Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Central Neural Circuits Orchestrating Thermogenesis, Sleep-Wakefulness States and General Anesthesia States

Author(s): Jiayi Wu, Daiqiang Liu, Jiayan Li, Jia Sun, Yujie Huang, Shuang Zhang, Shaojie Gao and Wei Mei*

Volume 20, Issue 1, 2022

Page: [223 - 253] Pages: 31

DOI: 10.2174/1570159X19666210225152728

Price: $65

Abstract

Great progress has been made in specifically identifying the central neural circuits (CNCs) of the core body temperature (Tcore), sleep-wakefulness states (SWs), and general anesthesia states (GAs), mainly utilizing optogenetic or chemogenetic manipulations. We summarize the neuronal populations and neural pathways of these three CNCs, which gives evidence for the orchestration within these three CNCs, and the integrative regulation of these three CNCs by different environmental light signals. We also outline some transient receptor potential (TRP) channels that function in the CNCs-Tcore and are modulated by some general anesthetics, which makes TRP channels possible targets for addressing the general-anestheticsinduced- hypothermia (GAIH). We suggest this review will provide new orientations for further consummating these CNCs and elucidating the central mechanisms of GAIH.

Keywords: Central neural circuits, body temperature regulation, sleep-wakefulness states, general anesthesia, TRP channels, intrinsically photosensitive retinal ganglion cells, optogenetics, chemogenetics.

Graphical Abstract
[1]
Latifi, B.; Adamantidis, A.; Bassetti, C.; Schmidt, M.H. Sleep-wake cycling and energy conservation: role of hypocretin and the lateral hypothalamus in dynamic state-dependent resource optimization. Front. Neurol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fneur.2018.00790] [PMID: 30344503]
[2]
Harding, E.C.; Franks, N.P.; Wisden, W. The temperature dependence of sleep. Front. Neurosci., 2019, 13, 336.
[http://dx.doi.org/10.3389/fnins.2019.00336] [PMID: 31105512]
[3]
Morrison, S.F.; Nakamura, K. Central mechanisms for thermoregulation. Annu. Rev. Physiol., 2019, 81, 285-308.
[http://dx.doi.org/10.1146/annurev-physiol-020518-114546] [PMID: 30256726]
[4]
Tan, C.L.; Knight, Z.A. Regulation of body temperature by the nervous system. Neuron, 2018, 98(1), 31-48.
[http://dx.doi.org/10.1016/j.neuron.2018.02.022] [PMID: 29621489]
[5]
Morrison, S.F.; Madden, C.J.; Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab., 2014, 19(5), 741-756.
[http://dx.doi.org/10.1016/j.cmet.2014.02.007] [PMID: 24630813]
[6]
Piñol, R.A.; Reitman, M.L. Cool(ing) brain stem GABA neurons. Cell Res., 2019, 29(10), 785-786.
[http://dx.doi.org/10.1038/s41422-019-0223-y] [PMID: 31471559]
[7]
Weber, F.; Dan, Y. Circuit-based interrogation of sleep control. Nature, 2016, 538(7623), 51-59.
[http://dx.doi.org/10.1038/nature19773] [PMID: 27708309]
[8]
Scammell, T.E.; Arrigoni, E.; Lipton, J.O. Neural circuitry of wakefulness and sleep. Neuron, 2017, 93(4), 747-765.
[http://dx.doi.org/10.1016/j.neuron.2017.01.014] [PMID: 28231463]
[9]
Jones, B.E. Arousal and sleep circuits. Neuropsychopharmacology, 2020, 45(1), 6-20.
[http://dx.doi.org/10.1038/s41386-019-0444-2] [PMID: 31216564]
[10]
Parmeggiani, P.L. Interaction between sleep and thermoregulation: an aspect of the control of behavioral states. Sleep, 1987, 10(5), 426-435.
[http://dx.doi.org/10.1093/sleep/10.5.426] [PMID: 3317725]
[11]
Alam, M.N.; McGinty, D.; Szymusiak, R. Neuronal discharge of preoptic/anterior hypothalamic thermosensitive neurons: relation to NREM sleep. Am. J. Physiol., 1995, 269(5 Pt 2), R1240-R1249.
[PMID: 7503316]
[12]
McGinty, D.; Alam, M.N.; Szymusiak, R.; Nakao, M.; Yamamoto, M. Hypothalamic sleep-promoting mechanisms: coupling to thermoregulation. Arch. Ital. Biol., 2001, 139(1-2), 63-75.
[PMID: 11256188]
[13]
Parmeggiani, P.L. Thermoregulation and sleep. Front. Biosci., 2003, 8, s557-s567.
[http://dx.doi.org/10.2741/1054] [PMID: 12700063]
[14]
McKinley, M.J.; Yao, S.T.; Uschakov, A.; McAllen, R.M.; Rundgren, M.; Martelli, D. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol. (Oxf.), 2015, 214(1), 8-32.
[http://dx.doi.org/10.1111/apha.12487] [PMID: 25753944]
[15]
Szymusiak, R. Body temperature and sleep. Handb. Clin. Neurol., 2018, 156, 341-351.
[http://dx.doi.org/10.1016/B978-0-444-63912-7.00020-5] [PMID: 30454599]
[16]
Kroeger, D.; Absi, G.; Gagliardi, C.; Bandaru, S.S.; Madara, J.C.; Ferrari, L.L.; Arrigoni, E.; Münzberg, H.; Scammell, T.E.; Saper, C.B.; Vetrivelan, R. Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat. Commun., 2018, 9(1), 4129.
[http://dx.doi.org/10.1038/s41467-018-06590-7] [PMID: 30297727]
[17]
Ma, Y.; Miracca, G.; Yu, X.; Harding, E.C.; Miao, A.; Yustos, R.; Vyssotski, A.L.; Franks, N.P.; Wisden, W. Galanin neurons unite sleep homeostasis and α2-Adrenergic Sedation. Curr. Biol., 2019, 29(19), 3315-3322.e3.
[http://dx.doi.org/10.1016/j.cub.2019.07.087] [PMID: 31543455]
[18]
Harding, E.C.; Yu, X.; Miao, A.; Andrews, N.; Ma, Y.; Ye, Z.; Lignos, L.; Miracca, G.; Ba, W.; Yustos, R.; Vyssotski, A.L.; Wisden, W.; Franks, N.P. A neuronal hub binding sleep initiation and body cooling in response to a warm external stimulus. Curr. Biol., 2018, 28(14), 2263-2273.e4.
[http://dx.doi.org/10.1016/j.cub.2018.05.054] [PMID: 30017485]
[19]
Vanini, G.; Bassana, M.; Mast, M.; Mondino, A.; Cerda, I.; Phyle, M.; Chen, V.; Colmenero, A.V.; Hambrecht-Wiedbusch, V.S.; Mashour, G.A. Activation of Preoptic GABAergic or glutamatergic neurons modulates sleep-wake architecture, but not anesthetic state transitions. Curr. Biol., 2020, 30(5), 779-787.e4.
[http://dx.doi.org/10.1016/j.cub.2019.12.063] [PMID: 32084397]
[20]
Naganuma, F.; Bandaru, S.S.; Absi, G.; Chee, M.J.; Vetrivelan, R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct. Funct., 2019, 224(1), 99-110.
[http://dx.doi.org/10.1007/s00429-018-1766-2] [PMID: 30284033]
[21]
Naganuma, F.; Kroeger, D.; Bandaru, S.S.; Absi, G.; Madara, J.C.; Vetrivelan, R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol., 2019, 17(3)e3000172
[http://dx.doi.org/10.1371/journal.pbio.3000172] [PMID: 30893297]
[22]
Vetrivelan, R.; Kong, D.; Ferrari, L.L.; Arrigoni, E.; Madara, J.C.; Bandaru, S.S.; Lowell, B.B.; Lu, J.; Saper, C.B. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience, 2016, 336, 102-113.
[http://dx.doi.org/10.1016/j.neuroscience.2016.08.046] [PMID: 27595887]
[23]
Sessler, D.I. Temperature monitoring and perioperative thermoregulation. Anesthesiology, 2008, 109(2), 318-338.
[http://dx.doi.org/10.1097/ALN.0b013e31817f6d76] [PMID: 18648241]
[24]
Buhre, W.; Rossaint, R. Perioperative management and monitoring in anaesthesia. Lancet, 2003, 362(9398), 1839-1846.
[http://dx.doi.org/10.1016/S0140-6736(03)14905-7] [PMID: 14654324]
[25]
Kurz, A. Thermal care in the perioperative period. Baillieres. Best Pract. Res. Clin. Anaesthesiol., 2008, 22(1), 39-62.
[http://dx.doi.org/10.1016/j.bpa.2007.10.004] [PMID: 18494388]
[26]
Conahan, T.J., III; Williams, G.D.; Apfelbaum, J.L.; Lecky, J.H. Airway heating reduces recovery time (cost) in outpatients. Anesthesiology, 1987, 67(1), 128-130.
[http://dx.doi.org/10.1097/00000542-198707000-00028] [PMID: 3605717]
[27]
Andrzejowski, J.; Hoyle, J.; Eapen, G.; Turnbull, D. Effect of prewarming on post-induction core temperature and the incidence of inadvertent perioperative hypothermia in patients undergoing general anaesthesia. Br. J. Anaesth., 2008, 101(5), 627-631.
[http://dx.doi.org/10.1093/bja/aen272] [PMID: 18820248]
[28]
Gupta, N.; Bharti, S.J.; Kumar, V.; Garg, R.; Mishra, S.; Bhatnagar, S. Comparative evaluation of forced air warming and infusion of amino acid-enriched solution on intraoperative hypothermia in patients undergoing head and neck cancer surgeries: A prospective randomised study. Saudi J. Anaesth., 2019, 13(4), 318-324.
[http://dx.doi.org/10.4103/sja.SJA_839_18] [PMID: 31572076]
[29]
Selldén, E.; Brundin, T.; Wahren, J. Augmented thermic effect of amino acids under general anaesthesia: a mechanism useful for prevention of anaesthesia-induced hypothermia. Clin. Sci. (Lond.), 1994, 86(5), 611-618.
[http://dx.doi.org/10.1042/cs0860611] [PMID: 8033514]
[30]
Kanazawa, M.; Watanabe, M.; Suzuki, T. Reduction in amino-acid-induced anti-hypothermic effects during general anesthesia in ovariectomized rats with progesterone replacement. J. Anesth., 2016, 30(1), 123-131.
[http://dx.doi.org/10.1007/s00540-015-2075-z] [PMID: 26373953]
[31]
Alfonsi, P.; Bekka, S.; Aegerter, P. Prevalence of hypothermia on admission to recovery room remains high despite a large use of forced-air warming devices: Findings of a non-randomized observational multicenter and pragmatic study on perioperative hypothermia prevalence in France. PLoS One, 2019, 14(12)e0226038
[http://dx.doi.org/10.1371/journal.pone.0226038] [PMID: 31869333]
[32]
Kelz, M.B.; Mashour, G.A. The biology of general anesthesia from paramecium to primate. Curr. Biol., 2019, 29(22), R1199-R1210.
[http://dx.doi.org/10.1016/j.cub.2019.09.071] [PMID: 31743680]
[33]
Hemmings, H.C., Jr; Riegelhaupt, P.M.; Kelz, M.B.; Solt, K.; Eckenhoff, R.G.; Orser, B.A.; Goldstein, P.A. Towards a Comprehensive understanding of anesthetic mechanisms of action: a decade of discovery. Trends Pharmacol. Sci., 2019, 40(7), 464-481.
[http://dx.doi.org/10.1016/j.tips.2019.05.001] [PMID: 31147199]
[34]
Schneeberger, M.; Parolari, L.; Das Banerjee, T.; Bhave, V.; Wang, P.; Patel, B.; Topilko, T.; Wu, Z.; Choi, C.H.J.; Yu, X.; Pellegrino, K.; Engel, E.A.; Cohen, P.; Renier, N.; Friedman, J.M.; Nectow, A.R. Regulation of energy expenditure by brainstem gaba neurons. Cell, 2019, 178(3), 672-685.e12.
[http://dx.doi.org/10.1016/j.cell.2019.05.048] [PMID: 31257028]
[35]
Romanovsky, A.A.; Almeida, M.C.; Garami, A.; Steiner, A.A.; Norman, M.H.; Morrison, S.F.; Nakamura, K.; Burmeister, J.J.; Nucci, T.B. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol. Rev., 2009, 61(3), 228-261.
[http://dx.doi.org/10.1124/pr.109.001263] [PMID: 19749171]
[36]
Voets, T. TRP channels and thermosensation. Handb. Exp. Pharmacol., 2014, 223, 729-741.
[http://dx.doi.org/10.1007/978-3-319-05161-1_1] [PMID: 24961967]
[37]
Song, K.; Wang, H.; Kamm, G.B.; Pohle, J.; Reis, F.C.; Heppenstall, P.; Wende, H.; Siemens, J. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science, 2016, 353(6306), 1393-1398.
[http://dx.doi.org/10.1126/science.aaf7537] [PMID: 27562954]
[38]
Kunert-Keil, C.; Bisping, F.; Krüger, J.; Brinkmeier, H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics, 2006, 7, 159.
[http://dx.doi.org/10.1186/1471-2164-7-159] [PMID: 16787531]
[39]
Jang, Y.; Lee, Y.; Kim, S.M.; Yang, Y.D.; Jung, J.; Oh, U. Quantitative analysis of TRP channel genes in mouse organs. Arch. Pharm. Res., 2012, 35(10), 1823-1830.
[http://dx.doi.org/10.1007/s12272-012-1016-8] [PMID: 23139135]
[40]
Nakayama, T.; Suzuki, M.; Ishikawa, Y.; Nishio, A. Effects of capsaicin on hypothalamic thermo-sensitive neurons in the rat. Neurosci. Lett., 1978, 7(2-3), 151-155.
[http://dx.doi.org/10.1016/0304-3940(78)90159-3] [PMID: 19605104]
[41]
Inagaki, H.; Kurganov, E.; Park, Y.; Furube, E.; Miyata, S. Oral gavage of capsaicin causes TRPV1-dependent acute hypothermia and TRPV1-independent long-lasting increase of locomotor activity in the mouse. Physiol. Behav., 2019, 206, 213-224.
[http://dx.doi.org/10.1016/j.physbeh.2019.04.015] [PMID: 31009639]
[42]
Hori, T. Capsaicin and central control of thermoregulation. Pharmacol. Ther., 1984, 26(3), 389-416.
[http://dx.doi.org/10.1016/0163-7258(84)90041-X] [PMID: 6085515]
[43]
Szabo, T.; Biro, T.; Gonzalez, A.F.; Palkovits, M.; Blumberg, P.M. Pharmacological characterization of vanilloid receptor located in the brain. Brain Res. Mol. Brain Res., 2002, 98(1-2), 51-57.
[http://dx.doi.org/10.1016/S0169-328X(01)00313-8] [PMID: 11834295]
[44]
Cavanaugh, D.J.; Chesler, A.T.; Jackson, A.C.; Sigal, Y.M.; Yamanaka, H.; Grant, R.; O’Donnell, D.; Nicoll, R.A.; Shah, N.M.; Julius, D.; Basbaum, A.I. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J. Neurosci., 2011, 31(13), 5067-5077.
[http://dx.doi.org/10.1523/JNEUROSCI.6451-10.2011] [PMID: 21451044]
[45]
Szolcsányi, J. Effect of capsaicin on thermoregulation: an update with new aspects. Temperature, 2015, 2(2), 277-296.
[http://dx.doi.org/10.1080/23328940.2015.1048928] [PMID: 27227029]
[46]
Hajós, M.; Engberg, G.; Elam, M. Reduced responsiveness of locus coeruleus neurons to cutaneous thermal stimuli in capsaicin-treated rats. Neurosci. Lett., 1986, 70(3), 382-387.
[http://dx.doi.org/10.1016/0304-3940(86)90584-7] [PMID: 3022199]
[47]
Khakpay, R.; Polster, D.; Köles, L.; Skorinkin, A.; Szabo, B.; Wirkner, K.; Illes, P. Potentiation of the glutamatergic synaptic input to rat locus coeruleus neurons by P2X7 receptors. Purinergic Signal., 2010, 6(3), 349-359.
[http://dx.doi.org/10.1007/s11302-010-9198-3] [PMID: 21103218]
[48]
Almeida, M.C.; Steiner, A.A.; Coimbra, N.C.; Branco, L.G. Thermoeffector neuronal pathways in fever: a study in rats showing a new role of the locus coeruleus. J. Physiol., 2004, 558(Pt 1), 283-294.
[http://dx.doi.org/10.1113/jphysiol.2004.066654] [PMID: 15146040]
[49]
Mohammed, M.; Madden, C.J.; Andresen, M.C.; Morrison, S.F. Activation of TRPV1 in nucleus tractus solitarius reduces brown adipose tissue thermogenesis, arterial pressure, and heart rate. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2018, 315(1), R134-R143.
[http://dx.doi.org/10.1152/ajpregu.00049.2018] [PMID: 29590555]
[50]
Jeong, J.H.; Lee, D.K.; Liu, S.M.; Chua, S.C., Jr; Schwartz, G.J.; Jo, Y.H. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake. PLoS Biol., 2018, 16(4)e2004399
[http://dx.doi.org/10.1371/journal.pbio.2004399] [PMID: 29689050]
[51]
Osaka, T.; Lee, T.H.; Kobayashi, A.; Inoue, S.; Kimura, S. Thermogenesis mediated by a capsaicin-sensitive area in the ventrolateral medulla. Neuroreport, 2000, 11(11), 2425-2428.
[http://dx.doi.org/10.1097/00001756-200008030-00017] [PMID: 10943697]
[52]
Koulchitsky, S.V. Are the capsaicin-sensitive structures of ventral medulla involved in the temperature response to endotoxin in rats? Neurosci. Lett., 1998, 244(2), 112-114.
[http://dx.doi.org/10.1016/S0304-3940(98)00128-1] [PMID: 9572598]
[53]
Sun, W.; Uchida, K.; Suzuki, Y.; Zhou, Y.; Kim, M.; Takayama, Y.; Takahashi, N.; Goto, T.; Wakabayashi, S.; Kawada, T.; Iwata, Y.; Tominaga, M. Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue. EMBO Rep., 2016, 17(3), 383-399.
[http://dx.doi.org/10.15252/embr.201540819] [PMID: 26882545]
[54]
Wainwright, A.; Rutter, A.R.; Seabrook, G.R.; Reilly, K.; Oliver, K.R. Discrete expression of TRPV2 within the hypothalamo-neurohypophysial system: Implications for regulatory activity within the hypothalamic-pituitary-adrenal axis. J. Comp. Neurol., 2004, 474(1), 24-42.
[http://dx.doi.org/10.1002/cne.20100] [PMID: 15156577]
[55]
Nedungadi, T.P.; Dutta, M.; Bathina, C.S.; Caterina, M.J.; Cunningham, J.T. Expression and distribution of TRPV2 in rat brain. Exp. Neurol., 2012, 237(1), 223-237.
[http://dx.doi.org/10.1016/j.expneurol.2012.06.017] [PMID: 22750329]
[56]
Matsuoka, Y.; Furuyashiki, T.; Bito, H.; Ushikubi, F.; Tanaka, Y.; Kobayashi, T.; Muro, S.; Satoh, N.; Kayahara, T.; Higashi, M.; Mizoguchi, A.; Shichi, H.; Fukuda, Y.; Nakao, K.; Narumiya, S. Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 4132-4137.
[http://dx.doi.org/10.1073/pnas.0633341100] [PMID: 12642666]
[57]
Kataoka, N.; Hioki, H.; Kaneko, T.; Nakamura, K. Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab., 2014, 20(2), 346-358.
[http://dx.doi.org/10.1016/j.cmet.2014.05.018] [PMID: 24981837]
[58]
Caldeira, J.C.; Franci, C.R.; Pelá, I.R. Bilateral lesion of hypothalamic paraventricular nucleus abolishes fever induced by endotoxin and bradykinin in rats. Ann. N. Y. Acad. Sci., 1998, 856, 294-297.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb08342.x] [PMID: 9917894]
[59]
van den Burg, E.H.; Stindl, J.; Grund, T.; Neumann, I.D.; Strauss, O. Oxytocin stimulates extracellular Ca2+ influx through trpv2 channels in hypothalamic neurons to exert its anxiolytic effects. Neuropsychopharmacology, 2015, 40(13), 2938-2947.
[http://dx.doi.org/10.1038/npp.2015.147] [PMID: 26013963]
[60]
Ring, R.H.; Malberg, J.E.; Potestio, L.; Ping, J.; Boikess, S.; Luo, B.; Schechter, L.E.; Rizzo, S.; Rahman, Z.; Rosenzweig-Lipson, S. Anxiolytic-like activity of oxytocin in male mice: behavioral and autonomic evidence, therapeutic implications. Psychopharmacology (Berl.), 2006, 185(2), 218-225.
[http://dx.doi.org/10.1007/s00213-005-0293-z] [PMID: 16418825]
[61]
Hicks, C.; Ramos, L.; Reekie, T.; Misagh, G.H.; Narlawar, R.; Kassiou, M.; McGregor, I.S. Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats. Br. J. Pharmacol., 2014, 171(11), 2868-2887.
[http://dx.doi.org/10.1111/bph.12613] [PMID: 24641248]
[62]
Burton, K.J.; Li, X.; Li, J.D.; Hu, W.P.; Zhou, Q.Y. Rhythmic Trafficking of TRPV2 in the suprachiasmatic nucleus is regulated by prokineticin 2 signaling. J. Circadian Rhythms, 2015, 13, 2.
[http://dx.doi.org/10.5334/jcr.ad] [PMID: 27103928]
[63]
Burton, K.J.; Li, X.; Li, B.; Cheng, M.Y.; Urbanski, H.F.; Zhou, Q.Y. Expression of prokineticin 2 and its receptor in the macaque monkey brain. Chronobiol. Int., 2016, 33(2), 191-199.
[http://dx.doi.org/10.3109/07420528.2015.1125361] [PMID: 26818846]
[64]
Peier, A.M.; Reeve, A.J.; Andersson, D.A.; Moqrich, A.; Earley, T.J.; Hergarden, A.C.; Story, G.M.; Colley, S.; Hogenesch, J.B.; McIntyre, P.; Bevan, S.; Patapoutian, A. A heat-sensitive TRP channel expressed in keratinocytes. Science, 2002, 296(5575), 2046-2049.
[http://dx.doi.org/10.1126/science.1073140] [PMID: 12016205]
[65]
Xu, H.; Ramsey, I.S.; Kotecha, S.A.; Moran, M.M.; Chong, J.A.; Lawson, D.; Ge, P.; Lilly, J.; Silos-Santiago, I.; Xie, Y.; DiStefano, P.S.; Curtis, R.; Clapham, D.E. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature, 2002, 418(6894), 181-186.
[http://dx.doi.org/10.1038/nature00882] [PMID: 12077604]
[66]
Smith, G.D.; Gunthorpe, M.J.; Kelsell, R.E.; Hayes, P.D.; Reilly, P.; Facer, P.; Wright, J.E.; Jerman, J.C.; Walhin, J.P.; Ooi, L.; Egerton, J.; Charles, K.J.; Smart, D.; Randall, A.D.; Anand, P.; Davis, J.B. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature, 2002, 418(6894), 186-190.
[http://dx.doi.org/10.1038/nature00894] [PMID: 12077606]
[67]
Moqrich, A.; Hwang, S.W.; Earley, T.J.; Petrus, M.J.; Murray, A.N.; Spencer, K.S.; Andahazy, M.; Story, G.M.; Patapoutian, A. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science, 2005, 307(5714), 1468-1472.
[http://dx.doi.org/10.1126/science.1108609] [PMID: 15746429]
[68]
Moussaieff, A.; Rimmerman, N.; Bregman, T.; Straiker, A.; Felder, C.C.; Shoham, S.; Kashman, Y.; Huang, S.M.; Lee, H.; Shohami, E.; Mackie, K.; Caterina, M.J.; Walker, J.M.; Fride, E.; Mechoulam, R. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J., 2008, 22(8), 3024-3034.
[http://dx.doi.org/10.1096/fj.07-101865] [PMID: 18492727]
[69]
Lowry, C.A.; Lightman, S.L.; Nutt, D.J. That warm fuzzy feeling: brain serotonergic neurons and the regulation of emotion. J. Psychopharmacol., 2009, 23(4), 392-400.
[http://dx.doi.org/10.1177/0269881108099956] [PMID: 19074539]
[70]
Güler, A.D.; Lee, H.; Iida, T.; Shimizu, I.; Tominaga, M.; Caterina, M. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci., 2002, 22(15), 6408-6414.
[http://dx.doi.org/10.1523/JNEUROSCI.22-15-06408.2002] [PMID: 12151520]
[71]
Lee, H.; Iida, T.; Mizuno, A.; Suzuki, M.; Caterina, M.J. Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J. Neurosci., 2005, 25(5), 1304-1310.
[http://dx.doi.org/10.1523/JNEUROSCI.4745.04.2005] [PMID: 15689568]
[72]
Vizin, R.C. Scarpellini, Cda.S.; Ishikawa, D.T.; Correa, G.M.; de Souza, C.O.; Gargaglioni, L.H.; Carrettiero, D.C.; Bícego, K.C.; Almeida, M.C. TRPV4 activates autonomic and behavioural warmth-defence responses in Wistar rats. Acta Physiol. (Oxf.), 2015, 214(2), 275-289.
[http://dx.doi.org/10.1111/apha.12477] [PMID: 25739906]
[73]
Yadav, R.; Jaryal, A.K.; Mallick, H.N. Participation of preoptic area TRPV4 ion channel in regulation of body temperature. J. Therm. Biol., 2017, 66, 81-86.
[http://dx.doi.org/10.1016/j.jtherbio.2017.04.001] [PMID: 28477913]
[74]
Scarpellini, C.D.S.; Cristina-Silva, C.; Biancardi, V.; Gargaglioni, L.H.; Almeida, M.C.; Bícego, K.C. Hypothalamic TRPV4 channels participate in the medial preoptic activation of warmth-defence responses in Wistar male rats. Pflugers Arch., 2019, 471(9), 1191-1203.
[http://dx.doi.org/10.1007/s00424-019-02303-1] [PMID: 31428866]
[75]
Tan, C.H.; McNaughton, P.A. The TRPM2 ion channel is required for sensitivity to warmth. Nature, 2016, 536(7617), 460-463.
[http://dx.doi.org/10.1038/nature19074] [PMID: 27533035]
[76]
Almeida, M.C.; Hew-Butler, T.; Soriano, R.N.; Rao, S.; Wang, W.; Wang, J.; Tamayo, N.; Oliveira, D.L.; Nucci, T.B.; Aryal, P.; Garami, A.; Bautista, D.; Gavva, N.R.; Romanovsky, A.A. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J. Neurosci., 2012, 32(6), 2086-2099.
[http://dx.doi.org/10.1523/JNEUROSCI.5606-11.2012] [PMID: 22323721]
[77]
Ordas, P.; Hernandez-Ortego, P.; Vara, H.; Fernandez-Pena, C.; Reimundez, A.; Morenilla-Palao, C.; Guadano-Ferraz, A.; Gomis, A.; Hoon, M.; Viana, F.; Senaris, R. Expression of the cold thermoreceptor TRPM8 in rodent brain thermoregulatory circuits. J. Comp. Neurol., 2019.
[PMID: 30942489]
[78]
Reimúndez, A.; Fernández-Peña, C.; García, G.; Fernández, R.; Ordás, P.; Gallego, R.; Pardo-Vazquez, J.L.; Arce, V.; Viana, F.; Señarís, R. Deletion of the cold thermoreceptor TRPM8 increases heat loss and food intake leading to reduced body temperature and obesity in mice. J. Neurosci., 2018, 38(15), 3643-3656.
[http://dx.doi.org/10.1523/JNEUROSCI.3002-17.2018] [PMID: 29530988]
[79]
Zhang, W.; Sunanaga, J.; Takahashi, Y.; Mori, T.; Sakurai, T.; Kanmura, Y.; Kuwaki, T. Orexin neurons are indispensable for stress-induced thermogenesis in mice. J. Physiol., 2010, 588(Pt 21), 4117-4129.
[http://dx.doi.org/10.1113/jphysiol.2010.195099] [PMID: 20807795]
[80]
Tupone, D.; Madden, C.J.; Cano, G.; Morrison, S.F. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J. Neurosci., 2011, 31(44), 15944-15955.
[http://dx.doi.org/10.1523/JNEUROSCI.3909-11.2011] [PMID: 22049437]
[81]
Takahashi, Y.; Zhang, W.; Sameshima, K.; Kuroki, C.; Matsumoto, A.; Sunanaga, J.; Kono, Y.; Sakurai, T.; Kanmura, Y.; Kuwaki, T. Orexin neurons are indispensable for prostaglandin E2-induced fever and defence against environmental cooling in mice. J. Physiol., 2013, 591(22), 5623-5643.
[http://dx.doi.org/10.1113/jphysiol.2013.261271] [PMID: 23959674]
[82]
Cai, X.J.; Widdowson, P.S.; Harrold, J.; Wilson, S.; Buckingham, R.E.; Arch, J.R.; Tadayyon, M.; Clapham, J.C.; Wilding, J.; Williams, G. Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes, 1999, 48(11), 2132-2137.
[http://dx.doi.org/10.2337/diabetes.48.11.2132] [PMID: 10535445]
[83]
Kong, D.; Vong, L.; Parton, L.E.; Ye, C.; Tong, Q.; Hu, X.; Choi, B.; Brüning, J.C.; Lowell, B.B. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab., 2010, 12(5), 545-552.
[http://dx.doi.org/10.1016/j.cmet.2010.09.013] [PMID: 21035764]
[84]
Milbank, E.; López, M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front. Endocrinol. (Lausanne), 2019, 10, 830.
[http://dx.doi.org/10.3389/fendo.2019.00830] [PMID: 31920958]
[85]
Tan, C.L.; Cooke, E.K.; Leib, D.E.; Lin, Y.C.; Daly, G.E.; Zimmerman, C.A.; Knight, Z.A. Warm-sensitive neurons that control body temperature. Cell, 2016, 167(1), 47-59.e15.
[http://dx.doi.org/10.1016/j.cell.2016.08.028] [PMID: 27616062]
[86]
Abbott, S.B.G.; Saper, C.B. Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. J. Physiol., 2017, 595(20), 6569-6583.
[http://dx.doi.org/10.1113/JP274667] [PMID: 28786483]
[87]
Yu, S.; Qualls-Creekmore, E.; Rezai-Zadeh, K.; Jiang, Y.; Berthoud, H.R.; Morrison, C.D.; Derbenev, A.V.; Zsombok, A.; Münzberg, H. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. J. Neurosci., 2016, 36(18), 5034-5046.
[http://dx.doi.org/10.1523/JNEUROSCI.0213-16.2016] [PMID: 27147656]
[88]
Machado, N.L.S.; Bandaru, S.S.; Abbott, S.B.G.; Saper, C.B. EP3R-expressing glutamatergic preoptic neurons mediate inflammatory fever. J. Neurosci., 2020, 40(12), 2573-2588.
[http://dx.doi.org/10.1523/JNEUROSCI.2887-19.2020] [PMID: 32079648]
[89]
Moffitt, J.R.; Bambah-Mukku, D.; Eichhorn, S.W.; Vaughn, E.; Shekhar, K.; Perez, J.D.; Rubinstein, N.D.; Hao, J.; Regev, A.; Dulac, C.; Zhuang, X. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science, 2018, 362(6416)eaau5324
[http://dx.doi.org/10.1126/science.aau5324] [PMID: 30385464]
[90]
Leib, D.E.; Zimmerman, C.A.; Poormoghaddam, A.; Huey, E.L.; Ahn, J.S.; Lin, Y.C.; Tan, C.L.; Chen, Y.; Knight, Z.A. The forebrain thirst circuit drives drinking through negative reinforcement. Neuron, 2017, 96(6), 1272-1281.e4.
[http://dx.doi.org/10.1016/j.neuron.2017.11.041] [PMID: 29268095]
[91]
Romanov, R.A.; Zeisel, A.; Bakker, J.; Girach, F.; Hellysaz, A.; Tomer, R.; Alpár, A.; Mulder, J.; Clotman, F.; Keimpema, E.; Hsueh, B.; Crow, A.K.; Martens, H.; Schwindling, C.; Calvigioni, D.; Bains, J.S.; Máté, Z.; Szabó, G.; Yanagawa, Y.; Zhang, M.D.; Rendeiro, A.; Farlik, M.; Uhlén, M.; Wulff, P.; Bock, C.; Broberger, C.; Deisseroth, K.; Hökfelt, T.; Linnarsson, S.; Horvath, T.L.; Harkany, T. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. Neurosci., 2017, 20(2), 176-188.
[http://dx.doi.org/10.1038/nn.4462] [PMID: 27991900]
[92]
Chee, M.J.; Arrigoni, E.; Maratos-Flier, E. Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J. Neurosci., 2015, 35(8), 3644-3651.
[http://dx.doi.org/10.1523/JNEUROSCI.4187-14.2015] [PMID: 25716862]
[93]
Takahashi, T.M.; Sunagawa, G.A.; Soya, S.; Abe, M.; Sakurai, K.; Ishikawa, K.; Yanagisawa, M.; Hama, H.; Hasegawa, E.; Miyawaki, A.; Sakimura, K.; Takahashi, M.; Sakurai, T. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature, 2020, 583(7814), 109-114.
[http://dx.doi.org/10.1038/s41586-020-2163-6] [PMID: 32528181]
[94]
Piñol, R.A.; Zahler, S.H.; Li, C.; Saha, A.; Tan, B.K.; Škop, V.; Gavrilova, O.; Xiao, C.; Krashes, M.J.; Reitman, M.L. Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nat. Neurosci., 2018, 21(11), 1530-1540.
[http://dx.doi.org/10.1038/s41593-018-0249-3] [PMID: 30349101]
[95]
Zhao, Z.D.; Yang, W.Z.; Gao, C.; Fu, X.; Zhang, W.; Zhou, Q.; Chen, W.; Ni, X.; Lin, J.K.; Yang, J.; Xu, X.H.; Shen, W.L. A hypothalamic circuit that controls body temperature. Proc. Natl. Acad. Sci. USA, 2017, 114(8), 2042-2047.
[http://dx.doi.org/10.1073/pnas.1616255114] [PMID: 28053227]
[96]
Yoshida, K.; Li, X.; Cano, G.; Lazarus, M.; Saper, C.B. Parallel preoptic pathways for thermoregulation. J. Neurosci., 2009, 29(38), 11954-11964.
[http://dx.doi.org/10.1523/JNEUROSCI.2643-09.2009] [PMID: 19776281]
[97]
Sherin, J.E.; Elmquist, J.K.; Torrealba, F.; Saper, C.B. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci., 1998, 18(12), 4705-4721.
[http://dx.doi.org/10.1523/JNEUROSCI.18-12-04705.1998] [PMID: 9614245]
[98]
Smith, W.L.; Urade, Y.; Jakobsson, P.J. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem. Rev., 2011, 111(10), 5821-5865.
[http://dx.doi.org/10.1021/cr2002992] [PMID: 21942677]
[99]
Wang, T.A.; Teo, C.F.; Åkerblom, M.; Chen, C.; Tynan-La Fontaine, M.; Greiner, V.J.; Diaz, A.; McManus, M.T.; Jan, Y.N.; Jan, L.Y. Thermoregulation via temperature-dependent PGD2 production in mouse preoptic area. Neuron, 2019, 103(2), 309-322.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.04.035] [PMID: 31151773]
[100]
Hastings, M.H.; Maywood, E.S.; Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci., 2018, 19(8), 453-469.
[http://dx.doi.org/10.1038/s41583-018-0026-z] [PMID: 29934559]
[101]
Machado, N.L.S.; Abbott, S.B.G.; Resch, J.M.; Zhu, L.; Arrigoni, E.; Lowell, B.B.; Fuller, P.M.; Fontes, M.A.P.; Saper, C.B. A Glutamatergic hypothalamomedullary circuit mediates thermogenesis, but not heat conservation, during stress-induced hyperthermia. Curr. Biol., 2018, 28(14), 2291-2301.e5.
[http://dx.doi.org/10.1016/j.cub.2018.05.064] [PMID: 30017482]
[102]
de Git, K.C.G.; van Tuijl, D.C.; Luijendijk, M.C.M.; Wolterink-Donselaar, I.G.; Ghanem, A.; Conzelmann, K.K.; Adan, R.A.H. Anatomical projections of the dorsomedial hypothalamus to the periaqueductal grey and their role in thermoregulation: a cautionary note. Physiol. Rep., 2018, 6(14)e13807
[http://dx.doi.org/10.14814/phy2.13807] [PMID: 30047252]
[103]
Mohammed, M.; Ootsuka, Y.; Blessing, W. Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2014, 306(6), R394-R400.
[http://dx.doi.org/10.1152/ajpregu.00475.2013] [PMID: 24452545]
[104]
Nakamura, K.; Matsumura, K.; Hübschle, T.; Nakamura, Y.; Hioki, H.; Fujiyama, F.; Boldogköi, Z.; König, M.; Thiel, H.J.; Gerstberger, R.; Kobayashi, S.; Kaneko, T. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J. Neurosci., 2004, 24(23), 5370-5380.
[http://dx.doi.org/10.1523/JNEUROSCI.1219-04.2004] [PMID: 15190110]
[105]
Lkhagvasuren, B.; Nakamura, Y.; Oka, T.; Sudo, N.; Nakamura, K. Social defeat stress induces hyperthermia through activation of thermoregulatory sympathetic premotor neurons in the medullary raphe region. Eur. J. Neurosci., 2011, 34(9), 1442-1452.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07863.x] [PMID: 21978215]
[106]
Jeong, J.H.; Lee, D.K.; Blouet, C.; Ruiz, H.H.; Buettner, C.; Chua, S., Jr; Schwartz, G.J.; Jo, Y.H. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism. Mol. Metab., 2015, 4(6), 483-492.
[http://dx.doi.org/10.1016/j.molmet.2015.03.006] [PMID: 26042202]
[107]
Rezai-Zadeh, K.; Yu, S.; Jiang, Y.; Laque, A.; Schwartzenburg, C.; Morrison, C.D.; Derbenev, A.V.; Zsombok, A.; Münzberg, H. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol. Metab., 2014, 3(7), 681-693.
[http://dx.doi.org/10.1016/j.molmet.2014.07.008] [PMID: 25352997]
[108]
Thompson, R.H.; Swanson, L.W. Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat. Brain Res. Brain Res. Rev., 1998, 27(2), 89-118.
[http://dx.doi.org/10.1016/S0165-0173(98)00010-1] [PMID: 9622601]
[109]
Cano, G.; Passerin, A.M.; Schiltz, J.C.; Card, J.P.; Morrison, S.F.; Sved, A.F. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol., 2003, 460(3), 303-326.
[http://dx.doi.org/10.1002/cne.10643] [PMID: 12692852]
[110]
Oldfield, B.J.; Giles, M.E.; Watson, A.; Anderson, C.; Colvill, L.M.; McKinley, M.J. The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience, 2002, 110(3), 515-526.
[http://dx.doi.org/10.1016/S0306-4522(01)00555-3] [PMID: 11906790]
[111]
Kong, D.; Tong, Q.; Ye, C.; Koda, S.; Fuller, P.M.; Krashes, M.J.; Vong, L.; Ray, R.S.; Olson, D.P.; Lowell, B.B. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell, 2012, 151(3), 645-657.
[http://dx.doi.org/10.1016/j.cell.2012.09.020] [PMID: 23101631]
[112]
An, J.J.; Liao, G.Y.; Kinney, C.E.; Sahibzada, N.; Xu, B. Discrete BDNF neurons in the paraventricular hypothalamus control feeding and energy expenditure. Cell Metab., 2015, 22(1), 175-188.
[http://dx.doi.org/10.1016/j.cmet.2015.05.008] [PMID: 26073495]
[113]
Wang, P.; Loh, K.H.; Wu, M.; Morgan, D.A.; Schneeberger, M.; Yu, X.; Chi, J.; Kosse, C.; Kim, D.; Rahmouni, K.; Cohen, P.; Friedman, J. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature, 2020, 583(7818), 839-844.
[http://dx.doi.org/10.1038/s41586-020-2527-y] [PMID: 32699414]
[114]
Shi, Y.C.; Lau, J.; Lin, Z.; Zhang, H.; Zhai, L.; Sperk, G.; Heilbronn, R.; Mietzsch, M.; Weger, S.; Huang, X.F.; Enriquez, R.F.; Baldock, P.A.; Zhang, L.; Sainsbury, A.; Herzog, H.; Lin, S. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab., 2013, 17(2), 236-248.
[http://dx.doi.org/10.1016/j.cmet.2013.01.006] [PMID: 23395170]
[115]
Padilla, S.L.; Johnson, C.W.; Barker, F.D.; Patterson, M.A.; Palmiter, R.D. A neural circuit underlying the generation of hot flushes. Cell Rep., 2018, 24(2), 271-277.
[http://dx.doi.org/10.1016/j.celrep.2018.06.037] [PMID: 29996088]
[116]
Dacks, P.A.; Krajewski, S.J.; Rance, N.E. Activation of neurokinin 3 receptors in the median preoptic nucleus decreases core temperature in the rat. Endocrinology, 2011, 152(12), 4894-4905.
[http://dx.doi.org/10.1210/en.2011-1492] [PMID: 22028440]
[117]
Rezai-Zadeh, K.; Münzberg, H. Integration of sensory information via central thermoregulatory leptin targets. Physiol. Behav., 2013, 121, 49-55.
[http://dx.doi.org/10.1016/j.physbeh.2013.02.014] [PMID: 23458626]
[118]
Zhang, Y.; Kerman, I.A.; Laque, A.; Nguyen, P.; Faouzi, M.; Louis, G.W.; Jones, J.C.; Rhodes, C.; Münzberg, H. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci., 2011, 31(5), 1873-1884.
[http://dx.doi.org/10.1523/JNEUROSCI.3223-10.2011] [PMID: 21289197]
[119]
Khazaeipool, Z.; Wiederman, M.; Inoue, W. Prostaglandin E2 depresses GABA release onto parvocellular neuroendocrine neurones in the paraventricular nucleus of the hypothalamus via presynaptic receptors. J. Neuroendocrinol., 2018, 30(11)e12638
[http://dx.doi.org/10.1111/jne.12638] [PMID: 30084511]
[120]
You, H.; Chu, P.; Guo, W.; Lu, B. A subpopulation of Bdnf-e1-expressing glutamatergic neurons in the lateral hypothalamus critical for thermogenesis control. Mol. Metab., 2020, 31, 109-123.
[http://dx.doi.org/10.1016/j.molmet.2019.11.013] [PMID: 31918913]
[121]
Ahnaou, A.; Dautzenberg, F.M.; Huysmans, H.; Steckler, T.; Drinkenburg, W.H. Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (-/-) mice. Behav. Brain Res., 2011, 218(1), 42-50.
[http://dx.doi.org/10.1016/j.bbr.2010.11.019] [PMID: 21074567]
[122]
Pereira-da-Silva, M.; Torsoni, M.A.; Nourani, H.V.; Augusto, V.D.; Souza, C.T.; Gasparetti, A.L.; Carvalheira, J.B.; Ventrucci, G.; Marcondes, M.C.; Cruz-Neto, A.P.; Saad, M.J.; Boschero, A.C.; Carneiro, E.M.; Velloso, L.A. Hypothalamic melanin-concentrating hormone is induced by cold exposure and participates in the control of energy expenditure in rats. Endocrinology, 2003, 144(11), 4831-4840.
[http://dx.doi.org/10.1210/en.2003-0243] [PMID: 12960043]
[123]
Berthoud, H.R.; Patterson, L.M.; Sutton, G.M.; Morrison, C.; Zheng, H. Orexin inputs to caudal raphé neurons involved in thermal, cardiovascular, and gastrointestinal regulation. Histochem. Cell Biol., 2005, 123(2), 147-156.
[http://dx.doi.org/10.1007/s00418-005-0761-x] [PMID: 15742197]
[124]
Saito, Y.C.; Maejima, T.; Nishitani, M.; Hasegawa, E.; Yanagawa, Y.; Mieda, M.; Sakurai, T. Monoamines inhibit GABAergic neurons in ventrolateral preoptic area that make direct synaptic connections to hypothalamic arousal neurons. J. Neurosci., 2018, 38(28), 6366-6378.
[http://dx.doi.org/10.1523/JNEUROSCI.2835-17.2018] [PMID: 29915137]
[125]
Martin, T.; Dauvilliers, Y.; Koumar, O.C.; Bouet, V.; Freret, T.; Besnard, S.; Dauphin, F.; Bessot, N. Dual orexin receptor antagonist induces changes in core body temperature in rats after exercise. Sci. Rep., 2019, 9(1), 18432.
[http://dx.doi.org/10.1038/s41598-019-54826-3] [PMID: 31804545]
[126]
Cerri, M.; Del Vecchio, F.; Mastrotto, M.; Luppi, M.; Martelli, D.; Perez, E.; Tupone, D.; Zamboni, G.; Amici, R. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLoS One, 2014, 9(11)e112849
[http://dx.doi.org/10.1371/journal.pone.0112849] [PMID: 25398141]
[127]
Venner, A.; Broadhurst, R.Y.; Sohn, L.T.; Todd, W.D.; Fuller, P.M. Selective activation of serotoninergic dorsal raphe neurons facilitates sleep through anxiolysis. Sleep , 2020, 43(2)zsz231
[http://dx.doi.org/10.1093/sleep/zsz231] [PMID: 31553451]
[128]
Ren, J.; Friedmann, D.; Xiong, J.; Liu, C.D.; Ferguson, B.R.; Weerakkody, T.; DeLoach, K.E.; Ran, C.; Pun, A.; Sun, Y.; Weissbourd, B.; Neve, R.L.; Huguenard, J.; Horowitz, M.A.; Luo, L. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell, 2018, 175(2), 472-487.e20.
[http://dx.doi.org/10.1016/j.cell.2018.07.043] [PMID: 30146164]
[129]
Ootsuka, Y.; Tanaka, M. Control of cutaneous blood flow by central nervous system. Temperature, 2015, 2(3), 392-405.
[http://dx.doi.org/10.1080/23328940.2015.1069437] [PMID: 27227053]
[130]
Ishiwata, T.; Hasegawa, H.; Greenwood, B.N. Involvement of serotonin in the ventral tegmental area in thermoregulation of freely moving rats. Neurosci. Lett., 2017, 653, 71-77.
[http://dx.doi.org/10.1016/j.neulet.2017.05.030] [PMID: 28527719]
[131]
Brizuela, M.; Swoap, S.J.; Ang, J.; Blessing, W.W.; Ootsuka, Y. Neurons in ventral tegmental area tonically inhibit sympathetic outflow to brown adipose tissue: possible mediation of thermogenic signals from lateral habenula. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2019, 316(1), R6-R12.
[http://dx.doi.org/10.1152/ajpregu.00256.2018] [PMID: 30406672]
[132]
Nakamura, Y.; Yanagawa, Y.; Morrison, S.F.; Nakamura, K. Medullary reticular neurons mediate neuropeptide y-induced metabolic inhibition and mastication. Cell Metab., 2017, 25(2), 322-334.
[http://dx.doi.org/10.1016/j.cmet.2016.12.002] [PMID: 28065829]
[133]
Ong, Z.Y.; Bongiorno, D.M.; Hernando, M.A.; Grill, H.J. Effects of endogenous Oxytocin receptor signaling in nucleus tractus solitarius on satiation-mediated feeding and thermogenic control in male rats. Endocrinology, 2017, 158(9), 2826-2836.
[http://dx.doi.org/10.1210/en.2017-00200] [PMID: 28575174]
[134]
Sergeant, L.; Rodriguez-Dimitrescu, C.; Barney, C.C.; Fraley, G.S. Injections of Galanin-Like Peptide directly into the nucleus of the tractus solitarius (NTS) reduces food intake and body weight but increases metabolic rate and plasma leptin. Neuropeptides, 2017, 62, 37-43.
[http://dx.doi.org/10.1016/j.npep.2016.12.009] [PMID: 28043649]
[135]
Urade, Y.; Hayaishi, O. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev., 2011, 15(6), 411-418.
[http://dx.doi.org/10.1016/j.smrv.2011.08.003] [PMID: 22024172]
[136]
Jiang-Xie, L.F.; Yin, L.; Zhao, S.; Prevosto, V.; Han, B.X.; Dzirasa, K.; Wang, F. A common neuroendocrine substrate for diverse general anesthetics and sleep. Neuron, 2019, 102(5), 1053-1065.e4.
[http://dx.doi.org/10.1016/j.neuron.2019.03.033] [PMID: 31006556]
[137]
Mure, L.S.; Le, H.D.; Benegiamo, G.; Chang, M.W.; Rios, L.; Jillani, N.; Ngotho, M.; Kariuki, T.; Dkhissi-Benyahya, O.; Cooper, H.M.; Panda, S. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science, 2018, 359(6381)eaao0318
[http://dx.doi.org/10.1126/science.aao0318] [PMID: 29439024]
[138]
Scammell, T.; Gerashchenko, D.; Urade, Y.; Onoe, H.; Saper, C.; Hayaishi, O. Activation of ventrolateral preoptic neurons by the somnogen prostaglandin D2. Proc. Natl. Acad. Sci. USA, 1998, 95(13), 7754-7759.
[http://dx.doi.org/10.1073/pnas.95.13.7754] [PMID: 9636223]
[139]
Ma, L.; Lee, B.H.; Clifton, H.; Schaefer, S.; Zheng, J. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels. Sci. Rep., 2015, 5, 8906.
[http://dx.doi.org/10.1038/srep08906] [PMID: 25752528]
[140]
Szentirmai, É.; Kapás, L. Nicotinic acid promotes sleep through prostaglandin synthesis in mice. Sci. Rep., 2019, 9(1), 17084.
[http://dx.doi.org/10.1038/s41598-019-53648-7] [PMID: 31745228]
[141]
Lo Martire, V.; Silvani, A.; Bastianini, S.; Berteotti, C.; Zoccoli, G. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons. PLoS One, 2012, 7(10)e47032
[http://dx.doi.org/10.1371/journal.pone.0047032] [PMID: 23056568]
[142]
Ferrari, L.L.; Park, D.; Zhu, L.; Palmer, M.R.; Broadhurst, R.Y.; Arrigoni, E. Regulation of lateral hypothalamic orexin activity by local GABAergic Neurons. J. Neurosci., 2018, 38(6), 1588-1599.
[http://dx.doi.org/10.1523/JNEUROSCI.1925-17.2017] [PMID: 29311142]
[143]
Schöne, C.; Apergis-Schoute, J.; Sakurai, T.; Adamantidis, A.; Burdakov, D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep., 2014, 7(3), 697-704.
[http://dx.doi.org/10.1016/j.celrep.2014.03.055] [PMID: 24767990]
[144]
Bonnavion, P.; Jackson, A.C.; Carter, M.E.; de Lecea, L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat. Commun., 2015, 6, 6266.
[http://dx.doi.org/10.1038/ncomms7266] [PMID: 25695914]
[145]
Herrera, C.G.; Cadavieco, M.C.; Jego, S.; Ponomarenko, A.; Korotkova, T.; Adamantidis, A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat. Neurosci., 2016, 19(2), 290-298.
[http://dx.doi.org/10.1038/nn.4209] [PMID: 26691833]
[146]
Leinninger, G.M.; Opland, D.M.; Jo, Y.H.; Faouzi, M.; Christensen, L.; Cappellucci, L.A.; Rhodes, C.J.; Gnegy, M.E.; Becker, J.B.; Pothos, E.N.; Seasholtz, A.F.; Thompson, R.C.; Myers, M.G., Jr Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab., 2011, 14(3), 313-323.
[http://dx.doi.org/10.1016/j.cmet.2011.06.016] [PMID: 21907138]
[147]
Leinninger, G.M. Lateral thinking about leptin: a review of leptin action via the lateral hypothalamus. Physiol. Behav., 2011, 104(4), 572-581.
[http://dx.doi.org/10.1016/j.physbeh.2011.04.060] [PMID: 21550356]
[148]
Ito, H.; Yanase, M.; Yamashita, A.; Kitabatake, C.; Hamada, A.; Suhara, Y.; Narita, M.; Ikegami, D.; Sakai, H.; Yamazaki, M.; Narita, M. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol. Brain, 2013, 6, 59.
[http://dx.doi.org/10.1186/1756-6606-6-59] [PMID: 24370235]
[149]
Lu, J.; Jhou, T.C.; Saper, C.B. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J. Neurosci., 2006, 26(1), 193-202.
[http://dx.doi.org/10.1523/JNEUROSCI.2244-05.2006] [PMID: 16399687]
[150]
Kodani, S.; Soya, S.; Sakurai, T. Excitation of GABAergic neurons in the bed nucleus of the stria terminalis triggers immediate transition from non-rapid eye movement sleep to wakefulness in mice. J. Neurosci., 2017, 37(30), 7164-7176.
[http://dx.doi.org/10.1523/JNEUROSCI.0245-17.2017] [PMID: 28642284]
[151]
Hua, R.; Wang, X.; Chen, X.; Wang, X.; Huang, P.; Li, P.; Mei, W.; Li, H. Calretinin neurons in the midline thalamus modulate starvation-induced arousal. Curr. Biol., 2018, 28(24), 3948-3959.e4.
[http://dx.doi.org/10.1016/j.cub.2018.11.020] [PMID: 30528578]
[152]
Machida, M.; Wellman, L.L.; Fitzpatrick Bs, M.E.; Hallum Bs, O.; Sutton Bs, A.M.; Lonart, G.; Sanford, L.D. Effects of optogenetic inhibition of BLA on sleep brief Optogenetic inhibition of the basolateral amygdala in mice alters effects of stressful experiences on rapid eye movement sleep. Sleep , 2017, 40(4)zsx020
[http://dx.doi.org/10.1093/sleep/zsx020] [PMID: 28199723]
[153]
Rosenkranz, J.A.; Buffalari, D.M.; Grace, A.A. Opposing influence of basolateral amygdala and footshock stimulation on neurons of the central amygdala. Biol. Psychiatry, 2006, 59(9), 801-811.
[http://dx.doi.org/10.1016/j.biopsych.2005.09.013] [PMID: 16373067]
[154]
Hwang, Y.G.; Lee, H.S.; Neuropeptide, Y.; Neuropeptide, Y. NPY) or cocaine- and amphetamine-regulated transcript (CART) fiber innervation on central and medial amygdaloid neurons that project to the locus coeruleus and dorsal raphe in the rat. Brain Res., 2018, 1689, 75-88.
[http://dx.doi.org/10.1016/j.brainres.2018.03.032] [PMID: 29625116]
[155]
Eban-Rothschild, A.; Rothschild, G.; Giardino, W.J.; Jones, J.R.; de Lecea, L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat. Neurosci., 2016, 19(10), 1356-1366.
[http://dx.doi.org/10.1038/nn.4377] [PMID: 27595385]
[156]
Taylor, N.E.; Van Dort, C.J.; Kenny, J.D.; Pei, J.; Guidera, J.A.; Vlasov, K.Y.; Lee, J.T.; Boyden, E.S.; Brown, E.N.; Solt, K. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc. Natl. Acad. Sci. USA, 2016, 113(45), 12826-12831.
[http://dx.doi.org/10.1073/pnas.1614340113] [PMID: 27791160]
[157]
Ren, S.; Wang, Y.; Yue, F.; Cheng, X.; Dang, R.; Qiao, Q.; Sun, X.; Li, X.; Jiang, Q.; Yao, J.; Qin, H.; Wang, G.; Liao, X.; Gao, D.; Xia, J.; Zhang, J.; Hu, B.; Yan, J.; Wang, Y.; Xu, M.; Han, Y.; Tang, X.; Chen, X.; He, C.; Hu, Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science, 2018, 362(6413), 429-434.
[http://dx.doi.org/10.1126/science.aat2512] [PMID: 30361367]
[158]
Gelegen, C.; Miracca, G.; Ran, M.Z.; Harding, E.C.; Ye, Z.; Yu, X.; Tossell, K.; Houston, C.M.; Yustos, R.; Hawkins, E.D.; Vyssotski, A.L.; Dong, H.L.; Wisden, W.; Franks, N.P. Excitatory pathways from the lateral habenula enable propofol-induced sedation. Curr. Biol., 2018, 28(4), 580-587.e5.
[http://dx.doi.org/10.1016/j.cub.2017.12.050] [PMID: 29398217]
[159]
Deurveilher, S.; Semba, K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience, 2005, 130(1), 165-183.
[http://dx.doi.org/10.1016/j.neuroscience.2004.08.030] [PMID: 15561433]
[160]
Saper, C.B.; Scammell, T.E.; Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437(7063), 1257-1263.
[http://dx.doi.org/10.1038/nature04284] [PMID: 16251950]
[161]
Rupp, A.C.; Ren, M.; Altimus, C.M.; Fernandez, D.C.; Richardson, M.; Turek, F.; Hattar, S.; Schmidt, T.M. Distinct ipRGC subpopulations mediate light’s acute and circadian effects on body temperature and sleep. eLife, 2019, 8, 8.
[http://dx.doi.org/10.7554/eLife.44358] [PMID: 31333190]
[162]
Akeju, O.; Brown, E.N. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr. Opin. Neurobiol., 2017, 44, 178-185.
[http://dx.doi.org/10.1016/j.conb.2017.04.011] [PMID: 28544930]
[163]
Brown, E.N.; Purdon, P.L.; Van Dort, C.J. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu. Rev. Neurosci., 2011, 34, 601-628.
[http://dx.doi.org/10.1146/annurev-neuro-060909-153200] [PMID: 21513454]
[164]
Lewis, L.D.; Voigts, J.; Flores, F.J.; Schmitt, L.I.; Wilson, M.A.; Halassa, M.M.; Brown, E.N. Thalamic reticular nucleus induces fast and local modulation of arousal state. eLife, 2015, 4e08760
[http://dx.doi.org/10.7554/eLife.08760] [PMID: 26460547]
[165]
Yin, L.; Li, L.; Deng, J.; Wang, D.; Guo, Y.; Zhang, X.; Li, H.; Zhao, S.; Zhong, H.; Dong, H. Optogenetic/chemogenetic activation of GABAergic neurons in the ventral tegmental area facilitates general anesthesia via projections to the lateral hypothalamus in mice. Front. Neural Circuits, 2019, 13, 73.
[http://dx.doi.org/10.3389/fncir.2019.00073] [PMID: 31798420]
[166]
Yu, X.; Li, W.; Ma, Y.; Tossell, K.; Harris, J.J.; Harding, E.C.; Ba, W.; Miracca, G.; Wang, D.; Li, L.; Guo, J.; Chen, M.; Li, Y.; Yustos, R.; Vyssotski, A.L.; Burdakov, D.; Yang, Q.; Dong, H.; Franks, N.P.; Wisden, W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat. Neurosci., 2019, 22(1), 106-119.
[http://dx.doi.org/10.1038/s41593-018-0288-9] [PMID: 30559475]
[167]
Wang, T.X.; Xiong, B.; Xu, W.; Wei, H.H.; Qu, W.M.; Hong, Z.Y.; Huang, Z.L. Activation of parabrachial nucleus glutamatergic neurons accelerates reanimation from sevoflurane anesthesia in mice. Anesthesiology, 2019, 130(1), 106-118.
[http://dx.doi.org/10.1097/ALN.0000000000002475] [PMID: 30325744]
[168]
Han, B.; McCarren, H.S.; O’Neill, D.; Kelz, M.B. Distinctive recruitment of endogenous sleep-promoting neurons by volatile anesthetics and a nonimmobilizer. Anesthesiology, 2014, 121(5), 999-1009.
[http://dx.doi.org/10.1097/ALN.0000000000000383] [PMID: 25057841]
[169]
McCarren, H.S.; Chalifoux, M.R.; Han, B.; Moore, J.T.; Meng, Q.C.; Baron-Hionis, N.; Sedigh-Sarvestani, M.; Contreras, D.; Beck, S.G.; Kelz, M.B. α2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state. J. Neurosci., 2014, 34(49), 16385-16396.
[http://dx.doi.org/10.1523/JNEUROSCI.1135-14.2014] [PMID: 25471576]
[170]
Vazey, E.M.; Aston-Jones, G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc. Natl. Acad. Sci. USA, 2014, 111(10), 3859-3864.
[http://dx.doi.org/10.1073/pnas.1310025111] [PMID: 24567395]
[171]
Zhang, Y.; Fu, B.; Liu, C.; Yu, S.; Luo, T.; Zhang, L.; Zhou, W.; Yu, T. Activation of noradrenergic terminals in the reticular thalamus delays arousal from propofol anesthesia in mice. FASEB J., 2019, 33(6), 7252-7260.
[http://dx.doi.org/10.1096/fj.201802164RR] [PMID: 30860868]
[172]
Pilorz, V.; Tam, S.K.; Hughes, S.; Pothecary, C.A.; Jagannath, A.; Hankins, M.W.; Bannerman, D.M.; Lightman, S.L.; Vyazovskiy, V.V.; Nolan, P.M.; Foster, R.G.; Peirson, S.N. Melanopsin regulates both sleep-promoting and arousal-promoting responses to light. PLoS Biol., 2016, 14(6)e1002482
[http://dx.doi.org/10.1371/journal.pbio.1002482] [PMID: 27276063]
[173]
Liu, D.; Li, J.; Wu, J.; Dai, J.; Chen, X.; Huang, Y.; Zhang, S.; Tian, B.; Mei, W. Monochromatic blue light activates suprachiasmatic nucleus neuronal activity and promotes arousal in mice under sevoflurane anesthesia. Front. Neural Circuits, 2020, 14, 55.
[http://dx.doi.org/10.3389/fncir.2020.00055] [PMID: 32973462]
[174]
Matsukawa, T.; Sessler, D.I.; Sessler, A.M.; Schroeder, M.; Ozaki, M.; Kurz, A.; Cheng, C. Heat flow and distribution during induction of general anesthesia. Anesthesiology, 1995, 82(3), 662-673.
[http://dx.doi.org/10.1097/00000542-199503000-00008] [PMID: 7879935]
[175]
Deakin, C.D. Changes in core temperature compartment size on induction of general anaesthesia. Br. J. Anaesth., 1998, 81(6), 861-864.
[http://dx.doi.org/10.1093/bja/81.6.861] [PMID: 10211009]
[176]
Garami, A.; Ibrahim, M.; Gilbraith, K.; Khanna, R.; Pakai, E.; Miko, A.; Pinter, E.; Romanovsky, A.A.; Porreca, F.; Patwardhan, A.M. Transient receptor potential vanilloid 1 antagonists prevent anesthesia-induced hypothermia and decrease postincisional opioid dose requirements in rodents. Anesthesiology, 2017, 127(5), 813-823.
[http://dx.doi.org/10.1097/ALN.0000000000001812] [PMID: 28806222]
[177]
Vanden Abeele, F.; Kondratskyi, A.; Dubois, C.; Shapovalov, G.; Gkika, D.; Busserolles, J.; Shuba, Y.; Skryma, R.; Prevarskaya, N. Complex modulation of the cold receptor TRPM8 by volatile anaesthetics and its role in complications of general anaesthesia. J. Cell Sci., 2013, 126(Pt 19), 4479-4489.
[http://dx.doi.org/10.1242/jcs.131631] [PMID: 23943870]
[178]
Gizowski, C.; Bourque, C.W. Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature, 2020, 583(7816), 421-424.
[http://dx.doi.org/10.1038/s41586-020-2471-x] [PMID: 32641825]
[179]
Zhou, W.; Cheung, K.; Kyu, S.; Wang, L.; Guan, Z.; Kurien, P.A.; Bickler, P.E.; Jan, L.Y. Activation of orexin system facilitates anesthesia emergence and pain control. Proc. Natl. Acad. Sci. USA, 2018, 115(45), E10740-E10747.
[http://dx.doi.org/10.1073/pnas.1808622115] [PMID: 30348769]
[180]
Li, J.; Li, H.; Wang, D.; Guo, Y.; Zhang, X.; Ran, M.; Yang, C.; Yang, Q.; Dong, H. Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats. Br. J. Anaesth., 2019, 123(4), 497-505.
[http://dx.doi.org/10.1016/j.bja.2019.07.005] [PMID: 31399212]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy