO production via inhibition of STAT1, but not NF-κB, JNK, and p38, pathways in microglia. Biol. Pharm. Bull., 2014, 37(6), 1042-1049.
[http://dx.doi.org/10.1248/bpb.b14-00116] [PMID: 24882415]
[100]
Ventura, T.L.; Calixto, S.D.; de Azevedo Abrahim-Vieira, B.; de Souza, A.M.; Mello, M.V.; Rodrigues, C.R. Soter de Mariz e Miranda, L.; Alves de Souza, R.O.; Leal, I.C.; Lasunskaia, E.B.; Muzitano, M.F. Antimycobacterial and anti-inflammatory activities of substituted chalcones focusing on an anti-tuberculosis dual treatment approach. Molecules, 2015, 20(5), 8072-8093.
[http://dx.doi.org/10.3390/molecules20058072] [PMID: 25951004]
[101]
Mateeva, N.; Gangapuram, M.; Mazzio, E.; Eyunni, S.; Soliman, K.F.; Redda, K.K. Biological evaluation of synthetic chalcone and flavone derivatives as anti-inflammatory agents. Med. Chem. Res., 2015, 24(4), 1672-1680.
[http://dx.doi.org/10.1007/s00044-014-1214-7] [PMID: 25866456]
[102]
Dang, Y.; Ling, S.; Duan, J.; Ma, J.; Ni, R.; Xu, J.W. Bavachalcone-induced manganese superoxide dismutase expression through the AMP-activated protein kinase pathway in human endothelial cells. Pharmacology, 2015, 95(3-4), 105-110.
[http://dx.doi.org/10.1159/000375452] [PMID: 25766656]
[103]
Zhong, P.; Wu, L.; Qian, Y.; Fang, Q.; Liang, D.; Wang, J.; Zeng, C.; Wang, Y.; Liang, G. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. Biochim. Biophys. Acta, 2015, 1852(7), 1230-1241.
[http://dx.doi.org/10.1016/j.bbadis.2015.02.011] [PMID: 25736300]
[104]
Murphy, M.P. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab., 2013, 18(2), 145-146.
[http://dx.doi.org/10.1016/j.cmet.2013.07.006] [PMID: 23931748]
[105]
Han, J.Y.; Cho, S.S.; Yang, J.H.; Kim, K.M.; Jang, C.H.; Park, D.E.; Bang, J.S.; Jung, Y.S.; Ki, S.H. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation. Toxicol. Appl. Pharmacol., 2015, 287(1), 77-85.
[http://dx.doi.org/10.1016/j.taap.2015.05.015] [PMID: 26028482]
[106]
Park, S.M.; Lee, J.R.; Ku, S.K.; Cho, I.J.; Byun, S.H.; Kim, S.C.; Park, S.J.; Kim, Y.W. Isoliquiritigenin in licorice functions as a hepatic protectant by induction of antioxidant genes through extracellular signal-regulated kinase-mediated NF-E2-related factor-2 signaling pathway. Eur. J. Nutr., 2016, 55(8), 2431-2444.
[http://dx.doi.org/10.1007/s00394-015-1051-6] [PMID: 26593436]
[107]
Mohamed, J.; Nazratun Nafizah, A.H.; Zariyantey, A.H.; Budin, S.B. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ. Med. J., 2016, 16(2), e132-e141.
[http://dx.doi.org/10.18295/squmj.2016.16.02.002] [PMID: 27226903]
[108]
Jiang, B.; Le, L.; Liu, H.; Xu, L.; He, C.; Hu, K.; Peng, Y.; Xiao, P. Marein protects against methylglyoxal-induced apoptosis by activating the AMPK pathway in PC12 cells. Free Radic. Res., 2016, 50(11), 1173-1187.
[http://dx.doi.org/10.1080/10715762.2016.1222374] [PMID: 27596733]
[109]
Alshammari, G.M.; Balakrishnan, A.; Chinnasamy, T. Butein protects the nonalcoholic fatty liver through mitochondrial reactive oxygen species attenuation in rats. Biofactors, 2018, 44(3), 289-298.
[http://dx.doi.org/10.1002/biof.1428] [PMID: 29672963]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy