Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Derivatives of Deoxypodophyllotoxin Induce Apoptosis through Bcl-2/Bax Proteins Expression

Author(s): Ya-Nan Li, Ni Ning, Lei Song, Yun Geng, Jun-Ting Fan, Chao-Ying Ma* and He-Zhong Jiang*

Volume 21, Issue 5, 2021

Published on: 30 July, 2020

Page: [611 - 620] Pages: 10

DOI: 10.2174/1871520620999200730160952

Price: $65

Abstract

Background: Deoxypodophyllotoxin, isolated from the Traditional Chinese Medicine Anthriscus sylvestris, is well-known because of its significant anti-tumor activity with strong toxicity in vitro and in vivo.

Objective: In this article, a series of deoxypodophyllotoxin derivatives were synthesized and their anti-tumor effectiveness was evaluated.

Methods: The anti-tumor activity of deoxypodophyllotoxin derivatives was investigated by the MTT assay method. Apoptosis percentage was measured by flow cytometer analysis using Annexin-V-FITC.

Results: The derivatives revealed obvious cytotoxicity in the MTT assay by decreasing the number of late cancer cells. The decrease of Bcl-2/Bax could be observed in MCF-7, HepG2, HT-29, and MG-63 using Annexin V-FITC. The ratio of Bcl-2/Bax in the administration group was decreased, which was determined by the ELISA kit.

Conclusion: The derivatives of deoxypodophyllotoxin could induce apoptosis in tumor cell lines by influencing Bcl-2/Bax.

Keywords: Deoxypodophyllotoxin derivatives, tumor cell, flow cytometer, Bcl-2/Bax, Anthriscus sylvestris, anti-tumor activity.

Graphical Abstract
[1]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[2]
Choi, H.K.; Ryu, H.; Son, A.R.; Seo, B.; Hwang, S.G.; Song, J.Y.; Ahn, J. The novel anthraquinone derivative IMP1338 induces death of human cancer cells by p53-independent S and G2/M cell cycle arrest. Biomed. Pharmacother., 2016, 79, 308-314.
[http://dx.doi.org/10.1016/j.biopha.2016.02.034] [PMID: 27044842]
[3]
Chen, H.; Jiang, H.Z.; Li, Y.C.; Wei, G.Q.; Geng, Y.; Ma, C.Y. Antitumor constituents from Anthriscus sylvestris (L.). Hoffm. Asian Pac. J. Cancer Prev., 2014, 15(6), 2803-2807.
[http://dx.doi.org/10.7314/APJCP.2014.15.6.2803] [PMID: 24761904]
[4]
Jin, M.; Lee, E.; Yang, J.H.; Lu, Y.; Kang, S.; Chang, Y.C.; Lee, S.H.; Suh, S.J.; Kim, C.H.; Chang, H.W. Deoxypodophyllotoxin inhibits the expression of intercellular adhesion molecule-1 induced by tumor necrosis factor-α in murine lung epithelial cells. Biol. Pharm. Bull., 2010, 33(1), 1-5.
[http://dx.doi.org/10.1248/bpb.33.1] [PMID: 20045926]
[5]
Gordaliza, M.; Castro, M.A.; del Corral, J.M.; Feliciano, A.S. Antitumor properties of podophyllotoxin and related compounds. Curr. Pharm. Des., 2000, 6(18), 1811-1839.
[http://dx.doi.org/10.2174/1381612003398582] [PMID: 11102564]
[6]
Kim, Y.; Kim, S.B.; You, Y.J.; Ahn, B.Z. Deoxypodophyllotoxin; the cytotoxic and antiangiogenic component from Pulsatilla koreana. Planta Med., 2002, 68(3), 271-274.
[http://dx.doi.org/10.1055/s-2002-23140] [PMID: 11914969]
[7]
Gordaliza, M.; Castro, M.A.; García-Grávalos, M.D.; Ruiz, P.; Miguel del Corral, J.M.; San Feliciano, A. Antineoplastic and antiviral activities of podophyllotoxin related lignans. Arch. Pharm. (Weinheim), 1994, 327(3), 175-179.
[http://dx.doi.org/10.1002/ardp.19943270309] [PMID: 8179476]
[8]
Xu, H.; Zhang, L.; Su, B.F. Natural products-based insecticidal agents (1) Semisynthesis and insecticidal activity of 4β-benzenesulfonamide derivatives of podophyllotoxin against Mythimna separata walker. Bioorg. Med. Chem. Lett., 2010, 20(17), 5009-5012.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.050] [PMID: 20678933]
[9]
Masuda, T.; Oyama, Y.; Yonemori, S.; Takeda, Y.; Yamazaki, Y.; Mizuguchi, S.; Nakata, M.; Tanaka, T.; Chikahisa, L.; Inaba, Y.; Okada, Y. Flow cytometric estimation on cytotoxic activity of leaf extracts from seashore plants in subtropical Japan: Isolation, quantification and cytotoxic action of (-)-deoxypodophyllotoxin. Phytother. Res., 2002, 16(4), 353-358.
[http://dx.doi.org/10.1002/ptr.902] [PMID: 12112292]
[10]
Shin, S.Y.; Yong, Y.; Kim, C.G.; Lee, Y.H.; Lim, Y. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in HeLa cells. Cancer Lett., 2010, 287(2), 231-239.
[http://dx.doi.org/10.1016/j.canlet.2009.06.019] [PMID: 19616373]
[11]
Gordaliza, M.; García, P.A.; del Corral, J.M.; Castro, M.A.; Gómez-Zurita, M.A. Podophyllotoxin: Distribution, sources, applications and new cytotoxic derivatives. Toxicon, 2004, 44(4), 441-459.
[http://dx.doi.org/10.1016/j.toxicon.2004.05.008] [PMID: 15302526]
[12]
Bender, R.P.; Jablonksy, M.J.; Shadid, M.; Romaine, I.; Dunlap, N.; Anklin, C.; Graves, D.E.; Osheroff, N. Substituents on etoposide that interact with human topoisomerase IIalpha in the binary enzyme-drug complex: Contributions to etoposide binding and activity. Biochemistry, 2008, 47(15), 4501-4509.
[http://dx.doi.org/10.1021/bi702019z] [PMID: 18355043]
[13]
Lau, W.; Sattely, E.S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science, 2015, 349(6253), 1224-1228.
[http://dx.doi.org/10.1126/science.aac7202] [PMID: 26359402]
[14]
Benzina, S.; Harquail, J.; Jean, S.; Beauregard, A.P.; Colquhoun, C.D.; Carroll, M.; Bos, A.; Gray, C.A.; Robichaud, G.A. Deoxypodophyllotoxin isolated from Juniperus communis induces apoptosis in breast cancer cells. Anticancer. Agents Med. Chem., 2015, 15(1), 79-88.
[http://dx.doi.org/10.2174/1871520614666140608150448] [PMID: 24913660]
[15]
Park, B.R.; Lee, S.A.; Moon, S.M.; Kim, C.S. Anthricin induced caspase dependent apoptosis through IGF1R/PI3K/AKT pathway inhibition in A549 human non small lung cancer cells. Oncol. Rep., 2018, 39(6), 2769-2776.
[http://dx.doi.org/10.3892/or.2018.6333] [PMID: 29620219]
[16]
Wang, Y.R.; Xu, Y.; Jiang, Z.Z.; Guerram, M.; Wang, B.; Zhu, X.; Zhang, L.Y. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in SGC-7901 cells and inhibits tumor growth in vivo. Molecules, 2015, 20(1), 1661-1675.
[http://dx.doi.org/10.3390/molecules20011661] [PMID: 25608854]
[17]
Imbert, T.F. Discovery of podophyllotoxins. Biochimie, 1998, 80(3), 207-222.
[http://dx.doi.org/10.1016/S0300-9084(98)80004-7] [PMID: 9615861]
[18]
Xu, H.; Wang, J.; Sun, H.; Lv, M.; Tian, X.; Yao, X.; Zhang, X. Semisynthesis and Quantitative Structure-Activity Relationship (QSAR) study of novel aromatic esters of 4′-demethyl-4-deoxypodophyllotoxin as insecticidal agents. J. Agric. Food Chem., 2009, 57(17), 7919-7923.
[http://dx.doi.org/10.1021/jf9020812] [PMID: 19689137]
[19]
Lutjen, A.B.; Quirk, M.A.; Barbera, A.M.; Kolonko, E.M. Synthesis of (E)-cinnamyl ester derivatives via a greener Steglich esterification. Bioorg. Med. Chem., 2018, 26(19), 5291-5298.
[http://dx.doi.org/10.1016/j.bmc.2018.04.007] [PMID: 29703423]
[20]
Xu, H.; Wang, J.J. Natural products-based insecticidal agents 5. Design, semisynthesis and insecticidal activity of novel 4′-substituted benzenesulfonate derivatives of 4-deoxypodophyllotoxin against Mythimna separata Walker in vivo. Bioorg. Med. Chem. Lett., 2010, 20(8), 2500-2502.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.108] [PMID: 20346661]
[21]
Hamada, T.; White, Y.; Nakashima, M.; Oiso, Y.; Fijita, M.J.; Okamura, H.; Iwagawa, T.; Arima, N. The bioassay-guided isolation of growth inhibitors of Adult T-cell Leukemia (ATL), from the Jamaican plant Hyptis verticillata, and NMR characterization of hyptoside. Molecules, 2012, 17(8), 9931-9938.
[http://dx.doi.org/10.3390/molecules17089931] [PMID: 22902886]
[22]
Kim, E.; Kim, H.J.; Cho, S.S.; Shim, J.H.; Yoon, G. Isolation, semisynthesis, and molecular modeling of deoxypodophyllotoxin analogs for an anti-oral cancer agent. Bull. Korean Chem. Soc., 2020, 41(4), 472-475.
[http://dx.doi.org/10.1002/bkcs.11979]
[23]
Liu, Y.Q.; Feng, G.; Yang, L. Jing-Zhang; Li, H.Y. Podophyllotoxin-derived insecticidal agents: Part XIII--evaluation of insecticidal activity of podophyllotoxin derivatives against Brontispa longissima. Nat. Prod. Res., 2011, 25(16), 1570-1576.
[http://dx.doi.org/10.1080/14786419.2010.488627] [PMID: 21656415]
[24]
Suthiwong, J.; Wandee, J.; Pitchuanchom, S.; Sojikul, P.; Kukongviriyapan, V.; Yenjai, C. Cytotoxicity against cholangiocarcinoma and HepG2 cell lines of lignan derivatives from Hernandia nymphaeifolia. Med. Chem. Res., 2018, 27(8), 2042-2049.
[http://dx.doi.org/10.1007/s00044-018-2214-9]
[25]
Guerram, M.; Jiang, Z.Z.; Sun, L.; Zhu, X.; Zhang, L.Y. Antineoplastic effects of deoxypodophyllotoxin, a potent cytotoxic agent of plant origin, on glioblastoma U-87 MG and SF126 cells. Pharmacol. Rep., 2015, 67(2), 245-252.
[http://dx.doi.org/10.1016/j.pharep.2014.10.003] [PMID: 25712646]
[26]
Chen, C.; Wang, C.C.; Wang, Z.; Geng, W.Y.; Xu, H.; Song, X.M.; Luo, D.Q. Cytotoxic activity of a synthetic deoxypodophyllotoxin derivative with an opened D-ring. J. Asian Nat. Prod. Res., 2016, 18(5), 486-494.
[http://dx.doi.org/10.1080/10286020.2015.1131679] [PMID: 27123550]
[27]
Toscano, E.C.B.; Vieira, É.L.M.; Portela, A.C.D.C.; Reis, J.L.J.; Caliari, M.V.; Giannetti, A.V.; Gonçalves, A.P.; Siqueira, J.M.; Suemoto, C.K.; Leite, R.E.P.; Nitrini, R.; Teixeira, A.L.; Rachid, M.A. Bcl-2/Bax ratio increase does not prevent apoptosis of glia and granular neurons in patients with temporal lobe epilepsy. Neuropathology, 2019, 39(5), 348-357.
[http://dx.doi.org/10.1111/neup.12592] [PMID: 31392787]
[28]
Vaidyanathan, S.; Weldon, D.; Basiji, D.; Morrissey, P. Detection and enumeration of circulating tumor cells using imaging flow cytometery. Cancer Res., 2014, 74(19s), 3074-3074.
[29]
Zdenka, U-G.; Petr, M.; Sarka, H.; Vendula, K.; Jitka, S.; Zdenka, M.; Katerina, B.; Miroslav, B.; Zdenek, R. Antibodies against Annexin V and prothrombin, their correlation with other anti-phospholipid antibodies in recurrent pregnancy loss. J. Reproduct. Contracept., 2005, 16(1), 35-46.
[30]
Roset, R.; Ortet, L.; Gil-Gomez, G. Role of Bcl-2 family members on apoptosis: What we have learned from knock-out mice. Front. Biosci., 2007, 12(12), 4722-4730.
[http://dx.doi.org/10.2741/2421] [PMID: 17485408]
[31]
Karmakar, S.; Banik, N.L.; Ray, S.K. Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells. Neurochem. Res., 2007, 32(12), 2103-2113.
[http://dx.doi.org/10.1007/s11064-007-9376-z] [PMID: 17562168]
[32]
Contu, P.C.; Contu, S.S.; Moreira, L.F. Bcl-2 expression in rectal cancer. Arq. Gastroenterol., 2006, 43(4), 284-287.
[http://dx.doi.org/10.1590/S0004-28032006000400008] [PMID: 17406756]
[33]
Meterissian, S.H.; Kontogiannea, M.; Al-Sowaidi, M.; Linjawi, A.; Halwani, F.; Jamison, B.; Edwardes, M. Bcl-2 is a useful prognostic marker in Dukes’ B colon cancer. Ann. Surg. Oncol., 2001, 8(6), 533-537.
[PMID: 11456053]
[34]
Suster, S.; Fisher, C.; Moran, C.A. Expression of bcl-2 oncoprotein in benign and malignant spindle cell tumors of soft tissue, skin, serosal surfaces, and gastrointestinal tract. Am. J. Surg. Pathol., 1998, 22(7), 863-872.
[http://dx.doi.org/10.1097/00000478-199807000-00008] [PMID: 9669348]
[35]
Berardo, M.D.; Elledge, R.M.; Moor, C.D.; Clark, G.M.; Osborne, C.K.; Allred, D.C. Bcl‐2 and apoptosis in lymph node positive breast carcinoma. Cancer, 1998, 82(7), 1296-1302.
[36]
Baretton, G.B.; Diebold, J.; Christoforis, G.; Vogt, M.; Müller, C.; Dopfer, K.; Schneiderbanger, K.; Schmidt, M.; Löhrs, U. Apoptosis and immunohistochemical bcl-2 expression in colorectal adenomas and carcinomas. Aspects of carcinogenesis and prognostic significance. Cancer, 1996, 77(2), 255-264.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19960115)77:2<255:AID-CNCR6>3.0.CO;2-L] [PMID: 8625232]
[37]
Zhang, Z.; Lapolla, S.M.; Annis, M.G.; Truscott, M.; Roberts, G.J.; Miao, Y.; Shao, Y.; Tan, C.; Peng, J.; Johnson, A.E.; Zhang, X.C.; Andrews, D.W.; Lin, J. Bcl-2 homodimerization involves two distinct binding surfaces, a topographic arrangement that provides an effective mechanism for Bcl-2 to capture activated Bax. J. Biol. Chem., 2004, 279(42), 43920-43928.
[http://dx.doi.org/10.1074/jbc.M406412200] [PMID: 15302859]
[38]
Shroff, E.H.; Snyder, C.; Chandel, N.S. Role of Bcl-2 family members in anoxia induced cell death. Cell Cycle, 2007, 6(7), 807-809.
[http://dx.doi.org/10.4161/cc.6.7.4044] [PMID: 17377500]
[39]
Sagar, S.; Esau, L.; Moosa, B.; Khashab, N.M.; Bajic, V.B.; Kaur, M. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells. Anticancer. Agents Med. Chem., 2014, 14(1), 170-180.
[http://dx.doi.org/10.2174/18715206113136660369] [PMID: 24164046]
[40]
Fuggetta, M.P.; Spanu, P.; Ulgheri, F.; Deligia, F.; Carta, P.; Mannu, A.; Trotta, V.; De Cicco, R.; Barra, A.; Zona, E.; Morelli, F. A new synthetic spiroketal: Studies on antitumor activity on murine melanoma model in vivo and mechanism of action in vitro. Anticancer. Agents Med. Chem., 2019, 19(4), 567-578.
[http://dx.doi.org/10.2174/1871520619666190131141400] [PMID: 30706794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy