Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Clinical Trial

蛋白酶体抑制剂卡非佐米对小儿实体瘤的细胞毒性和靶点调节

卷 21, 期 9, 2021

发表于: 03 May, 2021

页: [804 - 811] 页: 8

弟呕挨: 10.2174/1568009621666210504085527

价格: $65

摘要

背景:大多数患有复发性转移性实体瘤的儿童死亡率很高。最近的研究表明,蛋白酶体抑制可有效杀死已获得治疗抗性和转移特性的细胞中的肿瘤。 目的:本研究的目的是测试蛋白酶体抑制剂卡非佐米 (CFZ) 在目前未知的难治性儿科实体瘤中的潜力。 方法:使用一组儿科实体瘤细胞系,包括神经母细胞瘤、尤文氏肉瘤、骨肉瘤、横纹肌肉瘤和非典型畸胎样横纹肌瘤 (ATRT),评估 CFZ 的细胞毒性和蛋白酶体抑制作用。进行药物调度实验以确定获得有效细胞杀伤的最佳剂量和时间。对 CFZ 与不同类别的化疗药物进行联合研究以确定协同作用的程度。 结果:CFZ 对所有测试的细胞系均显示出有效的细胞毒性(平均 IC50 = 7nM,范围 = 1-20nM),并在荧光团标记的基于细胞的蛋白酶体测定中具有活性。药物调度实验表明,有效累积杀灭需要最少 4-8 小时/天的暴露时间。 CFZ与不同类别的化疗药物联合使用时,协同增强了细胞死亡的程度。 结论:CFZ 对所有测试的实体小儿癌细胞系均表现出细胞毒活性。本研究提供了关于 CFZ 治疗儿科实体瘤潜力的初步体外数据,并支持对未来儿童早期临床试验的药物调度、生物学相关性和药物组合的组成部分进行进一步研究。

关键词: 小儿肿瘤、实体瘤、卡非佐米、蛋白酶体抑制、神经母细胞瘤、ATRT、肉瘤。

« Previous
图形摘要
[1]
Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(2), 83-103.
[http://dx.doi.org/10.3322/caac.21219] [PMID: 24488779]
[2]
Robison, L.L.; Hudson, M.M. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat. Rev. Cancer, 2014, 14(1), 61-70.
[http://dx.doi.org/10.1038/nrc3634] [PMID: 24304873]
[3]
Orlowski, R.Z.; Kuhn, D.J. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res., 2008, 14(6), 1649-1657.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2218] [PMID: 18347166]
[4]
Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol., 2017, 14(7), 417-433.
[http://dx.doi.org/10.1038/nrclinonc.2016.206] [PMID: 28117417]
[5]
Djebbari, F.; Srinivasan, A.; Vallance, G.; Moore, S.; Kothari, J.; Ramasamy, K. Clinical outcomes of bortezomib-based therapy in myeloma. PLoS One, 2018, 13(12), e0208920.
[http://dx.doi.org/10.1371/journal.pone.0208920] [PMID: 30540831]
[6]
Kouroukis, T.C.; Baldassarre, F.G.; Haynes, A.E.; Imrie, K.; Reece, D.E.; Cheung, M.C. Bortezomib in multiple myeloma: systematic review and clinical considerations. Curr. Oncol., 2014, 21(4), e573-e603.
[http://dx.doi.org/10.3747/co.21.1798] [PMID: 25089109]
[7]
Robak, P.; Robak, T. Bortezomib for the Treatment of Hematologic Malignancies: 15 Years Later. Drugs R D., 2019, 19(2), 73-92.
[http://dx.doi.org/10.1007/s40268-019-0269-9] [PMID: 30993606]
[8]
Argyriou, A.A.; Cavaletti, G.; Bruna, J.; Kyritsis, A.P.; Kalofonos, H.P. Bortezomib-induced peripheral neurotoxicity: an update. Arch. Toxicol., 2014, 88(9), 1669-1679.
[http://dx.doi.org/10.1007/s00204-014-1316-5] [PMID: 25069804]
[9]
Argyriou, A.A.; Iconomou, G.; Kalofonos, H.P. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood, 2008, 112(5), 1593-1599.
[http://dx.doi.org/10.1182/blood-2008-04-149385] [PMID: 18574024]
[10]
Velasco, R.; Alberti, P.; Bruna, J.; Psimaras, D.; Argyriou, A.A. Bortezomib and other proteosome inhibitors-induced peripheral neurotoxicity: From pathogenesis to treatment. J. Peripher. Nerv. Syst., 2019, 24(Suppl. 2), S52-S62.
[http://dx.doi.org/10.1111/jns.12338] [PMID: 31647153]
[11]
Bringhen, S.; Larocca, A.; Rossi, D.; Cavalli, M.; Genuardi, M.; Ria, R.; Gentili, S.; Patriarca, F.; Nozzoli, C.; Levi, A.; Guglielmelli, T.; Benevolo, G.; Callea, V.; Rizzo, V.; Cangialosi, C.; Musto, P.; De Rosa, L.; Liberati, A.M.; Grasso, M.; Falcone, A.P.; Evangelista, A.; Cavo, M.; Gaidano, G.; Boccadoro, M.; Palumbo, A. Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. Blood, 2010, 116(23), 4745-4753.
[http://dx.doi.org/10.1182/blood-2010-07-294983] [PMID: 20807892]
[12]
Franken, B.; van de Donk, N.W.; Cloos, J.C.; Zweegman, S.; Lokhorst, H.M. A clinical update on the role of carfilzomib in the treatment of relapsed or refractory multiple myeloma. Ther. Adv. Hematol., 2016, 7(6), 330-344.
[http://dx.doi.org/10.1177/2040620716667275] [PMID: 27904737]
[13]
Nooka, A.; Gleason, C.; Casbourne, D.; Lonial, S. Relapsed and refractory lymphoid neoplasms and multiple myeloma with a focus on carfilzomib. Biologics, 2013, 7, 13-32.
[http://dx.doi.org/10.2147/BTT.S24580] [PMID: 23386784]
[14]
Perel, G.; Bliss, J.; Thomas, C.M. Carfilzomib (Kyprolis): A Novel Proteasome Inhibitor for Relapsed And/or Refractory Multiple Myeloma. P&T, 2016, 41(5), 303-307.
[PMID: 27162470]
[15]
Dasmahapatra, G.; Lembersky, D.; Son, M.P.; Attkisson, E.; Dent, P.; Fisher, R.I.; Friedberg, J.W.; Grant, S. Carfilzomib interacts synergistically with histone deacetylase inhibitors in mantle cell lymphoma cells in vitro and in vivo. Mol. Cancer Ther., 2011, 10(9), 1686-1697.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-1108] [PMID: 21750224]
[16]
Stapnes, C.; Døskeland, A.P.; Hatfield, K.; Ersvaer, E.; Ryningen, A.; Lorens, J.B.; Gjertsen, B.T.; Bruserud, O. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br. J. Haematol., 2007, 136(6), 814-828.
[http://dx.doi.org/10.1111/j.1365-2141.2007.06504.x] [PMID: 17341267]
[17]
Dimopoulos, M.A.; Moreau, P.; Palumbo, A.; Joshua, D.; Pour, L.; Hájek, R.; Facon, T.; Ludwig, H.; Oriol, A.; Goldschmidt, H.; Rosiñol, L.; Straub, J.; Suvorov, A.; Araujo, C.; Rimashevskaya, E.; Pika, T.; Gaidano, G.; Weisel, K.; Goranova-Marinova, V.; Schwarer, A.; Minuk, L.; Masszi, T.; Karamanesht, I.; Offidani, M.; Hungria, V.; Spencer, A.; Orlowski, R.Z.; Gillenwater, H.H.; Mohamed, N.; Feng, S.; Chng, W.J. ENDEAVOR Investigators. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol., 2016, 17(1), 27-38.
[http://dx.doi.org/10.1016/S1470-2045(15)00464-7] [PMID: 26671818]
[18]
Vesole, D.H.; Bilotti, E.; Richter, J.R.; McNeill, A.; McBride, L.; Raucci, L.; Anand, P.; Bednarz, U.; Ivanovski, K.; Smith, J.; Batra, V.; Aleman, A.; Sims, T.; Guerrero, L.; Mato, A.; Siegel, D.S. Phase I study of carfilzomib, lenalidomide, vorinostat, and dexamethasone in patients with relapsed and/or refractory multiple myeloma. Br. J. Haematol., 2015, 171(1), 52-59.
[http://dx.doi.org/10.1111/bjh.13517] [PMID: 26018491]
[19]
Holkova, B.; Kmieciak, M.; Bose, P.; Yazbeck, V.Y.; Barr, P.M.; Tombes, M.B.; Shrader, E.; Weir-Wiggins, C.; Rollins, A.D.; Cebula, E.M.; Pierce, E.; Herr, M.; Sankala, H.; Hogan, K.T.; Wan, W.; Feng, C.; Peterson, D.R.; Fisher, R.I.; Grant, S.; Friedberg, J.W. Phase 1 trial of carfilzomib (PR-171) in combination with vorinostat (SAHA) in patients with relapsed or refractory B-cell lymphomas. Leuk. Lymphoma, 2016, 57(3), 635-643.
[http://dx.doi.org/10.3109/10428194.2015.1075019] [PMID: 26284612]
[20]
Zang, Y.; Thomas, S.M.; Chan, E.T.; Kirk, C.J.; Freilino, M.L.; DeLancey, H.M.; Grandis, J.R.; Li, C.; Johnson, D.E. Carfilzomib and ONX 0912 inhibit cell survival and tumor growth of head and neck cancer and their activities are enhanced by suppression of Mcl-1 or autophagy. Clin. Cancer Res., 2012, 18(20), 5639-5649.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1213] [PMID: 22929803]
[21]
Papadopoulos, K.P.; Burris, H.A., III; Gordon, M.; Lee, P.; Sausville, E.A.; Rosen, P.J.; Patnaik, A.; Cutler, R.E., Jr; Wang, Z.; Lee, S.; Jones, S.F.; Infante, J.R. A phase I/II study of carfilzomib 2-10-min infusion in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2013, 72(4), 861-868.
[http://dx.doi.org/10.1007/s00280-013-2267-x] [PMID: 23975329]
[22]
Swift, L.; Jayanthan, A.; Ruan, Y.; Anderson, R.; Boklan, J.; Trippett, T.; Narendran, A. Targeting the proteasome in refractory pediatric leukemia cells: characterization of effective cytotoxicity of carfilzomib. Target. Oncol., 2018, 13(6), 779-793.
[http://dx.doi.org/10.1007/s11523-018-0603-0] [PMID: 30446871]
[23]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[24]
Meng, L.; Mohan, R.; Kwok, B.H.; Elofsson, M.; Sin, N.; Crews, C.M. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA, 1999, 96(18), 10403-10408.
[http://dx.doi.org/10.1073/pnas.96.18.10403] [PMID: 10468620]
[25]
Yang, J.; Wang, Z.; Fang, Y.; Jiang, J.; Zhao, F.; Wong, H.; Bennett, M.K.; Molineaux, C.J.; Kirk, C.J. Pharmacokinetics, pharmacodynamics, metabolism, distribution, and excretion of carfilzomib in rats. Drug Metab. Dispos., 2011, 39(10), 1873-1882.
[http://dx.doi.org/10.1124/dmd.111.039164] [PMID: 21752943]
[26]
Lamothe, B.; Wierda, W.G.; Keating, M.J.; Gandhi, V. Carfilzomib triggers cell death in chronic lymphocytic leukemia by inducing proapoptotic and endoplasmic reticulum stress responses. Clin. Cancer Res., 2016, 22(18), 4712-4726.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2522] [PMID: 27026200]
[27]
Yoshii, S.R.; Mizushima, N. Monitoring and Measuring Autophagy. Int. J. Mol. Sci., 2017, 18(9), E1865.
[http://dx.doi.org/10.3390/ijms18091865] [PMID: 28846632]
[28]
Bjørkøy, G.; Lamark, T.; Brech, A.; Outzen, H.; Perander, M.; Overvatn, A.; Stenmark, H.; Johansen, T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol., 2005, 171(4), 603-614.
[http://dx.doi.org/10.1083/jcb.200507002] [PMID: 16286508]
[29]
Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem., 2007, 282(33), 24131-24145.
[http://dx.doi.org/10.1074/jbc.M702824200] [PMID: 17580304]
[30]
Sha, Z.; Schnell, H.M.; Ruoff, K.; Goldberg, A. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. J. Cell Biol., 2018, 217(5), 1757-1776.
[http://dx.doi.org/10.1083/jcb.201708168] [PMID: 29535191]
[31]
Dou, Q.P.; Zonder, J.A. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr. Cancer Drug Targets, 2014, 14(6), 517-536.
[http://dx.doi.org/10.2174/1568009614666140804154511] [PMID: 25092212]
[32]
Richardson, P.G.; Mitsiades, C.; Hideshima, T.; Anderson, K.C. Proteasome inhibition in the treatment of cancer. Cell Cycle, 2005, 4(2), 290-296.
[http://dx.doi.org/10.4161/cc.4.2.1414] [PMID: 15655370]
[33]
Tsakiri, E.N.; Terpos, E.; Papanagnou, E.D.; Kastritis, E.; Brieudes, V.; Halabalaki, M.; Bagratuni, T.; Florea, B.I.; Overkleeft, H.S.; Scorrano, L.; Skaltsounis, A.L.; Dimopoulos, M.A.; Trougakos, I.P. Milder degenerative effects of Carfilzomib vs. Bortezomib in the Drosophila model: a link to clinical adverse events. Sci. Rep., 2017, 7(1), 17802.
[http://dx.doi.org/10.1038/s41598-017-17596-4] [PMID: 29259189]
[34]
Levine, B.; Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Invest., 2005, 115(10), 2679-2688.
[http://dx.doi.org/10.1172/JCI26390] [PMID: 16200202]
[35]
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[36]
Steele, J.M. Carfilzomib: A new proteasome inhibitor for relapsed or refractory multiple myeloma. J. Oncol. Pharm. Pract., 2013, 19(4), 348-354.
[http://dx.doi.org/10.1177/1078155212470388] [PMID: 23292972]
[37]
Meel, M.H.; Guillén Navarro, M.; de Gooijer, M.C.; Metselaar, D.S.; Waranecki, P.; Breur, M.; Lagerweij, T.; Wedekind, L.E.; Koster, J.; van de Wetering, M.D.; Schouten-van Meeteren, N.; Aronica, E.; van Tellingen, O.; Bugiani, M.; Phoenix, T.N.; Kaspers, G.J.L.; Hulleman, E. MEK/MELK inhibition and blood-brain barrier deficiencies in atypical teratoid/rhabdoid tumors. Neuro-oncol., 2020, 22(1), 58-69.
[http://dx.doi.org/10.1093/neuonc/noz151] [PMID: 31504799]
[38]
Bhowmik, A.; Khan, R.; Ghosh, M.K. Blood brain barrier: a challenge for effectual therapy of brain tumors. BioMed. Res. Int., 2015, 2015, 320941.
[http://dx.doi.org/10.1155/2015/320941] [PMID: 25866775]
[39]
Gao, L.; Gao, M.; Yang, G.; Tao, Y.; Kong, Y.; Yang, R.; Meng, X.; Ai, G.; Wei, R.; Wu, H.; Wu, X.; Shi, J. Synergistic activity of carfilzomib and panobinostat in multiple myeloma cells via modulation of ros generation and ERK1/2. BioMed. Res. Int., 2015, 2015, 459052.
[http://dx.doi.org/10.1155/2015/459052] [PMID: 26000292]
[40]
Nct02512926. carfilzomib in combination with cyclophosphamide and etoposide for children. 2020. Available at: https://ClinicalTrials.gov/show/NCT02512926Accessed 2020-04-24 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy