Review Article

维生素D/VDR在急性肾损伤中的潜在治疗靶点

卷 28, 期 19, 2021

发表于: 18 November, 2020

页: [3865 - 3876] 页: 12

弟呕挨: 10.2174/0929867327666201118155625

价格: $65

摘要

尽管临床实践中使用了许多策略和参数,但急性肾损伤(AKI)的发病率和死亡率仍然很高,预后不良。随着分子生物学的发展,维生素D和维生素D受体(VDR)在AKI中的作用越来越受到重视。许多研究表明,维生素D缺乏是临床和实验性AKI的危险因素,维生素D/VDR可能是AKI的一个有前途的治疗靶点。然而,需要更多的定性临床研究,为维生素D和VDR激动剂的未来临床应用提供更有力的证据。给药途径和剂量等问题也有待更多关注。本文旨在总结维生素D/VDR在AKI中的作用,并对其治疗潜力提供一些新的见解。

关键词: 维生素D,维生素D受体,急性肾损伤,缺乏,治疗靶点,剂量。

[1]
Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract., 2012, 120(4), c179-c184.
[http://dx.doi.org/10.1159/000339789] [PMID: 22890468]
[2]
Waikar, S.S.; Liu, K.D.; Chertow, G.M. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin. J. Am. Soc. Nephrol., 2008, 3(3), 844-861.
[http://dx.doi.org/10.2215/CJN.05191107] [PMID: 18337550]
[3]
Lameire, N.; Van Biesen, W.; Vanholder, R. The changing epidemiology of acute renal failure. 2006, 2(7), 364-377.
[http://dx.doi.org/10.1038/ncpneph0218] [PMID: 16932465]
[4]
Coca, S.; Yusuf, B.; Shlipak, M.; Garg, A.X; Parikh, C.R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis. 2009, 53(6), 961-973.
[http://dx.doi.org/10.1053/j.ajkd.2008.11.034]
[5]
Gao, G.; Zhang, B.; Ramesh, G.; Betterly, D.; Tadagavadi, R.K.; Wang, W.; Reeves, W.B. TNF-α mediates increased susceptibility to ischemic AKI in diabetes. Am. J. Physiol. Renal Physiol., 2013, 304(5), F515-F521.
[http://dx.doi.org/10.1152/ajprenal.00533.2012] [PMID: 23283990]
[6]
Kelly, K.J.; Burford, J.L.; Dominguez, J.H. Postischemic inflammatory syndrome: a critical mechanism of progression in diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2009, 297(4), F923-F931.
[http://dx.doi.org/10.1152/ajprenal.00205.2009] [PMID: 19656916]
[7]
Peng, J.; Li, X.; Zhang, D.; Chen, J.K.; Su, Y.; Smith, S.B.; Dong, Z. Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int., 2015, 87(1), 137-150.
[http://dx.doi.org/10.1038/ki.2014.226] [PMID: 24963915]
[8]
Rosner, M.H. Acute kidney injury in the elderly. Clin. Geriatr. Med., 2013, 29(3), 565-578.
[http://dx.doi.org/10.1016/j.cger.2013.05.001] [PMID: 23849008]
[9]
Wang, X.; Bonventre, J.V.; Parrish, A.R. The aging kidney: increased susceptibility to nephrotoxicity. Int. J. Mol. Sci., 2014, 15(9), 15358-15376.
[http://dx.doi.org/10.3390/ijms150915358] [PMID: 25257519]
[10]
Braun, A.B.; Christopher, K.B. Vitamin D in acute kidney injury. Inflamm. Allergy Drug Targets, 2013, 12(4), 262-272.
[http://dx.doi.org/10.2174/18715281113129990044] [PMID: 23782211]
[11]
Querfeld, U.; Mak, R.H. Vitamin D deficiency and toxicity in chronic kidney disease: in search of the therapeutic window. Pediatr. Nephrol., 2010, 25(12), 2413-2430.
[http://dx.doi.org/10.1007/s00467-010-1574-2] [PMID: 20567854]
[12]
Yang, S.; Li, A.; Wang, J.; Liu, J.; Han, Y.; Zhang, W.; Li, Y.C.; Zhang, H. Vitamin D receptor: a novel therapeutic target for kidney diseases. Curr. Med. Chem., 2018, 25(27), 3256-3271.
[http://dx.doi.org/10.2174/0929867325666180214122352] [PMID: 29446731]
[13]
Leaf, D.E.; Waikar, S.S.; Wolf, M.; Cremers, S.; Bhan, I.; Stern, L. Dysregulated mineral metabolism in patients with acute kidney injury and risk of adverse outcomes. Clin. Endocrinol. (Oxf.), 2013, 79(4), 491-498.
[http://dx.doi.org/10.1111/cen.12172] [PMID: 23414198]
[14]
Leaf, D.E.; Wolf, M.; Waikar, S.S.; Chase, H.; Christov, M.; Cremers, S.; Stern, L. FGF-23 levels in patients with AKI and risk of adverse outcomes. Clin. J. Am. Soc. Nephrol., 2012, 7(8), 1217-1223.
[http://dx.doi.org/10.2215/CJN.00550112] [PMID: 22700885]
[15]
Leaf, D.E.; Siew, E.D.; Eisenga, M.F.; Singh, K.; Mc Causland, F.R.; Srivastava, A.; Ikizler, T.A.; Ware, L.B.; Ginde, A.A.; Kellum, J.A.; Palevsky, P.M.; Wolf, M.; Waikar, S.S. Fibroblast growth factor 23 associates with death in critically Ill patients. Clin. J. Am. Soc. Nephrol., 2018, 13(4), 531-541.
[http://dx.doi.org/10.2215/CJN.10810917] [PMID: 29519954]
[16]
Volovelsky, O.; Gist, K.M.; Terrell, T.C.; Bennett, M.R.; Cooper, D.S.; Alten, J.A.; Goldstein, S.L. Early postoperative measurement of fibroblast growth factor 23 predicts severe acute kidney injury in infants after cardiac surgery . Clin. Nephrol., 2018, 90(3), 165-171.
[http://dx.doi.org/10.5414/CN109359] [PMID: 29633705]
[17]
Lavi-Moshayoff, V.; Wasserman, G.; Meir, T.; Silver, J.; Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol., 2010, 299(4), F882-F889.
[http://dx.doi.org/10.1152/ajprenal.00360.2010] [PMID: 20685823]
[18]
Knab, V.M.; Corbin, B.; Andrukhova, O.; Hum, J.M.; Ni, P.; Rabadi, S.; Maeda, A.; White, K.E.; Erben, R.G.; Jüppner, H.; Christov, M. Acute parathyroid hormone injection increases C-terminal but not intact fibroblast growth factor 23 levels. Endocrinology, 2017, 158(5), 1130-1139.
[http://dx.doi.org/10.1210/en.2016-1451] [PMID: 28324013]
[19]
Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res., 2004, 19(3), 429-435.
[http://dx.doi.org/10.1359/JBMR.0301264] [PMID: 15040831]
[20]
Smith, R.C.; O’Bryan, L.M.; Farrow, E.G.; Summers, L.J.; Clinkenbeard, E.L.; Roberts, J.L.; Cass, T.A.; Saha, J.; Broderick, C.; Ma, Y.L.; Zeng, Q.Q.; Kharitonenkov, A.; Wilson, J.M.; Guo, Q.; Sun, H.; Allen, M.R.; Burr, D.B.; Breyer, M.D.; White, K.E. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J. Clin. Invest., 2012, 122(12), 4710-4715.
[http://dx.doi.org/10.1172/JCI64986] [PMID: 23187128]
[21]
Andrukhova, O.; Smorodchenko, A.; Egerbacher, M.; Streicher, C.; Zeitz, U.; Goetz, R.; Shalhoub, V.; Mohammadi, M.; Pohl, E.E.; Lanske, B.; Erben, R.G. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J., 2014, 33(3), 229-246.
[http://dx.doi.org/10.1002/embj.201284188] [PMID: 24434184]
[22]
de Bragança, A.C.; Volpini, R.A.; Canale, D.; Gonçalves, J.G.; Shimizu, M.H.; Sanches, T.R.; Seguro, A.C.; Andrade, L. Vitamin D deficiency aggravates ischemic acute kidney injury in rats. Physiol. Rep., 2015, 3(3), e12331.
[http://dx.doi.org/10.14814/phy2.12331] [PMID: 25780095]
[23]
de Bragança, A.C.; Volpini, R.A.; Mehrotra, P.; Andrade, L.; Basile, D.P. Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury. Physiol. Rep., 2016, 4(13), e12829.
[http://dx.doi.org/10.14814/phy2.12829] [PMID: 27369932]
[24]
Gonçalves, J.G.; de Bragança, A.C.; Canale, D.; Shimizu, M.H.; Sanches, T.R.; Moysés, R.M.; Andrade, L.; Seguro, A.C.; Volpini, R.A. Vitamin D deficiency aggravates chronic kidney disease progression after ischemic acute kidney injury. PLoS One, 2014, 9(9), e107228.
[http://dx.doi.org/10.1371/journal.pone.0107228] [PMID: 25222475]
[25]
Canale, D.; de Bragança, A.C.; Gonçalves, J.G.; Shimizu, M.H.; Sanches, T.R.; Andrade, L.; Volpini, R.A.; Seguro, A.C. Vitamin D deficiency aggravates nephrotoxicity, hypertension and dyslipidemia caused by tenofovir: role of oxidative stress and renin-angiotensin system. PLoS One, 2014, 9(7), e103055.
[http://dx.doi.org/10.1371/journal.pone.0103055] [PMID: 25048368]
[26]
Pike, J.W. Vitamin D3 receptors: structure and function in transcription. Annu. Rev. Nutr., 1991, 11, 189-216.
[http://dx.doi.org/10.1146/annurev.nu.11.070191.001201] [PMID: 1654066]
[27]
Haussler, M.R. Vitamin D receptors: nature and function. Annu. Rev. Nutr., 1986, 6, 527-562.
[http://dx.doi.org/10.1146/annurev.nu.06.070186.002523] [PMID: 3015172]
[28]
Wu, B.; Li, S.; Dong, D. 3D structures and ligand specificities of nuclear xenobiotic receptors CAR, PXR and VDR. Drug Discov. Today, 2013, 18(11-12), 574-581.
[http://dx.doi.org/10.1016/j.drudis.2013.01.001] [PMID: 23299080]
[29]
Khedkar, S.A.; Samad, M.A.; Choudhury, S.; Lee, J.Y.; Zhang, D.; Thadhani, R.I.; Karumanchi, S.A.; Rigby, A.C.; Kang, P.M. Identification of novel non-secosteroidal vitamin D receptor agonists with potent cardioprotective effects and devoid of hypercalcemia. Sci. Rep., 2017, 7(1), 8427.
[http://dx.doi.org/10.1038/s41598-017-08670-y] [PMID: 28814738]
[30]
Kumar, R.; Schaefer, J.; Grande, J.P.; Roche, P.C. Immunolocalization of calcitriol receptor, 24-hydroxylase cytochrome P-450, and calbindin D28k in human kidney. Am. J. Physiol., 1994, 266(3 Pt 2), F477-F485.
[http://dx.doi.org/10.1152/ajprenal.1994.266.3.f477] [PMID: 8160797]
[31]
Kugita, M.; Nishii, K.; Morita, M.; Yoshihara, D.; Kowa-Sugiyama, H.; Yamada, K.; Yamaguchi, T.; Wallace, D.P.; Calvet, J.P.; Kurahashi, H.; Nagao, S. Global gene expression profiling in early-stage polycystic kidney disease in the Han:SPRD Cy rat identifies a role for RXR signaling. Am. J. Physiol. Renal Physiol., 2011, 300(1), F177-F188.
[http://dx.doi.org/10.1152/ajprenal.00470.2010] [PMID: 20926632]
[32]
Blomberg Jensen, M.; Andersen, C.B.; Nielsen, J.E.; Bagi, P.; Jørgensen, A.; Juul, A.; Leffers, H. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer. J. Steroid Biochem. Mol. Biol., 2010, 121(1-2), 376-382.
[http://dx.doi.org/10.1016/j.jsbmb.2010.03.069] [PMID: 20362668]
[33]
Yi, B.; Huang, J.; Zhang, W.; Li, A.M.; Yang, S.K.; Sun, J.; Wang, J.W.; Li, Y.C.; Zhang, H. vitamin d receptor down-regulation is associated with severity of albuminuria in type 2 diabetes patients. J. Clin. Endocrinol. Metab., 2016, 101(11), 4395-4404.
[http://dx.doi.org/10.1210/jc.2016-1516] [PMID: 27552538]
[34]
Sun, J.; Zhang, S.; Liu, J.S.; Gui, M.; Zhang, H. Expression of vitamin D receptor in renal tissue of lupus nephritis and its association with renal injury activity. Lupus, 2019, 28(3), 290-294.
[http://dx.doi.org/10.1177/0961203319826704] [PMID: 30691345]
[35]
Grenet, O.; Bobadilla, M.; Chibout, S.D.; Steiner, S. Evidence for the impairment of the vitamin D activation pathway by cyclosporine A. Biochem. Pharmacol., 2000, 59(3), 267-272.
[http://dx.doi.org/10.1016/S0006-2952(99)00321-4] [PMID: 10609555]
[36]
Tissandié, E.; Guéguen, Y.; Lobaccaro, J.M.; Grandcolas, L.; Aigueperse, J.; Gourmelon, P.; Souidi, M. Enriched uranium affects the expression of vitamin D receptor and retinoid X receptor in rat kidney. J. Steroid Biochem. Mol. Biol., 2008, 110(3-5), 263-268.
[http://dx.doi.org/10.1016/j.jsbmb.2007.11.002] [PMID: 18502116]
[37]
Zhang, Z.; Yuan, W.; Sun, L.; Szeto, F.L.; Wong, K.E.; Li, X.; Kong, J.; Li, Y.C. 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int., 2007, 72(2), 193-201.
[http://dx.doi.org/10.1038/sj.ki.5002296] [PMID: 17507908]
[38]
Liu, Y.; Li, L.; Yi, B.; Hu, Z.X.; Li, A.M.; Yang, C.; Zheng, L.; Zhang, H. Activation of vitamin D receptor attenuates high glucose-induced cellular injury partially dependent on CYP2J5 in murine renal tubule epithelial cell. Life Sci., 2019, 234, 116755.
[http://dx.doi.org/10.1016/j.lfs.2019.116755] [PMID: 31415769]
[39]
Prado, N.J.; Casarotto, M.; Calvo, J.P.; Mazzei, L.; Ponce Zumino, A.Z.; García, I.M.; Cuello-Carrión, F.D.; Fornés, M.W.; Ferder, L.; Diez, E.R.; Manucha, W. Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT1 reduction and Hsp70-VDR increase. J. Pineal Res., 2018, 65(4), e12513.
[http://dx.doi.org/10.1111/jpi.12513] [PMID: 29851143]
[40]
Xiong, M.; Gong, J.; Liu, Y.; Xiang, R.; Tan, X. Loss of vitamin D receptor in chronic kidney disease: a potential mechanism linking inflammation to epithelial-to-mesenchymal transition. Am. J. Physiol. Renal Physiol., 2012, 303(7), F1107-F1115.
[http://dx.doi.org/10.1152/ajprenal.00151.2012] [PMID: 22791341]
[41]
Berzal, S.; González-Guerrero, C.; Rayego-Mateos, S.; Ucero, Á.; Ocaña-Salceda, C.; Egido, J.; Ortiz, A.; Ruiz-Ortega, M.; Ramos, A.M. TNF-related weak inducer of apoptosis (TWEAK) regulates junctional proteins in tubular epithelial cells via canonical NF-κB pathway and ERK activation. J. Cell. Physiol., 2015, 230(7), 1580-1593.
[http://dx.doi.org/10.1002/jcp.24905] [PMID: 25536182]
[42]
Zhang, Y.; Kong, J.; Deb, D.K.; Chang, A.; Li, Y.C. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J. Am. Soc. Nephrol., 2010, 21(6), 966-973.
[http://dx.doi.org/10.1681/ASN.2009080872] [PMID: 20378820]
[43]
Chandel, N.; Sharma, B.; Husain, M.; Salhan, D.; Singh, T.; Rai, P.; Mathieson, P.W.; Saleem, M.A.; Malhotra, A.; Singhal, P.C. HIV compromises integrity of the podocyte actin cytoskeleton through downregulation of the vitamin D receptor. Am. J. Physiol. Renal Physiol., 2013, 304(11), F1347-F1357.
[http://dx.doi.org/10.1152/ajprenal.00717.2012] [PMID: 23467424]
[44]
Chandel, N.; Ayasolla, K.S.; Lan, X.; Sultana-Syed, M.; Chawla, A.; Lederman, R.; Vethantham, V.; Saleem, M.A.; Chander, P.N.; Malhotra, A.; Singhal, P.C. Epigenetic modulation of human podocyte vitamin D receptor in HIV milieu. J. Mol. Biol., 2015, 427(20), 3201-3215.
[http://dx.doi.org/10.1016/j.jmb.2015.07.011] [PMID: 26210663]
[45]
Rai, P.; Singh, T.; Lederman, R.; Chawla, A.; Kumar, D.; Cheng, K.; Valecha, G.; Mathieson, P.W.; Saleem, M.A.; Malhotra, A.; Singhal, P.C. Hyperglycemia enhances kidney cell injury in HIVAN through down-regulation of vitamin D receptors. Cell. Signal., 2015, 27(3), 460-469.
[http://dx.doi.org/10.1016/j.cellsig.2014.12.011] [PMID: 25542307]
[46]
Du, J.; Jiang, S.; Hu, Z.; Tang, S.; Sun, Y.; He, J.; Li, Z.; Yi, B.; Wang, J.; Zhang, H.; Li, Y.C. Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. Am. J. Physiol. Renal Physiol., 2019, 316(5), F1068-F1077.
[http://dx.doi.org/10.1152/ajprenal.00332.2018] [PMID: 30864841]
[47]
Hu, Z.; Zhang, H.; Yi, B.; Yang, S.; Liu, J.; Hu, J.; Wang, J.; Cao, K.; Zhang, W. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis., 2020, 11(1), 73.
[http://dx.doi.org/10.1038/s41419-020-2256-z] [PMID: 31996668]
[48]
Liu, L.J.; Lv, J.C.; Shi, S.F.; Chen, Y.Q.; Zhang, H.; Wang, H.Y. Oral calcitriol for reduction of proteinuria in patients with IgA nephropathy: a randomized controlled trial. Am. J. Kidney Dis., 2012, 59(1), 67-74.
[http://dx.doi.org/10.1053/j.ajkd.2011.09.014] [PMID: 22019331]
[49]
Deng, J.; Zheng, X.; Xie, H.; Chen, L. Calcitriol in the treatment of IgA nephropathy with non-nephrotic range proteinuria: a meta-analysis of randomized controlled trials . Clin. Nephrol., 2017, 87(1), 21-27.
[http://dx.doi.org/10.5414/CN108915] [PMID: 27900938]
[50]
Rangan, G.K.; Harris, D.C. Rationale and design of an observational study to determine the effects of cholecalciferol on hypertension, proteinuria and urinary MCP-1 in ADPKD. Curr. Hypertens. Rev., 2013, 9(2), 115-120.
[http://dx.doi.org/10.2174/15734021113099990006] [PMID: 23971693]
[51]
Li, Y.C.; Qiao, G.; Uskokovic, M.; Xiang, W.; Zheng, W.; Kong, J. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J. Steroid Biochem. Mol. Biol., 2004, 89-90(1-5), 387-392.
[http://dx.doi.org/10.1016/j.jsbmb.2004.03.004] [PMID: 15225806]
[52]
Ma, D.; Zhang, R.N.; Wen, Y.; Yin, W.N.; Bai, D.; Zheng, G.Y.; Li, J.S.; Zheng, B.; Wen, J.K. 1, 25(OH)2D3-induced interaction of vitamin D receptor with p50 subunit of NF-κB suppresses the interaction between KLF5 and p50, contributing to inhibition of LPS-induced macrophage proliferation. Biochem. Biophys. Res. Commun., 2017, 482(2), 366-374.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.069] [PMID: 27856242]
[53]
Kim, C.S.; Joo, S.Y.; Lee, K.E.; Choi, J.S.; Bae, E.H.; Ma, S.K.; Kim, S.H.; Lee, J.; Kim, S.W. Paricalcitol attenuates 4-hydroxy-2-hexenal-induced inflammation and epithelial-mesenchymal transition in human renal proximal tubular epithelial cells. PLoS One, 2013, 8(5), e63186.
[http://dx.doi.org/10.1371/journal.pone.0063186] [PMID: 23690997]
[54]
Zhang, X.; Zhou, M.; Guo, Y.; Song, Z.; Liu, B. 1,25-Dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. BioMed Res. Int., 2015, 2015, 157834.
[http://dx.doi.org/10.1155/2015/157834] [PMID: 25961000]
[55]
Xu, L.; Zhang, P.; Guan, H.; Huang, Z.; He, X.; Wan, X.; Xiao, H.; Li, Y. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-β, angiotensinogen expression and podocytes apoptosis through the nuclear factor-κB pathway. J. Diabetes Investig., 2016, 7(5), 680-688.
[http://dx.doi.org/10.1111/jdi.12505] [PMID: 27180929]
[56]
Wei, H.; Qu, H.; Wang, H.; Ji, B.; Ding, Y.; Liu, D.; Duan, Y.; Liang, H.; Peng, C.; Xiao, X.; Deng, H. 1,25-Dihydroxyvitamin-D3 prevents the development of diabetic cardiomyopathy in type 1 diabetic rats by enhancing autophagy via inhibiting the β-catenin/TCF4/GSK-3β/mTOR pathway. J. Steroid Biochem. Mol. Biol., 2017, 168, 71-90.
[http://dx.doi.org/10.1016/j.jsbmb.2017.02.007] [PMID: 28216152]
[57]
Ricciardi, C.J.; Bae, J.; Esposito, D.; Komarnytsky, S.; Hu, P.; Chen, J.; Zhao, L. 1,25-Dihydroxyvitamin D3/vitamin D receptor suppresses brown adipocyte differentiation and mitochondrial respiration. Eur. J. Nutr., 2015, 54(6), 1001-1012.
[http://dx.doi.org/10.1007/s00394-014-0778-9] [PMID: 25296887]
[58]
Li, J.; Xu, S.; Zhu, J.B.; Song, J.; Luo, B.; Song, Y.P.; Zhang, Z.H.; Chen, Y.H.; Zhang, Z.Q.; Xie, D.D.; Yu, D.X.; Xu, D.X. Pretreatment with cholecalciferol alleviates renal cellular stress response during ischemia/reperfusion-induced acute kidney injury. Oxid. Med. Cell. Longev., 2019, 2019, 1897316.
[http://dx.doi.org/10.1155/2019/1897316] [PMID: 31019650]
[59]
Kapil, A.; Singh, J.P.; Kaur, T.; Singh, B.; Singh, A.P. Involvement of peroxisome proliferator-activated receptor gamma in vitamin D-mediated protection against acute kidney injury in rats. J. Surg. Res., 2013, 185(2), 774-783.
[http://dx.doi.org/10.1016/j.jss.2013.07.017] [PMID: 24011919]
[60]
Hamzawy, M.; Gouda, S.A.A.; Rashed, L.; Morcos, M.A.; Shoukry, H.; Sharawy, N. 22-oxacalcitriol prevents acute kidney injury via inhibition of apoptosis and enhancement of autophagy. Clin. Exp. Nephrol., 2019, 23(1), 43-55.
[http://dx.doi.org/10.1007/s10157-018-1614-y] [PMID: 29968126]
[61]
Lee, J.W.; Kim, S.C.; Ko, Y.S.; Lee, H.Y.; Cho, E.; Kim, M.G.; Jo, S.K.; Cho, W.Y.; Kim, H.K. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury. Biochem. Biophys. Res. Commun., 2014, 444(2), 121-127.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.005] [PMID: 24434153]
[62]
Ersan, S.; Celik, A.; Tanrisev, M.; Kose, I.; Cavdar, Z.; Unlu, M.; Kocak, A.; Ural, C.; Yilmaz, B.; Kose, T. Pretreatment with paricalcitol attenuates level and expression of matrix metalloproteinases in a rat model of renal ischemia-reperfusion injury. Clin. Nephrol., 2017, 88(11), 231-238.
[http://dx.doi.org/10.5414/CN109121] [PMID: 28737133]
[63]
Park, J.W.; Cho, J.W.; Joo, S.Y.; Kim, C.S.; Choi, J.S.; Bae, E.H.; Ma, S.K.; Kim, S.H.; Lee, J.; Kim, S.W. Paricalcitol prevents cisplatin-induced renal injury by suppressing apoptosis and proliferation. Eur. J. Pharmacol., 2012, 683(1-3), 301-309.
[http://dx.doi.org/10.1016/j.ejphar.2012.03.019] [PMID: 22449373]
[64]
Khames, A.; Khalaf, M.M.; Gad, A.M.; Abd El-Raouf, O.M.; Kandeil, M.A. Nicorandil combats doxorubicin-induced nephrotoxicity via amendment of TLR4/P38 MAPK/NFκ-B signaling pathway. Chem. Biol. Interact., 2019, 311, 108777.
[http://dx.doi.org/10.1016/j.cbi.2019.108777] [PMID: 31376360]
[65]
He, W.; Kang, Y.S.; Dai, C.; Liu, Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J. Am. Soc. Nephrol., 2011, 22(1), 90-103.
[http://dx.doi.org/10.1681/ASN.2009121236] [PMID: 21030600]
[66]
Garsen, M.; Sonneveld, R.; Rops, A.L.; Huntink, S.; van Kuppevelt, T.H.; Rabelink, T.J.; Hoenderop, J.G.; Berden, J.H.; Nijenhuis, T.; van der Vlag, J. Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. J. Pathol., 2015, 237(4), 472-481.
[http://dx.doi.org/10.1002/path.4593] [PMID: 26202309]
[67]
Jeong, K.H.; Asanuma, K.; Lydia, A.; Takagi, M.; Asao, R.; Kodama, F.; Asanuma, E.; Tomino, Y. Combination therapy with telmisartan and oxacalcitriol suppresses the progression of murine adriamycin nephropathy. Nephron, 2015, 129(2), 143-154.
[http://dx.doi.org/10.1159/000369346] [PMID: 25661164]
[68]
Xu, S.; Chen, Y.H.; Tan, Z.X.; Xie, D.D.; Zhang, C.; Xia, M.Z.; Wang, H.; Zhao, H.; Xu, D.X.; Yu, D.X. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury. J. Steroid Biochem. Mol. Biol., 2015, 152, 133-141.
[http://dx.doi.org/10.1016/j.jsbmb.2015.05.009] [PMID: 26013770]
[69]
Xu, S.; Chen, Y.H.; Tan, Z.X.; Xie, D.D.; Zhang, C.; Zhang, Z.H.; Wang, H.; Zhao, H.; Yu, D.X.; Xu, D.X. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury. Sci. Rep., 2015, 5, 18687.
[http://dx.doi.org/10.1038/srep18687] [PMID: 26691774]
[70]
Bascands, J.L.; Schanstra, J.P. Obstructive nephropathy: insights from genetically engineered animals. Kidney Int., 2005, 68(3), 925-937.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00486.x] [PMID: 16105023]
[71]
You, Y.K.; Luo, Q.; Wu, W.F.; Zhang, J.J.; Zhu, H.J.; Lao, L.; Lan, H.Y.; Chen, H.Y.; Cheng, Y.X. Petchiether A attenuates obstructive nephropathy by suppressing TGF-β/Smad3 and NF-κB signalling. J. Cell. Mol. Med., 2019, 23(8), 5576-5587.
[http://dx.doi.org/10.1111/jcmm.14454] [PMID: 31211499]
[72]
Inoue, K.; Matsui, I.; Hamano, T.; Fujii, N.; Shimomura, A.; Nakano, C.; Kusunoki, Y.; Takabatake, Y.; Hirata, M.; Nishiyama, A.; Tsubakihara, Y.; Isaka, Y.; Rakugi, H. Maxacalcitol ameliorates tubulointerstitial fibrosis in obstructed kidneys by recruiting PPM1A/VDR complex to pSmad3. Lab. Invest., 2012, 92(12), 1686-1697.
[http://dx.doi.org/10.1038/labinvest.2012.107] [PMID: 22926646]
[73]
García, I.M.; Altamirano, L.; Mazzei, L.; Fornés, M.; Molina, M.N.; Ferder, L.; Manucha, W. Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy. Am. J. Physiol. Renal Physiol., 2012, 302(12), F1595-F1605.
[http://dx.doi.org/10.1152/ajprenal.00617.2011] [PMID: 22492946]
[74]
Duffy, M.M.; McNicholas, B.A.; Monaghan, D.A.; Hanley, S.A.; McMahon, J.M.; Pindjakova, J.; Alagesan, S.; Fearnhead, H.O.; Griffin, M.D. Mesenchymal stem cells and a vitamin D receptor agonist additively suppress T helper 17 cells and the related inflammatory response in the kidney. Am. J. Physiol. Renal Physiol., 2014, 307(12), F1412-F1426.
[http://dx.doi.org/10.1152/ajprenal.00024.2014] [PMID: 25339699]
[75]
Reis, N.G.; Francescato, H.D.C.; de Almeida, L.F.; Silva, C.G.A.D.; Costa, R.S.; Coimbra, T.M. Protective effect of calcitriol on rhabdomyolysis-induced acute kidney injury in rats. Sci. Rep., 2019, 9(1), 7090.
[http://dx.doi.org/10.1038/s41598-019-43564-1] [PMID: 31068635]
[76]
Hur, E.; Garip, A.; Camyar, A.; Ilgun, S.; Ozisik, M.; Tuna, S.; Olukman, M.; Narli Ozdemir, Z.; Yildirim Sozmen, E.; Sen, S.; Akcicek, F.; Duman, S. The effects of vitamin d on gentamicin-induced acute kidney injury in experimental rat model. Int. J. Endocrinol., 2013, 2013, 313528.
[http://dx.doi.org/10.1155/2013/313528] [PMID: 23843788]
[77]
Abo El-Magd, N.F.; Eraky, S.M. The molecular mechanism underlining the preventive effect of vitamin D against hepatic and renal acute toxicity through the NrF2/ BACH1/ HO-1 pathway. Life Sci., 2020, 244, 117331.
[http://dx.doi.org/10.1016/j.lfs.2020.117331] [PMID: 31972209]
[78]
Al Drees, A.; Salah Khalil, M.; Soliman, M. Histological and immunohistochemical basis of the effect of aminoguanidine on renal changes associated with hemorrhagic shock in a rat model. Acta Histochem. Cytochem., 2017, 50(1), 11-19.
[http://dx.doi.org/10.1267/ahc.16025] [PMID: 28386146]
[79]
Kusunoki, Y.; Matsui, I.; Hamano, T.; Shimomura, A.; Mori, D.; Yonemoto, S.; Takabatake, Y.; Tsubakihara, Y.; St-Arnaud, R.; Isaka, Y.; Rakugi, H. Excess 25-hydroxyvitamin D3 exacerbates tubulointerstitial injury in mice by modulating macrophage phenotype. Kidney Int., 2015, 88(5), 1013-1029.
[http://dx.doi.org/10.1038/ki.2015.210] [PMID: 26176830]
[80]
Schwalfenberg, G. Not enough vitamin D: health consequences for Canadians. Can. Fam. Physician, 2007, 53(5), 841-854.
[PMID: 17872747]
[81]
Chowdry, A.M.; Azad, H.; Najar, M.S.; Mir, I. Acute kidney injury due to overcorrection of hypovitaminosis D: A tertiary center experience in the Kashmir Valley of India. Saudi J. Kidney Dis. Transpl., 2017, 28(6), 1321-1329.
[http://dx.doi.org/10.4103/1319-2442.220873] [PMID: 29265043]
[82]
Cakici, C.; Yigitbasi, T.; Ayla, S.; Karimkhani, H.; Bayramoglu, F.; Yigit, P.; Kilic, E.; Emekli, N. Dose-dependent effects of vitamin 1,25(OH)2D3 on oxidative stress and apoptosis. J. Basic Clin. Physiol. Pharmacol., 2018, 29(3), 271-279.
[http://dx.doi.org/10.1515/jbcpp-2017-0121] [PMID: 29420306]
[83]
Lechner, D.; Cross, H.S. Phytoestrogens and 17beta-estradiol influence vitamin D metabolism and receptor expression-relevance for colon cancer prevention. Recent Results Cancer Res., 2003, 164, 379-391.
[http://dx.doi.org/10.1007/978-3-642-55580-0_28] [PMID: 12899537]
[84]
Wan, J.; Li, P.; Liu, D.W.; Chen, Y.; Mo, H.Z.; Liu, B.G.; Chen, W.J.; Lu, X.Q.; Guo, J.; Zhang, Q.; Qiao, Y.J.; Liu, Z.S.; Wan, G.R. GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice, and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes. Mol. Med. Rep., 2016, 14(2), 1771-1784.
[http://dx.doi.org/10.3892/mmr.2016.5441] [PMID: 27357417]
[85]
Jurutka, P.W.; Hsieh, J.C.; Nakajima, S.; Haussler, C.A.; Whitfield, G.K.; Haussler, M.R. Human vitamin D receptor phosphorylation by casein kinase II at Ser-208 potentiates transcriptional activation. Proc. Natl. Acad. Sci. USA, 1996, 93(8), 3519-3524.
[http://dx.doi.org/10.1073/pnas.93.8.3519] [PMID: 8622969]
[86]
Ignat, M.; Teletin, M.; Tisserand, J.; Khetchoumian, K.; Dennefeld, C.; Chambon, P.; Losson, R.; Mark, M. Arterial calcifications and increased expression of vitamin D receptor targets in mice lacking TIF1alpha. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2598-2603.
[http://dx.doi.org/10.1073/pnas.0712030105] [PMID: 18287084]
[87]
Dampf Stone, A.; Batie, S.F.; Sabir, M.S.; Jacobs, E.T.; Lee, J.H.; Whitfield, G.K.; Haussler, M.R.; Jurutka, P.W. Resveratrol potentiates vitamin D and nuclear receptor signaling. J. Cell. Biochem., 2015, 116(6), 1130-1143.
[http://dx.doi.org/10.1002/jcb.25070] [PMID: 25536521]
[88]
Cameron, L.K.; Lei, K.; Smith, S.; Doyle, N.L.; Doyle, J.F.; Flynn, K.; Purchase, N.; Smith, J.; Chan, K.; Kamara, F.; Kidane, N.G.; Forni, L.G.; Harrington, D.; Hampson, G.; Ostermann, M. Vitamin D levels in critically ill patients with acute kidney injury: a protocol for a prospective cohort study (VID-AKI). BMJ Open, 2017, 7(7), e016486.
[http://dx.doi.org/10.1136/bmjopen-2017-016486] [PMID: 28706103]
[89]
Leaf, D.E.; Raed, A.; Donnino, M.W.; Ginde, A.A.; Waikar, S.S. Randomized controlled trial of calcitriol in severe sepsis. Am. J. Respir. Crit. Care Med., 2014, 190(5), 533-541.
[http://dx.doi.org/10.1164/rccm.201405-0988OC] [PMID: 25029202]
[90]
Pietrek, J.; Kokot, F.; Kuska, J. Serum 25-hydroxyvitamin D and parathyroid hormone in patients with acute renal failure. Kidney Int., 1978, 13(2), 178-185.
[http://dx.doi.org/10.1038/ki.1978.25] [PMID: 713278]
[91]
Saha, H.; Mustonen, J.; Pietilä, K.; Pasternack, A. Metabolism of calcium and vitamin D3 in patients with acute tubulointerstitial nephritis: a study of 41 patients with nephropathia epidemica. Nephron, 1993, 63(2), 159-163.
[http://dx.doi.org/10.1159/000187175] [PMID: 8095698]
[92]
Llach, F.; Felsenfeld, A.J.; Haussler, M.R. The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure. Interactions of parathyroid hormone, 25-hydroxycholecalciferol, and 1,25-dihydroxycholecalciferol. N. Engl. J. Med., 1981, 305(3), 117-123.
[http://dx.doi.org/10.1056/NEJM198107163050301] [PMID: 6894630]
[93]
Shieh, S.D.; Lin, Y.F.; Lin, S.H.; Lu, K.C. A prospective study of calcium metabolism in exertional heat stroke with rhabdomyolysis and acute renal failure. Nephron, 1995, 71(4), 428-432.
[http://dx.doi.org/10.1159/000188763] [PMID: 8587623]
[94]
Druml, W.; Schwarzenhofer, M.; Apsner, R.; Hörl, W.H. Fat-soluble vitamins in patients with acute renal failure. Miner. Electrolyte Metab., 1998, 24(4), 220-226.
[http://dx.doi.org/10.1159/000057374] [PMID: 9554560]
[95]
Ostermann, M.; Summers, J.; Lei, K.; Card, D.; Harrington, D.J.; Sherwood, R.; Turner, C.; Dalton, N.; Peacock, J.; Bear, D.E. Micronutrients in critically ill patients with severe acute kidney injury - a prospective study. Sci. Rep., 2020, 10(1), 1505.
[http://dx.doi.org/10.1038/s41598-020-58115-2] [PMID: 32001725]
[96]
Lai, L.; Qian, J.; Yang, Y.; Xie, Q.; You, H.; Zhou, Y.; Ma, S.; Hao, C.; Gu, Y.; Ding, F. Is the serum vitamin D level at the time of hospital-acquired acute kidney injury diagnosis associated with prognosis? PLoS One, 2013, 8(5), e64964.
[http://dx.doi.org/10.1371/journal.pone.0064964] [PMID: 23717679]
[97]
Vijayan, A.; Li, T.; Dusso, A.; Jain, S.; Coyne, D.W. Relationship of 1,25 dihydroxy vitamin D levels to clinical outcomes in critically Ill patients with acute kidney injury. J. Nephrol. Ther., 2015, 5(1), 190.
[http://dx.doi.org/10.4172/2161-0959.1000190] [PMID: 26295008]
[98]
Gunay, M.; Mertoglu, C. Increase of endocan, a new marker for inflammation and endothelial dysfunction, in acute kidney injury. North. Clin. Istanb., 2018, 6(2), 124-128.
[http://dx.doi.org/10.14744/nci.2018.70446] [PMID: 31297477]
[99]
Braun, A.B.; Litonjua, A.A.; Moromizato, T.; Gibbons, F.K.; Giovannucci, E.; Christopher, K.B. Association of low serum 25-hydroxyvitamin D levels and acute kidney injury in the critically ill. Crit. Care Med., 2012, 40(12), 3170-3179.
[http://dx.doi.org/10.1097/CCM.0b013e318260c928] [PMID: 22975885]
[100]
Zapatero, A.; Dot, I.; Diaz, Y.; Gracia, M.P.; Pérez-Terán, P.; Climent, C.; Masclans, J.R.; Nolla, J. Severe vitamin D deficiency upon admission in critically ill patients is related to acute kidney injury and a poor prognosis. Med. Intensiva, 2018, 42(4), 216-224.
[http://dx.doi.org/10.1016/j.medin.2017.07.004] [PMID: 28847615]
[101]
Ala-Kokko, T.I.; Mutt, S.J.; Nisula, S.; Koskenkari, J.; Liisanantti, J.; Ohtonen, P.; Poukkanen, M.; Laurila, J.J.; Pettilä, V.; Herzig, K.H.; Group, F.S. FINNAKI Study Group. Vitamin D deficiency at admission is not associated with 90-day mortality in patients with severe sepsis or septic shock: Observational FINNAKI cohort study. Ann. Med., 2016, 48(1-2), 67-75.
[http://dx.doi.org/10.3109/07853890.2015.1134807] [PMID: 26800186]
[102]
Leaf, D.E.; Christov, M.; Jüppner, H.; Siew, E.; Ikizler, T.A.; Bian, A.; Chen, G.; Sabbisetti, V.S.; Bonventre, J.V.; Cai, X.; Wolf, M.; Waikar, S.S. Fibroblast growth factor 23 levels are elevated and associated with severe acute kidney injury and death following cardiac surgery. Kidney Int., 2016, 89(4), 939-948.
[http://dx.doi.org/10.1016/j.kint.2015.12.035] [PMID: 26924052]
[103]
Turan, A.; Artis, A.S.; Hanline, C.; Saha, P.; Maheshwari, K.; Kurz, A.; Devereaux, P.J.; Duceppe, E.; Patel, A.; Tiboni, M.; Ruetzler, K.; Pearse, R.; Chan, M.T.V.; Wu, W.K.K.; Srinathan, S.; Garg, A.X.; Sapsford, R.; Sessler, D.I. Preoperative vitamin D concentration and cardiac, renal, and infectious morbidity after noncardiac surgery. Anesthesiology, 2020, 132(1), 121-130.
[http://dx.doi.org/10.1097/ALN.0000000000003000] [PMID: 31651439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy