Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Phosphocreatine Promotes Osteoblastic Activities in H2O2-Induced MC3T3-E1 Cells by Regulating SIRT1/FOXO1/PGC-1α Signaling Pathway

Author(s): Zheng Jing, Changyuan Wang, Shijie Wen, Yue Jin, Qiang Meng, Qi Liu, Jingjing Wu, Huijun Sun* and Mozhen Liu*

Volume 22, Issue 5, 2021

Published on: 16 November, 2020

Page: [609 - 621] Pages: 13

DOI: 10.2174/1389201021999201116160247

Price: $65

Abstract

Background: Osteoporosis, characterized by bone loss, usually occurs with the increased bone resorption and decreased bone formation. H2O2-induced MC3T3-E1 cells are commonly used for the study of osteoblastic activities, which play a crucial role in bone formation.

Objective: This study aimed to investigate the effects of Phosphocreatine (PCr) on the osteoblastic activities in H2O2-induced MC3T3-E1 cells and elaborate on the possible molecular mechanism.

Methods: The Osteoprotegerin (OPG)/Receptor Activator of NF-κB Ligand (RANKL) ratio and osteogenic markers were detected to investigate the effects of PCr on osteoblastic activities, and the osteoblastic apoptosis was detected using Hochest staining. Moreover, oxidative stress, Adenosine Triphosphate (ATP) generation and the expression of Sirtuin 1 (SIRT1), Forkhead Box O 1 (FOXO1) and Peroxisome Proliferator-Activated Receptor Γ Coactivator-1α (PGC-1α) were also examined to uncover the possible molecular mechanism in H2O2-induced MC3T3-E1 cells.

Result: The results showed that PCr promoted the osteoblastic differentiation by increasing the expression levels of osteogenic markers of Alkaline Phosphatase (ALP) and Runt-related transcription factor 2 (Runx2), as well as increased the OPG/RANKL ratio and suppressed the osteoblastic apoptosis in H2O2-induced MC3T3-E1 cells. Moreover, treatment with PCr suppressed reactive oxygen species (ROS) over-generation and promoted the ATP production as well as increased the PGC-1α, FOXO1 and SIRT1 protein expression levels in H2O2-induced MC3T3-E1 cells.

Conclusion: PCr treatment could promote osteoblastic activities via suppressing oxidative stress and increasing the ATP generation in H2O2-induced MC3T3-E1 cells. In addition, the positive effects of PCr on osteoblasts might be regulated by SIRT1/FOXO1/ PGC-1α signaling pathway.

Keywords: Phosphocreatine, hydrogen peroxide, osteoblastic activities, SIRT1, FOXO1, PGC-1α.

Graphical Abstract
[1]
Indran, I.R.; Liang, R.L.; Min, T.E.; Yong, E.L. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol. Ther., 2016, 162, 188-205.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.015] [PMID: 26820757]
[2]
Musumeci, G.; Loreto, C.; Clementi, G.; Fiore, C.E.; Martinez, G. An in vivo experimental study on osteopenia in diabetic rats. Acta Histochem., 2011, 113(6), 619-625.
[http://dx.doi.org/10.1016/j.acthis.2010.07.002] [PMID: 20696468]
[3]
Jing, Z.; Wang, C.; Yang, Q.; Wei, X.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Ma, X.; Liu, K.; Sun, H.; Liu, M. Luteolin attenuates glucocorticoid-induced osteoporosis by regulating ERK/Lrp-5/GSK-3β signaling pathway in vivo and in vitro. J. Cell. Physiol., 2019, 234(4), 4472-4490.
[http://dx.doi.org/10.1002/jcp.27252] [PMID: 30192012]
[4]
Kassem, M.; Bianco, P. Skeletal stem cells in space and time. Cell, 2015, 160(1-2), 17-19.
[http://dx.doi.org/10.1016/j.cell.2014.12.034] [PMID: 25594172]
[5]
Hughes, F.J.; Turner, W.; Belibasakis, G.; Martuscelli, G. Effects of growth factors and cytokines on osteoblast differentiation. Periodontol. 2000, 2006, 41, 48-72.
[http://dx.doi.org/10.1111/j.1600-0757.2006.00161.x] [PMID: 16686926]
[6]
Pichler, K.; Loreto, C.; Leonardi, R.; Reuber, T.; Weinberg, A.M.; Musumeci, G. RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis. Histol. Histopathol., 2013, 28(9), 1185-1196.
[PMID: 23553492]
[7]
Musumeci, G.; Loreto, C.; Leonardi, R.; Castorina, S.; Giunta, S.; Carnazza, M.L.; Trovato, F.M.; Pichler, K.; Weinberg, A.M. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J. Bone Miner. Metab., 2013, 31(3), 274-284.
[http://dx.doi.org/10.1007/s00774-012-0414-9] [PMID: 23263781]
[8]
Timmins, L.H.; Miller, M.W.; Clubb, F.J., Jr; Moore, J.E., Jr Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest., 2011, 91(6), 955-967.
[http://dx.doi.org/10.1038/labinvest.2011.57] [PMID: 21445059]
[9]
Nakano, Y.; Addison, W.N.; Kaartinen, M.T. ATP-mediated mineralization of MC3T3-E1 osteoblast cultures. Bone, 2007, 41(4), 549-561.
[http://dx.doi.org/10.1016/j.bone.2007.06.011] [PMID: 17669706]
[10]
Lapel, M.; Weston, P.; Strassheim, D.; Karoor, V.; Burns, N.; Lyubchenko, T.; Paucek, P.; Stenmark, K.R.; Gerasimovskaya, E.V. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. Am. J. Physiol. Cell Physiol., 2017, 312(1), C56-C70.
[http://dx.doi.org/10.1152/ajpcell.00250.2016] [PMID: 27856430]
[11]
Rottenberg, H.; Hoek, J.B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell, 2017, 16(5), 943-955.
[http://dx.doi.org/10.1111/acel.12650] [PMID: 28758328]
[12]
Tower, J. Programmed cell death in aging. Ageing Res Rev., 2015, 23(A), 90-100.
[http://dx.doi.org/10.1016/j.arr.2015.04.002]
[13]
Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ., 2015, 22(4), 526-539.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[14]
Jeong, S.Y.; Seol, D.W. The role of mitochondria in apoptosis. BMB Rep., 2008, 41(1), 11-22.
[http://dx.doi.org/10.5483/BMBRep.2008.41.1.011] [PMID: 18304445]
[15]
Yu, Y.; Shen, X.; Luo, Z.; Hu, Y.; Li, M.; Ma, P.; Ran, Q.; Dai, L.; He, Y.; Cai, K. Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment. Biomaterials, 2018, 167, 44-57.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.024] [PMID: 29554480]
[16]
Stamatovic, S.M.; Martinez-Revollar, G.; Hu, A.; Choi, J.; Keep, R.F.; Andjelkovic, A.V. Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging. Neurobiol. Dis., 2019, 126, 105-116.
[http://dx.doi.org/10.1016/j.nbd.2018.09.006] [PMID: 30196051]
[17]
Guarente, L. Sirtuins as potential targets for metabolic syndrome. Nature, 2006, 444(7121), 868-874.
[http://dx.doi.org/10.1038/nature05486] [PMID: 17167475]
[18]
Motta, M.C.; Divecha, N.; Lemieux, M.; Kamel, C.; Chen, D.; Gu, W.; Bultsma, Y.; McBurney, M.; Guarente, L. Mammalian SIRT1 represses forkhead transcription factors. Cell, 2004, 116(4), 551-563.
[http://dx.doi.org/10.1016/S0092-8674(04)00126-6] [PMID: 14980222]
[19]
Bartell, S.M.; Kim, H.N.; Ambrogini, E.; Han, L.; Iyer, S.; Serra Ucer, S.; Rabinovitch, P.; Jilka, R.L.; Weinstein, R.S.; Zhao, H.; O’Brien, C.A.; Manolagas, S.C.; Almeida, M. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat. Commun., 2014, 5, 3773.
[http://dx.doi.org/10.1038/ncomms4773] [PMID: 24781012]
[20]
Rodgers, J.T.; Lerin, C.; Haas, W.; Gygi, S.P.; Spiegelman, B.M.; Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 2005, 434(7029), 113-118.
[http://dx.doi.org/10.1038/nature03354] [PMID: 15744310]
[21]
Gao, J.; Feng, Z.; Wang, X.; Zeng, M.; Liu, J.; Han, S.; Xu, J.; Chen, L.; Cao, K.; Long, J.; Li, Z.; Shen, W.; Liu, J. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ., 2018, 25(2), 229-240.
[http://dx.doi.org/10.1038/cdd.2017.144] [PMID: 28914882]
[22]
Morigi, M.; Perico, L.; Benigni, A. Sirtuins in Renal Health and Disease. J. Am. Soc. Nephrol., 2018, 29(7), 1799-1809.
[http://dx.doi.org/10.1681/ASN.2017111218] [PMID: 29712732]
[23]
Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev., 2000, 80(3), 1107-1213.
[http://dx.doi.org/10.1152/physrev.2000.80.3.1107] [PMID: 10893433]
[24]
Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids, 2011, 40(5), 1271-1296.
[http://dx.doi.org/10.1007/s00726-011-0877-3] [PMID: 21448658]
[25]
Guimarães-Ferreira, L. Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein (Sao Paulo), 2014, 12(1), 126-131.
[http://dx.doi.org/10.1590/S1679-45082014RB2741] [PMID: 24728259]
[26]
Sun, Z.; Lan, X.; Ahsan, A.; Xi, Y.; Liu, S.; Zhang, Z.; Chu, P.; Song, Y.; Piao, F.; Peng, J.; Lin, Y.; Han, G.; Tang, Z. Erratum to: Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation. Apoptosis, 2016, 21(4), 514-515.
[http://dx.doi.org/10.1007/s10495-016-1215-8] [PMID: 26822977]
[27]
Chu, P.; Han, G.; Ahsan, A.; Sun, Z.; Liu, S.; Zhang, Z.; Sun, B.; Song, Y.; Lin, Y.; Peng, J.; Tang, Z. Phosphocreatine protects endothelial cells from Methylglyoxal induced oxidative stress and apoptosis via the regulation of PI3K/Akt/eNOS and NF-κB pathway. Vascul. Pharmacol., 2017, 91, 26-35.
[http://dx.doi.org/10.1016/j.vph.2016.08.012] [PMID: 27590258]
[28]
Xu, Z.S.; Wang, X.Y.; Xiao, D.M.; Hu, L.F.; Lu, M.; Wu, Z.Y.; Bian, J.S. Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic. Biol. Med., 2011, 50(10), 1314-1323.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.016] [PMID: 21354302]
[29]
Fu, C.; Xu, D.; Wang, C.Y.; Jin, Y.; Liu, Q.; Meng, Q.; Liu, K.X.; Sun, H.J.; Liu, M.Z. Alpha-Lipoic Acid Promotes Osteoblastic Formation in H2O2 -Treated MC3T3-E1 Cells and Prevents Bone Loss in Ovariectomized Rats. J. Cell. Physiol., 2015, 230(9), 2184-2201.
[http://dx.doi.org/10.1002/jcp.24947] [PMID: 25655087]
[30]
Awasthi, H.; Mani, D.; Singh, D.; Gupta, A. The underlying pathophysiology and therapeutic approaches for osteoporosis. Med. Res. Rev., 2018, 38(6), 2024-2057.
[http://dx.doi.org/10.1002/med.21504] [PMID: 29733451]
[31]
Rachner, T.D.; Khosla, S.; Hofbauer, L.C. Osteoporosis: now and the future. Lancet, 2011, 377(9773), 1276-1287.
[http://dx.doi.org/10.1016/S0140-6736(10)62349-5] [PMID: 21450337]
[32]
Baron, R.; Gori, F. Targeting WNT signaling in the treatment of osteoporosis. Curr. Opin. Pharmacol., 2018, 40, 134-141.
[http://dx.doi.org/10.1016/j.coph.2018.04.011] [PMID: 29753194]
[33]
Qi, H.H.; Bao, J.; Zhang, Q.; Ma, B.; Gu, G.Y.; Zhang, P.L.; Ou-Yang, G.; Wu, Z.M.; Ying, H.J.; Ou-Yang, P.K. Wnt/β-catenin signaling plays an important role in the protective effects of FDP-Sr against oxidative stress induced apoptosis in MC3T3-E1 cell. Bioorg. Med. Chem. Lett., 2016, 26(19), 4720-4723.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.043] [PMID: 27575480]
[34]
Yao, W.; Cheng, Z.; Pham, A.; Busse, C.; Zimmermann, E.A.; Ritchie, R.O.; Lane, N.E. Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum., 2008, 58(11), 3485-3497.
[http://dx.doi.org/10.1002/art.23954] [PMID: 18975341]
[35]
Madan, B.; McDonald, M.J.; Foxa, G.E.; Diegel, C.R.; Williams, B.O.; Virshup, D.M. Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res., 2018, 6, 17.
[http://dx.doi.org/10.1038/s41413-018-0017-8] [PMID: 29844946]
[36]
Harper, E.; Forde, H.; Davenport, C.; Rochfort, K.D.; Smith, D.; Cummins, P.M. Vascular calcification in type-2 diabetes and cardiovascular disease: Integrative roles for OPG, RANKL and TRAIL. Vascul. Pharmacol., 2016, 82, 30-40.
[http://dx.doi.org/10.1016/j.vph.2016.02.003] [PMID: 26924459]
[37]
Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Lüthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; Shimamoto, G.; DeRose, M.; Elliott, R.; Colombero, A.; Tan, H.L.; Trail, G.; Sullivan, J.; Davy, E.; Bucay, N.; Renshaw-Gegg, L.; Hughes, T.M.; Hill, D.; Pattison, W.; Campbell, P.; Sander, S.; Van, G.; Tarpley, J.; Derby, P.; Lee, R.; Boyle, W.J. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2), 309-319.
[http://dx.doi.org/10.1016/S0092-8674(00)80209-3] [PMID: 9108485]
[38]
Rauch, A.; Seitz, S.; Baschant, U.; Schilling, A.F.; Illing, A.; Stride, B.; Kirilov, M.; Mandic, V.; Takacz, A.; Schmidt-Ullrich, R.; Ostermay, S.; Schinke, T.; Spanbroek, R.; Zaiss, M.M.; Angel, P.E.; Lerner, U.H.; David, J.P.; Reichardt, H.M.; Amling, M.; Schütz, G.; Tuckermann, J.P. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab., 2010, 11(6), 517-531.
[http://dx.doi.org/10.1016/j.cmet.2010.05.005] [PMID: 20519123]
[39]
Ho, W.P.; Chen, T.L.; Chiu, W.T.; Tai, Y.T.; Chen, R.M. Nitric oxide induces osteoblast apoptosis through a mitochondria-dependent pathway. Ann. N. Y. Acad. Sci., 2005, 1042, 460-470.
[http://dx.doi.org/10.1196/annals.1338.039] [PMID: 15965092]
[40]
Arai, M.; Shibata, Y.; Pugdee, K.; Abiko, Y.; Ogata, Y. Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life, 2007, 59(1), 27-33.
[http://dx.doi.org/10.1080/15216540601156188] [PMID: 17365177]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy