Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

An Exposition of 11C and 18F Radiotracers Synthesis for PET Imaging

Author(s): Priya Saxena, Tarique Mahmood*, Manish Dixit, Sanjay Gambhir and Farogh Ahsan

Volume 14, Issue 2, 2021

Published on: 01 December, 2020

Page: [92 - 100] Pages: 9

DOI: 10.2174/1874471013666201201095631

Price: $65

Abstract

The development of new radiolabeled Positron emission tomography tracers has been extensively utilized to access the increasing diversity in the research process and to facilitate the development in research methodology, clinical usage of drug discovery and patient care. Recent advances in radiochemistry, as well as the latest techniques in automated radio-synthesizer, have encouraged and challenged the radiochemists to produce the routinely developed radiotracers. Various radionuclides like 18F, 11C, 15O, 13N 99mTc, 131I, 124I and 64Cu are used for incorporating into different chemical scaffolds; among them, 18F and 11C tagged radiotracers are mostly explored such as 11C-Methionine, 11C-Choline, 18F-FDG, 18F-FLT, and 18F-FES. This review is focused on the development of radiochemistry routes to synthesize different radiotracers of 11C and 18F for clinical studies.

Keywords: Radionuclide, radiolabeled, positron emission tomography, imaging, radiotracer, radiochemistry.

Graphical Abstract
[1]
Kapoor, V.; McCook, B.M.; Torok, F.S. An introduction to PET-CT imaging. Radiographics, 2004, 24(2), 523-543.
[http://dx.doi.org/10.1148/rg.242025724] [PMID: 15026598]
[2]
Phelps, M.E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 9226-9233.
[http://dx.doi.org/10.1073/pnas.97.16.9226] [PMID: 10922074]
[3]
Juweid, M.E.; Cheson, B.D. Positron-emission tomography and assessment of cancer therapy. N. Engl. J. Med., 2006, 354(5), 496-507.
[http://dx.doi.org/10.1056/NEJMra050276] [PMID: 16452561]
[4]
Patel, A.; Patel, B.; Patel, K. Role of PET scan in Clinical Practice. Gujarat. Med. J., 2013, 68(2), 19-22.
[5]
Farwell, M.D.; Pryma, D.A.; Mankoff, D.A. PET/CT imaging in cancer: current applications and future directions. Cancer, 2014, 120(22), 3433-3445.
[http://dx.doi.org/10.1002/cncr.28860] [PMID: 24947987]
[6]
Miller, P.W.; Long, N.J.; Vilar, R.; Gee, A.D. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew. Chem. Int. Ed. Engl., 2008, 47(47), 8998-9033.
[http://dx.doi.org/10.1002/anie.200800222] [PMID: 18988199]
[7]
Schlyer, D.J. PET tracers and radiochemistry. Ann. Acad. Med. Singapore, 2004, 33(2), 146-154.
[PMID: 15098627]
[8]
Currie, G.M.; Wheat, J.M.; Davidson, R.; Kiat, H. Radionuclide production. Radiographer, 2011, 58(3), 46-52.
[http://dx.doi.org/10.1002/j.2051-3909.2011.tb00155.x]
[9]
Tu, Z.; Mach, R.H. C-11 radiochemistry in cancer imaging applications. Curr. Top. Med. Chem., 2010, 10(11), 1060-1095.
[http://dx.doi.org/10.2174/156802610791384261] [PMID: 20388115]
[10]
Dahl, K.; Halldin, C.; Schou, M. New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals. Clin. Transl. Imaging, 2017, 5(3), 275-289.
[http://dx.doi.org/10.1007/s40336-017-0223-1] [PMID: 28596949]
[11]
Taddei, C.; Gee, A.D. Recent progress in [11 C]carbon dioxide ([11 C]CO2 ) and [11 C]carbon monoxide ([11 C]CO) chemistry. J. Labelled Comp. Radiopharm., 2018, 61(3), 237-251.
[http://dx.doi.org/10.1002/jlcr.3596] [PMID: 29274276]
[12]
Bolster, J.M.; Vaalburg, W.; Elsinga, P.H.; Wynberg, H.; Woldring, M.G. Synthesis of DL-[1-11C]methionine. Int. J. Rad. Appl. Instrum. [A], 1986, 37(10), 1069-1070.
[http://dx.doi.org/10.1016/0883-2889(86)90047-X] [PMID: 3027003]
[13]
Långström, B.; Lundqvist, H. The preparation of 11C-methyl iodide and its use in the synthesis of 11C-methyl-L-methionine. Int. J. Appl. Radiat. Isot., 1976, 27(7), 357-363.
[http://dx.doi.org/10.1016/0020-708X(76)90088-0] [PMID: 955739]
[14]
Mizuno, K.I.; Yamazaki, S.; Iwata, R.; Pascali, C.; Ido, T. Improved preparation of L-[methyl-11C] methionine by on-line [11C] methylation. Appl. Radiat. Isot., 1993, 44, 788-790.
[http://dx.doi.org/10.1016/0969-8043(93)90152-Z]
[15]
Pascali, C.; Bogi, A.; Iwata, R.; Decise, D. Highly efficient preparation of L-[S-methyl-11C] methionine by on-cloumn [11C] Methylation on C18 Sep-Pak. J. Labelled. Compd. Rad, 1999, 42, 715-724.
[16]
Mitterhauser, M.; Wadsak, W.; Krcal, A.; Schmaljohann, J.; Eidherr, H.; Schmid, A.; Viernstein, H.; Dudczak, R.; Kletter, K. New aspects on the preparation of [11C]Methionine--a simple and fast online approach without preparative HPLC. Appl. Radiat. Isot., 2005, 62(3), 441-445.
[http://dx.doi.org/10.1016/j.apradiso.2004.07.006] [PMID: 15607921]
[17]
Silveira, B.M.; Ferreira, Z.S.; Carvalho, F.T.; Juliana, B. da Silva, B. J. [11C] methionine as pet radiopharmaceutical produced at CDTN/CNEN. International Nuclear Atlantic Conference, 2013, pp. 1-8.
[18]
Kilian, K.; Pękal, A.; Juszczyk, J. Synthesis of 11C-methionine through gas phase iodination using Synthra MeIPlus synthesis module. Nukleonika, 2016, 61(1), 29-33.
[http://dx.doi.org/10.1515/nuka-2016-0007]
[19]
Mishani, E.; Bocher, M.; Ben-David, I.; Rozen, Y.; Laky, D.; Marciano, R.; Chisin, R. [C-11] choline—automated preparation and clinical utilization. J. Labelled Comp. Radiopharm., 2001, 44, S379-S381.
[http://dx.doi.org/10.1002/jlcr.25804401134]
[20]
Lehikoinen, P.K.; Bergman, J.R.; Hallsten, U.M. Kokkom. aki, E.P.J., Eskola, O.I., Solin, O.H., Viljanen, T.A. A simple synthesis of [methyl-11C] choline. J. Labelled Comp. Radiopharm., 1999, 42, S480-S482.
[21]
Shao, X.; Hockley, B.G.; Hoareau, R.; Schnau, P.L.; Scott, P.J. Fully automated preparation of [11C]choline and [18F]fluoromethylcholine using TracerLab synthesis modules and facilitated quality control using analytical HPLC. Appl. Radiat. Isot., 2011, 69(2), 403-409.
[http://dx.doi.org/10.1016/j.apradiso.2010.09.022] [PMID: 21115355]
[22]
Szydło, M.; Jadwiński, M.; Chmura, A.; Gorczewski, K.; Sokół, M. Synthesis, isolation and purification of [(11)C]-choline. Contemp. Oncol. (Pozn.), 2016, 20(3), 229-236.
[http://dx.doi.org/10.5114/wo.2016.61566] [PMID: 27660552]
[23]
Hara, T.; Yuasa, M. Automated synthesis of [11C]choline, a positron-emitting tracer for tumor imaging. Appl. Radiat. Isot., 1999, 50(3), 531-533.
[http://dx.doi.org/10.1016/S0969-8043(98)00097-9] [PMID: 10070713]
[24]
Pascali, C.; Bogi, A.; Iwata, R.; Cambie, M.; Bombardieri, E. [11C] Methylation on C18 Sep-Pak cartridge: a convenient way to produce [N-methyl-11C] choline. J. Labelled Comp. Radiopharm., 2000, 43, 195-203.
[http://dx.doi.org/10.1002/(SICI)1099-1344(200002)43:2<195::AID-JLCR316>3.0.CO;2-P]
[25]
Reischl, G.; Bieg, C.; Schmiedl, O.; Solbach, C.; Machulla, H.J. Highly efficient automated synthesis of [(11)C]choline for multi dose utilization. Appl. Radiat. Isot., 2004, 60(6), 835-838.
[http://dx.doi.org/10.1016/j.apradiso.2004.01.006] [PMID: 15110347]
[26]
Bars, L.D.; Malleval, M.; Bonnefoi, F.; Tourvieille, C. Simple synthesis of [1-11C] acetate. J. Labelled Comp. Radiopharm., 2006, 49, 263-267.
[http://dx.doi.org/10.1002/jlcr.1024]
[27]
Moerlein, S.M.; Gaehle, G.G.; Welch, M.J. Robotic preparation of Sodium Acetate C 11 Injection for use in clinical PET. Nucl. Med. Biol., 2002, 29(5), 613-621.
[http://dx.doi.org/10.1016/S0969-8051(02)00307-4] [PMID: 12088733]
[28]
Tang, X.; Tang, G.; Nie, D. Fully automated synthesis of ¹¹C-acetate as tumor PET tracer by simple modified solid-phase extraction purification. Appl. Radiat. Isot., 2013, 82, 81-86.
[http://dx.doi.org/10.1016/j.apradiso.2013.07.012] [PMID: 23974302]
[29]
Jang, H.Y.; Kwon, S.Y.; Pyo, A.; Hur, M.G.; Kim, S.W.; Park, J.H.; Kim, H.J.; Yang, S.D.; Lee, S.; Kim, D.Y.; Min, J.J. In- house development of an optimized synthetic module for routine [11C]acetate production. Nucl. Med. Commun., 2015, 36(1), 102-106.
[http://dx.doi.org/10.1097/MNM.0000000000000213] [PMID: 25244351]
[30]
Mathis, C.A.; Wang, Y.; Holt, D.P.; Huang, G.F.; Debnath, M.L.; Klunk, W.E. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem., 2003, 46(13), 2740-2754.
[http://dx.doi.org/10.1021/jm030026b] [PMID: 12801237]
[31]
Herholz, K.; Carter, S.F.; Jones, M. Positron emission tomography imaging in dementia. Br. J. Radiol., 2007, 80(Spec No 2), S160-S167.
[http://dx.doi.org/10.1259/bjr/97295129] [PMID: 18445746]
[32]
Philippe, C.; Haeusler, D.; Mitterhauser, M.; Ungersboeck, J.; Viernstein, H.; Dudczak, R.; Wadsak, W. Optimization of the radiosynthesis of the Alzheimer tracer 2-(4-N-[11C]methylaminophenyl)-6-hydroxybenzothiazole ([11C]PIB). Appl. Radiat. Isot., 2011, 69(9), 1212-1217.
[http://dx.doi.org/10.1016/j.apradiso.2011.04.010] [PMID: 21550258]
[33]
Boudjemeline, M.; Hopewell, R.; Rochon, P.L.; Jolly, D.; Hammami, I.; Villeneuve, S.; Kostikov, A. Highly efficient solid phase supported radiosynthesis of [11 C]PiB using tC18 cartridge as a “3-in-1” production entity. J. Labelled Comp. Radiopharm., 2017, 60(14), 632-638.
[http://dx.doi.org/10.1002/jlcr.3569] [PMID: 28981146]
[34]
Jacobson, O.; Chen, X. PET designated flouride-18 production and chemistry. Curr. Top. Med. Chem., 2010, 10(11), 1048-1059.
[http://dx.doi.org/10.2174/156802610791384298] [PMID: 20388116]
[35]
Nickles, R.J.; Daube, M.E.; Ruth, T.J. An [18O] O2 Target for the Production of [18F] F2. Int. J. Appl. Radiat. Isot., 1984, 35, 117-122.
[http://dx.doi.org/10.1016/0020-708X(84)90194-7]
[36]
Cai, L.; Lu, S.; Pike, V.W. Chemistry with [18F] Fluoride Ion. Eur. J. Org. Chem., 2008, 2853-2873.
[http://dx.doi.org/10.1002/ejoc.200800114]
[37]
Barnes-Seeman, D.; Beck, J.; Springer, C. Fluorinated compounds in medicinal chemistry: recent applications, synthetic advances and matched-pair analyses. Curr. Top. Med. Chem., 2014, 14(7), 855-864.
[http://dx.doi.org/10.2174/1568026614666140202204242] [PMID: 24484427]
[38]
Horsch, A.K.; Hudson, K.; Goulding, R.W.; Day, A.J. The preparation of fluorine-18 labelled radiopharmaceuticals. Int. J. Appl. Radiat. Isot., 1977, 28(1-2), 53-65.
[http://dx.doi.org/10.1016/0020-708X(77)90160-0] [PMID: 323160]
[39]
Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem., 2015, 26(1), 1-18.
[http://dx.doi.org/10.1021/bc500475e] [PMID: 25473848]
[40]
Alexoff, D.L.; Casati, R.; Fowler, J.S.; Wolf, A.P.; Shea, C.; Schlyer, D.J.; Shiue, C.Y. Ion chromatographic analysis of high specific activity 18FDG preparations and detection of the chemical impurity 2-deoxy-2-chloro-D-glucose. Int. J. Rad. Appl. Instrum. [A], 1992, 43(11), 1313-1322.
[http://dx.doi.org/10.1016/0883-2889(92)90002-V] [PMID: 1333458]
[41]
Chaly, T.; Dahl, J.R. Thin layer chromatographic detection of kryptofix 2.2.2 in the routine synthesis of [18F]2-fluoro-2-deoxy-D-glucose. Int. J. Rad. Appl. Instrum. B, 1989, 16(4), 385-387.
[http://dx.doi.org/10.1016/0883-2897(89)90105-0] [PMID: 2777579]
[42]
Gomzina, N.A.; Vasil’ev, D.A.; Krasikova, R.N. Optimization of Automated Synthesis of 2-[18F] Fluoro-2-deoxy-D-glucose Involving Base Hydrolysis. Radiochem, 2002, 44(4), 4033-4039.
[http://dx.doi.org/10.1023/A:1020689314452]
[43]
Kilian, K.; Chabecki, B.; Kiec, J.; Kunka, A.; Panas, B.; Wójcik, M.; Pękal, A. Synthesis, quality control and determination of metallic impurities in 18F-fludeoxyglucose production process. Rep. Pract. Oncol. Radiother., 2014, 19(Suppl.), S22-S31.
[http://dx.doi.org/10.1016/j.rpor.2014.03.001] [PMID: 28443195]
[44]
Rahmani, S.; Shahhoseini, S.; Mohamadi, R.; Vojdani, M. Synthesis, Quality Control and Stability Studies of 2-[18F]Fluoro-2-Deoxy-D-Glucose(18F-FDG) at Different Conditions of Temperature by Physicochemical and Microbiological Assays. Iran. J. Pharm. Res., 2017, 16(2), 602-610.
[PMID: 28979313]
[45]
Mori, T.; Kasamatsu, S.; Mosdzianowski, C.; Welch, M.J.; Yonekura, Y.; Fujibayashi, Y. Automatic synthesis of 16 α-[(18)F]fluoro-17β-estradiol using a cassette-type [(18)F]fluorodeoxyglucose synthesizer. Nucl. Med. Biol., 2006, 33(2), 281-286.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.11.002] [PMID: 16546684]
[46]
Kil, H.S.; Cho, H.Y.; Lee, S.J.; Oh, S.J.; Chi, D.Y. Alternative synthesis for the preparation of 16α-[(18) F]fluoroestradiol. J. Labelled Comp. Radiopharm., 2013, 56(12), 619-626.
[http://dx.doi.org/10.1002/jlcr.3076] [PMID: 24285238]
[47]
Shi, J.; Afari, G.; Bhattacharyya, S. Rapid synthesis of [18F]fluoroestradiol: remarkable advantage of microwaving over conventional heating. J. Labelled Comp. Radiopharm., 2014, 57(14), 730-736.
[http://dx.doi.org/10.1002/jlcr.3248] [PMID: 25476421]
[48]
Dixit, M.; Shi, J.; Wei, L.; Afari, G.; Bhattacharyya, S. Synthesis of Clinical-Grade [(18)F]-Fluoroestradiol as a Surrogate PET Biomarker for the Evaluation of Estrogen Receptor-Targeting Therapeutic Drug. Int. J. Mol. Imaging, 2013, 2013, 278607.
[http://dx.doi.org/10.1155/2013/278607] [PMID: 23762549]
[49]
Knott, K.E.; Grätz, D.; Hübner, S.; Jüttler, S.; Zankl, C.; Müller, M. Simplified and automatic one-pot synthesis of 16α-[18F] fluoroestradiol without high-performance liquid chromatography purification. J. Labelled Comp. Radiopharm., 2011, 54, 749-753.
[http://dx.doi.org/10.1002/jlcr.1916]
[50]
Rasey, J.S.; Grierson, J.R.; Wiens, L.W.; Kolb, P.D.; Schwartz, J.L. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J. Nucl. Med., 2002, 43(9), 1210-1217.
[PMID: 12215561]
[51]
Pascali, C.; Bogni, A.; Fugazza, L.; Cucchi, C.; Crispu, O.; Laera, L.; Iwata, R.; Maiocchi, G.; Crippa, F.; Bombardieri, E. Simple preparation and purification of ethanol-free solutions of 3′-deoxy-3′-[18F]fluorothymidine by means of disposable solid-phase extraction cartridges. Nucl. Med. Biol., 2012, 39(4), 540-550.
[http://dx.doi.org/10.1016/j.nucmedbio.2011.10.005] [PMID: 22172390]
[52]
Javed, M.R.; Chen, S.; Kim, H.K.; Wei, L.; Czernin, J.; Kim, C.J.; van Dam, R.M.; Keng, P.Y. Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip. J. Nucl. Med., 2014, 55(2), 321-328.
[http://dx.doi.org/10.2967/jnumed.113.121053] [PMID: 24365651]
[53]
Nandy, S.K.; Rajan, M.G.R. Fully automated and simplified radiosynthesis of [18F]-3-deoxy-3-fluorothymidine using anhydro precursor and single neutral alumina column purification. J. Radioanal. Nucl. Chem., 2010, 283, 741-748.
[http://dx.doi.org/10.1007/s10967-009-0429-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy