Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Functional Evaluation of Anti-TNF-α Affibody Molecules in Biochemical Detection and Inhibition to Signalling Pathways of a Synovial Cell

Author(s): Seiji Shibasaki*, Miki Karasaki, Kiyoshi Matsui and Tsuyoshi Iwasaki

Volume 22, Issue 9, 2021

Published on: 16 October, 2020

Page: [1228 - 1234] Pages: 7

DOI: 10.2174/1389201021666201016143730

Price: $65

Abstract

Background: An affibody molecule obtained from a bioengineered staphylococcal protein was previously shown to act as an affinity binder for a wide range of targets and develop Tumour Necrosis Factor α (TNF-α)-binding clones.

Methods: In this study, we demonstrated that affibody molecules against TNF-α could bind to recombinant TNF-α on the membrane for biochemical detection. In addition, we examined whether the affibody molecules could block binding between recombinant TNF-α and its receptor on MH7A synovial cells.

Results: When a TNF-α-binding affibody was added, the production level of inflammatory mediators IL-6 and MMP-3 in MH7A were found to decrease up to 44%. Additionally, proliferation of synovial cells was also inhibited by the addition of TNF-α to cultivation media.

Conclusion: These results suggest that affibody molecules against TNF-α could be candidate molecules for the detection of TNF-α during biochemical analysis and pharmacotherapy for rheumatoid arthritis.

Keywords: Affibody, TNF-α, synovial cell, IL-6, MMP-3, Rheumatoid Arthritis (RA).

Graphical Abstract
[1]
Ståhl, S.; Gräslund, T.; Eriksson Karlström, A.; Frejd, F.Y.; Nygren, P.Å.; Löfblom, J. affibody molecules in biotechnological and medical applications. Trends Biotechnol., 2017, 35(8), 691-712.
[http://dx.doi.org/10.1016/j.tibtech.2017.04.007] [PMID: 28514998]
[2]
Nguyen, T.; Ghebrehiwet, B.; Peerschke, E.I.B. Staphylococcus aureus protein A recognizes platelet gC1qR/p33: A novel mechanism for staphylococcal interactions with platelets. Infect. Immun., 2000, 68(4), 2061-2068.
[http://dx.doi.org/10.1128/IAI.68.4.2061-2068.2000] [PMID: 10722602]
[3]
Tashiro, M.; Tejero, R.; Zimmerman, D.E.; Celda, B.; Nilsson, B.; Montelione, G.T. High-resolution solution NMR structure of the Z domain of staphylococcal protein A. J. Mol. Biol., 1997, 272(4), 573-590.
[http://dx.doi.org/10.1006/jmbi.1997.1265] [PMID: 9325113]
[4]
Järver, P.; Mikaelsson, C.; Karlström, A.E. Chemical synthesis and evaluation of a backbone-cyclized minimized 2-helix Z-domain. J. Pept. Sci., 2011, 17(6), 463-469.
[http://dx.doi.org/10.1002/psc.1346] [PMID: 21360628]
[5]
Ultsch, M.; Braisted, A.; Maun, H.R.; Eigenbrot, C. 3-2-1: Structural insights from stepwise shrinkage of a three-helix Fc-binding domain to a single helix. Protein Eng. Des. Sel., 2017, 30(9), 619-625.
[http://dx.doi.org/10.1093/protein/gzx029] [PMID: 28475752]
[6]
Westerlund, K.; Vorobyeva, A.; Mitran, B.; Orlova, A.; Tolmachev, V.; Karlström, A.E.; Altai, M. Site-specific conjugation of recognition tags to trastuzumab for peptide nucleic acid-mediated radionuclide HER2 pretargeting. Biomaterials, 2019, 203, 73-85.
[http://dx.doi.org/10.1016/j.biomaterials.2019.02.012] [PMID: 30877838]
[7]
Gunneriusson, E.; Samuelson, P.; Ringdahl, J.; Grönlund, H.; Nygren, P.Å.; Ståhl, S. Staphylococcal surface display of immunoglobulin A (IgA)- and IgE-specific in vitro-selected binding proteins (affibodies) based on Staphylococcus aureus protein A. Appl. Environ. Microbiol., 1999, 65(9), 4134-4140.
[http://dx.doi.org/10.1128/AEM.65.9.4134-4140.1999] [PMID: 10473426]
[8]
Shibasaki, S.; Ueda, M. Bioadsorption strategies with yeast molecular display technology. Biocontrol Sci., 2014, 19(4), 157-164.
[http://dx.doi.org/10.4265/bio.19.157] [PMID: 25744211]
[9]
Shibasaki, S. Bio-sensing using cell surface display: principles and variations of a cell sensor. Yeast Cell Surface Engineering, Biological Mechanisms and Practical Applications; Ueda, M., Ed.; Springer Singapore: Singapore, 2019, pp. 93-106.
[http://dx.doi.org/10.1007/978-981-13-5868-5_8]
[10]
Gunneriusson, E.; Nord, K.; Uhlén, M.; Nygren, P. Affinity maturation of a Taq DNA polymerase specific affibody by helix shuffling. Protein Eng., 1999, 12(10), 873-878.
[http://dx.doi.org/10.1093/protein/12.10.873] [PMID: 10556248]
[11]
Wahlberg, E.; Lendel, C.; Helgstrand, M.; Allard, P.; Dincbas-Renqvist, V.; Hedqvist, A.; Berglund, H.; Nygren, P.Å.; Härd, T. An affibody in complex with a target protein: Structure and coupled folding. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3185-3190.
[http://dx.doi.org/10.1073/pnas.0436086100] [PMID: 12594333]
[12]
Engfeldt, T.; Renberg, B.; Brumer, H.; Nygren, P.Å.; Karlström, A.E. Chemical synthesis of triple-labelled three-helix bundle binding proteins for specific fluorescent detection of unlabelled protein. ChemBioChem, 2005, 6(6), 1043-1050.
[http://dx.doi.org/10.1002/cbic.200400388] [PMID: 15880677]
[13]
Lendel, C.; Dogan, J.; Härd, T. Structural basis for molecular recognition in an affibody: Affibody complex. J. Mol. Biol., 2006, 359(5), 1293-1304.
[http://dx.doi.org/10.1016/j.jmb.2006.04.043] [PMID: 16750222]
[14]
Nygren, P.Å. Alternative binding proteins: Affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J., 2008, 275(11), 2668-2676.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06438.x] [PMID: 18435759]
[15]
Vorobyeva, A.; Westerlund, K.; Mitran, B.; Altai, M.; Rinne, S.; Sörensen, J.; Orlova, A.; Tolmachev, V.; Karlström, A.E. Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy. Sci. Rep., 2018, 8(1), 9643.
[http://dx.doi.org/10.1038/s41598-018-27886-0] [PMID: 29942011]
[16]
Altai, M.; Liu, H.; Ding, H.; Mitran, B.; Edqvist, P.H.; Tolmachev, V.; Orlova, A.; Gräslund, T. Affibody-derived drug conjugates: Potent cytotoxic molecules for treatment of HER2 over-expressing tumors. J. Control. Release, 2018, 288, 84-95.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.040] [PMID: 30172673]
[17]
Cengic, I.; Uhlén, M.; Hudson, E.P. Surface display of small affinity proteins on Synechocystis sp. strain PCC 6803 Mediated by Fusion to the Major Type IV Pilin PilA1. J. Bacteriol., 2018, 200(16), e00270-e18.
[http://dx.doi.org/10.1128/JB.00270-18] [PMID: 29844032]
[18]
Wahlberg, E.; Rahman, M.M.; Lindberg, H.; Gunneriusson, E.; Schmuck, B.; Lendel, C.; Sandgren, M.; Löfblom, J.; Ståhl, S.; Härd, T. Identification of proteins that specifically recognize and bind protofibrillar aggregates of amyloid-β. Sci. Rep., 2017, 7(1), 5949.
[http://dx.doi.org/10.1038/s41598-017-06377-8] [PMID: 28729665]
[19]
Grimm, S.; Lundberg, E.; Yu, F.; Shibasaki, S.; Vernet, E.; Skogs, M.; Nygren, P.Å.; Gräslund, T. Selection and characterisation of affibody molecules inhibiting the interaction between Ras and Raf in vitro. N. Biotechnol., 2010, 27(6), 766-773.
[http://dx.doi.org/10.1016/j.nbt.2010.07.016] [PMID: 20674812]
[20]
Giacomini, E.; Iona, E.; Ferroni, L.; Miettinen, M.; Fattorini, L.; Orefici, G.; Julkunen, I.; Coccia, E.M. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J. Immunol., 2001, 166(12), 7033-7041.
[http://dx.doi.org/10.4049/jimmunol.166.12.7033] [PMID: 11390447]
[21]
Suurväli, J.; Pahtma, M.; Saar, R.; Paalme, V.; Nutt, A.; Tiivel, T.; Saaremäe, M.; Fitting, C.; Cavaillon, J.M.; Rüütel Boudinot, S. RGS16 restricts the pro-inflammatory response of monocytes. Scand. J. Immunol., 2015, 81(1), 23-30.
[http://dx.doi.org/10.1111/sji.12250] [PMID: 25366993]
[22]
Palani, S.; Elima, K.; Ekholm, E.; Jalkanen, S.; Salmi, M. Monocyte Stabilin-1 Suppresses the Activation of Th1 Lymphocytes. J. Immunol., 2016, 196(1), 115-123.
[http://dx.doi.org/10.4049/jimmunol.1500257] [PMID: 26608916]
[23]
Herrmann, I.; Gotovina, J.; Fazekas-Singer, J.; Fischer, M.B.; Hufnagl, K.; Bianchini, R.; Jensen-Jarolim, E. Canine macrophages can like human macrophages be in vitro activated toward the M2a subtype relevant in allergy. Dev. Comp. Immunol., 2018, 82, 118-127.
[http://dx.doi.org/10.1016/j.dci.2018.01.005] [PMID: 29329953]
[24]
Wolde, M.; Laan, L.C.; Medhin, G.; Gadissa, E.; Berhe, N.; Tsegaye, A. Human Monocytes/Macrophage Inflammatory Cytokine Changes Following in vivo and in vitro Schistomam manoni Infection. J. Inflamm. Res., 2020, 13, 35-43.
[http://dx.doi.org/10.2147/JIR.S233381] [PMID: 32021377]
[25]
Khansai, M.; Phitak, T.; Klangjorhor, J.; Udomrak, S.; Fanhchaksai, K.; Pothacharoen, P.; Kongtawelert, P. Effects of sesamin on primary human synovial fibroblasts and SW982 cell line induced by tumor necrosis factor-alpha as a synovitis-like model. BMC Complement. Altern. Med., 2017, 17(1), 532.
[http://dx.doi.org/10.1186/s12906-017-2035-2] [PMID: 29237438]
[26]
Pollono, E.N.; Lopez-Olivo, M.A.; Lopez, J.A.; Suarez-Almazor, M.E. A systematic review of the effect of TNF-alpha antagonists on lipid profiles in patients with rheumatoid arthritis. Clin. Rheumatol., 2010, 29(9), 947-955.
[http://dx.doi.org/10.1007/s10067-010-1405-7] [PMID: 20383550]
[27]
Ursini, F.; Leporini, C.; Bene, F.; D’Angelo, S.; Mauro, D.; Russo, E.; De Sarro, G.; Olivieri, I.; Pitzalis, C.; Lewis, M.; Grembiale, R.D. Anti-TNF-alpha agents and endothelial function in rheumatoid arthritis: a systematic review and meta-analysis. Sci. Rep., 2017, 7(1), 5346.
[http://dx.doi.org/10.1038/s41598-017-05759-2] [PMID: 28706194]
[28]
Pala, O.; Diaz, A.; Blomberg, B.B.; Frasca, D. B Lymphocytes in Rheumatoid Arthritis and the Effects of Anti-TNF-α Agents on B Lymphocytes: A Review of the Literature. Clin. Ther., 2018, 40(6), 1034-1045.
[http://dx.doi.org/10.1016/j.clinthera.2018.04.016] [PMID: 29801753]
[29]
Kronqvist, N.; Löfblom, J.; Jonsson, A.; Wernérus, H.; Ståhl, S. A novel affinity protein selection system based on staphylococcal cell surface display and flow cytometry. Protein Eng. Des. Sel., 2008, 21(4), 247-255.
[http://dx.doi.org/10.1093/protein/gzm090] [PMID: 18239074]
[30]
Jonsson, A.; Wållberg, H.; Herne, N.; Ståhl, S.; Frejd, F.Y. Generation of tumour-necrosis-factor-alpha-specific affibody molecules capable of blocking receptor binding in vitro. Biotechnol. Appl. Biochem., 2009, 54(2), 93-103.
[http://dx.doi.org/10.1042/BA20090085] [PMID: 19545237]
[31]
Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., 1983, 166(4), 557-580.
[http://dx.doi.org/10.1016/S0022-2836(83)80284-8] [PMID: 6345791]
[32]
Shibasaki, S.; Aoki, W.; Nomura, T.; Miyoshi, A.; Tafuku, S.; Sewaki, T.; Ueda, M. An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog. Dis., 2013, 69(3), 262-268.
[http://dx.doi.org/10.1111/2049-632X.12068] [PMID: 23873745]
[33]
Miyazawa, K.; Mori, A.; Okudaira, H. Establishment and characterization of a novel human rheumatoid fibroblast-like synoviocyte line, MH7A, immortalized with SV40 T antigen. J. Biochem., 1998, 124(6), 1153-1162.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022233] [PMID: 9832620]
[34]
Moriya, N.; Shibasaki, S.; Karasaki, M.; Iwasaki, T. The Impact of MicroRNA-223-3p on IL-17 Receptor D Expression in Synovial Cells. PLoS One, 2017, 12(1), e0169702.
[http://dx.doi.org/10.1371/journal.pone.0169702] [PMID: 28056105]
[35]
Takamura, Y.; Aoki, W.; Satomura, A.; Shibasaki, S.; Ueda, M. Small RNAs detected in exosomes derived from the MH7A synovial fibroblast cell line with TNF-α stimulation. PLoS One, 2018, 13(8), e0201851.
[http://dx.doi.org/10.1371/journal.pone.0201851] [PMID: 30096164]
[36]
Shibasaki, S.; Fujita, A.; Usui, C.; Watanabe, S.; Kitano, S.; Sano, H.; Iwasaki, T. Effect of transient expression of fluorescent protein probes in synovial and myoblast cell lines. Springerplus, 2012, 1(1), 36.
[http://dx.doi.org/10.1186/2193-1801-1-36] [PMID: 23503703]
[37]
Shibasaki, S.; Karasaki, M.; Gräslund, T.; Nygren, P.Å.; Sano, H.; Iwasaki, T. Inhibitory effects of H-Ras/Raf-1-binding affibody molecules on synovial cell function. AMB Express, 2014, 4(1), 82.
[http://dx.doi.org/10.1186/s13568-014-0082-3] [PMID: 26267111]
[38]
Ohuchida, T.; Okamoto, K.; Akahane, K.; Higure, A.; Todoroki, H.; Abe, Y.; Kikuchi, M.; Ikematsu, S.; Muramatsu, T.; Itoh, H. Midkine protects hepatocellular carcinoma cells against TRAIL-mediated apoptosis through down-regulation of caspase-3 activity. Cancer, 2004, 100(11), 2430-2436.
[http://dx.doi.org/10.1002/cncr.20266] [PMID: 15160348]
[39]
Diaz-Torne, C.; Ortiz, M.D.A.; Moya, P.; Hernandez, M.V.; Reina, D.; Castellvi, I.; De Agustin, J.J.; Fuente, D.; Corominas, H.; Sanmarti, R.; Zamora, C.; Cantó, E.; Vidal, S. The combination of IL-6 and its soluble receptor is associated with the response of rheumatoid arthritis patients to tocilizumab. Semin. Arthritis Rheum., 2018, 47(6), 757-764.
[http://dx.doi.org/10.1016/j.semarthrit.2017.10.022] [PMID: 29157669]
[40]
Äyräväinen, L.; Heikkinen, A.M.; Kuuliala, A.; Ahola, K.; Koivuniemi, R.; Laasonen, L.; Moilanen, E.; Hämäläinen, M.; Tervahartiala, T.; Meurman, J.H.; Leirisalo-Repo, M.; Sorsa, T. Inflammatory biomarkers in saliva and serum of patients with rheumatoid arthritis with respect to periodontal status. Ann. Med., 2018, 50(4), 333-344.
[http://dx.doi.org/10.1080/07853890.2018.1468922] [PMID: 29683364]
[41]
Guo, X.; Wang, S.; Godwood, A.; Close, D.; Ryan, P.C.; Roskos, L.K.; White, W.I. Pharmacodynamic biomarkers and differential effects of TNF- and GM-CSF-targeting biologics in rheumatoid arthritis. Int. J. Rheum. Dis., 2019, 22(4), 646-653.
[http://dx.doi.org/10.1111/1756-185X.13395] [PMID: 30358109]
[42]
Bonaventura, P.; Lamboux, A.; Albarède, F.; Miossec, P. A Feedback Loop between Inflammation and Zn Uptake. PLoS One, 2016, 11(2), e0147146.
[http://dx.doi.org/10.1371/journal.pone.0147146] [PMID: 26845700]
[43]
Burrage, P.S.; Mix, K.S.; Brinckerhoff, C.E. Matrix metalloproteinases: role in arthritis. Front. Biosci., 2006, 11, 529-543.
[http://dx.doi.org/10.2741/1817] [PMID: 16146751]
[44]
Yamaguchi, A.; Nozawa, K.; Fujishiro, M.; Kawasaki, M.; Takamori, K.; Ogawa, H.; Sekigawa, I.; Takasaki, Y. Estrogen inhibits apoptosis and promotes CC motif chemokine ligand 13 expression on synovial fibroblasts in rheumatoid arthritis. Immunopharmacol. Immunotoxicol., 2012, 34(5), 852-857.
[http://dx.doi.org/10.3109/08923973.2012.664149] [PMID: 22393877]
[45]
Tokai, N.; Yoshida, S.; Kotani, T.; Yoshikawa, A.; Kimura, Y.; Fujiki, Y.; Matsumura, Y.; Takeuchi, T.; Makino, S.; Arawaka, S. Serum matrix metalloproteinase 3 levels are associated with an effect of iguratimod as add-on therapy to biological DMARDs in patients with rheumatoid arthritis. PLoS One, 2018, 13(8), e0202601.
[http://dx.doi.org/10.1371/journal.pone.0202601] [PMID: 30138480]
[46]
Sun, S.; Bay-Jensen, A.C.; Karsdal, M.A.; Siebuhr, A.S.; Zheng, Q.; Maksymowych, W.P.; Christiansen, T.G.; Henriksen, K. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet. Disord., 2014, 15, 93.
[http://dx.doi.org/10.1186/1471-2474-15-93] [PMID: 24641725]
[47]
Shibasaki, S.; Karasaki, M.; Aburaya, S.; Morisaka, H.; Takeda, Y.; Aoki, W.; Kitano, S.; Kitano, M.; Ueda, M.; Sano, H.; Iwasaki, T. A comparative proteomics study of a synovial cell line stimulated with TNF-α. FEBS Open Bio, 2016, 6(5), 418-424.
[http://dx.doi.org/10.1002/2211-5463.12049] [PMID: 27419047]
[48]
Nishimoto, N.; Ito, A.; Ono, M.; Tagoh, H.; Matsumoto, T.; Tomita, T.; Ochi, T.; Yoshizaki, K. IL-6 inhibits the proliferation of fibroblastic synovial cells from rheumatoid arthritis patients in the presence of soluble IL-6 receptor. Int. Immunol., 2000, 12(2), 187-193.
[http://dx.doi.org/10.1093/intimm/12.2.187] [PMID: 10653854]
[49]
Ainola, M.M.; Mandelin, J.A.; Liljeström, M.P.; Li, T.F.; Hukkanen, M.V.; Konttinen, Y.T. Pannus invasion and cartilage degradation in rheumatoid arthritis: involvement of MMP-3 and interleukin-1beta. Clin. Exp. Rheumatol., 2005, 23(5), 644-650.
[PMID: 16173240]
[50]
van Eden, W. Vaccination against autoimmune diseases moves closer to the clinic. Hum. Vaccin. Immunother., 2020, 16(2), 228-232.
[http://dx.doi.org/10.1080/21645515.2019.1593085] [PMID: 30900933]
[51]
Carlson, A.K.; Rawle, R.A.; Wallace, C.W.; Adams, E.; Greenwood, M.C.; Bothner, B.; June, R.K. Global metabolomic profiling of human synovial fluid for rheumatoid arthritis biomarkers. Clin. Exp. Rheumatol., 2019, 37(3), 393-399.
[PMID: 30620276]
[52]
Genovese, M.C.; Sanchez-Burson, J.; Oh, M.; Balazs, E.; Neal, J.; Everding, A.; Hala, T.; Wojciechowski, R.; Fanjiang, G.; Cohen, S. Comparative clinical efficacy and safety of the proposed biosimilar ABP 710 with infliximab reference product in patients with rheumatoid arthritis. Arthritis Res. Ther., 2020, 22(1), 60.
[http://dx.doi.org/10.1186/s13075-020-2142-1] [PMID: 32216829]
[53]
Kavanaugh, A.; van Vollenhoven, R.F.; Fleischmann, R.; Emery, P.; Sainsbury, I.; Florentinus, S.; Chen, S.; Guérette, B.; Kupper, H.; Smolen, J.S. Testing treat-to-target outcomes with initial methotrexate monotherapy compared with initial tumour necrosis factor inhibitor (adalimumab) plus methotrexate in early rheumatoid arthritis. Ann. Rheum. Dis., 2018, 77(2), 289-292.
[http://dx.doi.org/10.1136/annrheumdis-2017-211871] [PMID: 29146743]
[54]
Zrubka, Z.; Gulácsi, L.; Brodszky, V.; Rencz, F.; Alten, R.; Szekanecz, Z.; Péntek, M. Long-term efficacy and cost-effectiveness of infliximab as first-line treatment in rheumatoid arthritis: systematic review and meta-analysis. Expert Rev. Pharmacoecon. Outcomes Res., 2019, 19(5), 537-549.
[http://dx.doi.org/10.1080/14737167.2019.1647104] [PMID: 31340686]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy