Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Astaxanthin and Nrf2 Signaling Pathway: A Novel Target for New Therapeutic Approaches

Author(s): Milad Ashrafizadeh , Zahra Ahmadi , Habib Yaribeygi *, Thozhukat Sathyapalan and Amirhossein Sahebkar*

Volume 22, Issue 2, 2022

Published on: 05 May, 2021

Page: [312 - 321] Pages: 10

DOI: 10.2174/1389557521666210505112834

Price: $65

Abstract

Abstract: Astaxanthin (AST) is a naturally occurring compound isolated from various sources such as fungi, plants, salmon, and crab. However, Haematococcus Pluvialis, a green alga, is the primary source of this beta carotenoid compound. AST has several favourable biological and pharmacological activities such as antioxidant, anti-inflammatory, anti-tumor, anti-diabetes, hepatoprotective, and neuroprotective activities. Nevertheless, the exact molecular mechanisms of these protective effects of AST are unclear yet. The Nrf2 signaling pathway is one of the critical candidate signaling pathways that may be involved in these beneficial effects of AST. This signaling pathway is responsible for maintaining the redox balance in the physiological state. Upon nuclear translocation, Nrf2 signaling activates antioxidant enzymes to reduce oxidative stress and protect cells against damage. In the current study, we have reviewed the effects of AST on the Nrf2 signaling pathway, which could potentially be developed as a novel therapeutic approach for the management of various diseases.

Keywords: Astaxanthin, oxidative stress, cardioprotective, neuroprotective, Nrf2 signaling pathway, renoprotective, diabetes mellitus.

Graphical Abstract
[1]
Sewell, R.D.; Rafieian-Kopaei, M. The history and ups and downs of herbal medicines usage; J. HerbMed. Pharm, 2014, p. 3.
[2]
Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol., 2018, 7(1)
[3]
Pollio, A.; De Natale, A.; Appetiti, E.; Aliotta, G.; Touwaide, A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol., 2008, 116(3), 469-482.
[http://dx.doi.org/10.1016/j.jep.2007.12.013] [PMID: 18276094]
[4]
Kamboj, V.P. Herbal medicine. Curr. Sci., 2000, 78(1), 35-39.
[5]
Yaribeygi, H.; Simental-Mendía, L.E.; Butler, A.E.; Sahebkar, A. Protective effects of plant-derived natural products on renal complications. J. Cell. Physiol., 2019, 234(8), 12161-12172.
[http://dx.doi.org/10.1002/jcp.27950] [PMID: 30536823]
[6]
Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. Natural compounds with DPP-4 inhibitory effects: Implications for the treatment of diabetes. J. Cell. Biochem., 2019, 120(7), 10909-10913.
[http://dx.doi.org/10.1002/jcb.28467] [PMID: 30775811]
[7]
Ashrafizadeh, M.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Resveratrol targeting the Wnt signaling pathway: A focus on therapeutic activities. J. Cell. Physiol., 2020, 235(5), 4135-4145.
[http://dx.doi.org/10.1002/jcp.29327] [PMID: 31637721]
[8]
Rafiei, H.; Ashrafizadeh, M.; Ahmadi, Z. MicroRNAs as novel targets of sulforaphane in cancer therapy: The beginning of a new tale? Phytother. Res., 2020, 34(4), 721-728.
[http://dx.doi.org/10.1002/ptr.6572] [PMID: 31972874]
[9]
Yaribeygi, H.; Mohammadi, M.T.; Rezaee, R.; Sahebkar, A. Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy. J. Cell. Biochem., 2018, 119(7), 6080-6093.
[http://dx.doi.org/10.1002/jcb.26806] [PMID: 29575259]
[10]
Yaribeygi, H; Mohammadi, M Protective effect of crocin on kidney performance in chronic uncontrolled hyperglycemia-induced nephropathy in rat., 2017.
[11]
Yaribeygi, H.; Zare, V.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. Antidiabetic potential of saffron and its active constituents. J. Cell. Physiol., 2019, 234(6), 8610-8617.
[http://dx.doi.org/10.1002/jcp.27843] [PMID: 30515777]
[12]
Lorenz, R.T.; Cysewski, G.R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol., 2000, 18(4), 160-167.
[http://dx.doi.org/10.1016/S0167-7799(00)01433-5] [PMID: 10740262]
[13]
Shah, M.M.; Liang, Y.; Cheng, J.J.; Daroch, M.; Daroch, M. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Front. Plant Sci., 2016, 7, 531.
[http://dx.doi.org/10.3389/fpls.2016.00531] [PMID: 27200009]
[14]
Pirro, M.; Mannarino, M.R.; Bianconi, V.; Simental-Mendía, L.E.; Bagaglia, F.; Mannarino, E.; Sahebkar, A. The effects of a nutraceutical combination on plasma lipids and glucose: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2016, 110, 76-88.
[http://dx.doi.org/10.1016/j.phrs.2016.04.021] [PMID: 27157250]
[15]
Kishimoto, Y.; Yoshida, H.; Kondo, K. Potential anti-atherosclerotic properties of astaxanthin. Mar. Drugs, 2016, 14(2), 35.
[http://dx.doi.org/10.3390/md14020035] [PMID: 26861359]
[16]
Inoue, Y.; Shimazawa, M.; Nagano, R.; Kuse, Y.; Takahashi, K.; Tsuruma, K.; Hayashi, M.; Ishibashi, T.; Maoka, T.; Hara, H. Astaxanthin analogs, adonixanthin and lycopene, activate Nrf2 to prevent light-induced photoreceptor degeneration. J. Pharmacol. Sci., 2017, 134(3), 147-157.
[http://dx.doi.org/10.1016/j.jphs.2017.05.011] [PMID: 28689962]
[17]
Chen, Q.; Tao, J.; Xie, X. astaxanthin promotes nrf2/are signaling to inhibit hg-induced renal fibrosis in GMCs. Mar. Drugs, 2018, 16(4), 117.
[http://dx.doi.org/10.3390/md16040117] [PMID: 29614714]
[18]
Farruggia, C.; Kim, M-B.; Bae, M.; Lee, Y.; Pham, T.X.; Yang, Y.; Han, M.J.; Park, Y.K.; Lee, J.Y. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. J. Nutr. Biochem., 2018, 62, 202-209.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.005] [PMID: 30308382]
[19]
Avalos, J.; Pardo-Medina, J.; Parra-Rivero, O.; Ruger-Herreros, M.; Rodríguez-Ortiz, R.; Hornero-Méndez, D.; Limón, M.C. Carotenoid biosynthesis in fusarium. J. Fungi (Basel), 2017, 3(3), 39.
[http://dx.doi.org/10.3390/jof3030039] [PMID: 29371556]
[20]
Kerfeld, C.A.; Melnicki, M.R.; Sutter, M.; Dominguez-Martin, M.A. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytol., 2017, 215(3), 937-951.
[http://dx.doi.org/10.1111/nph.14670] [PMID: 28675536]
[21]
Sun, T.; Yuan, H.; Cao, H.; Yazdani, M.; Tadmor, Y.; Li, L. Carotenoid metabolism in plants: The role of plastids. Mol. Plant, 2018, 11(1), 58-74.
[http://dx.doi.org/10.1016/j.molp.2017.09.010] [PMID: 28958604]
[22]
Brown, D.R.; Gough, L.A.; Deb, S.K.; Sparks, S.A.; McNaughton, L.R. Astaxanthin in exercise metabolism, performance and recovery: A review. Front. Nutr., 2018, 4, 76.
[http://dx.doi.org/10.3389/fnut.2017.00076] [PMID: 29404334]
[23]
Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol., 2003, 21(5), 210-216.
[http://dx.doi.org/10.1016/S0167-7799(03)00078-7] [PMID: 12727382]
[24]
Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, 23101107
[http://dx.doi.org/10.1016/j.redox.2019.101107] [PMID: 30692038]
[25]
Ashrafizadeh, M.; Ahmadi, Z. The effects of astaxanthin treatment on the sperm quality of mice treated with nicotine. Rev. Clin. Med., 2019, 6(1), 156-158.
[26]
Sobhani, B.; Roomiani, S.; Ahmadi, Z.; Ashrafizadeh, M. Histopathological analysis of testis: Effects of astaxanthin treatment against nicotine toxicity. Iran. J. Toxicol., 2019, 13(1), 41-44.
[27]
Rüfer, C.E.; Moeseneder, J.; Briviba, K.; Rechkemmer, G.; Bub, A. Bioavailability of astaxanthin stereoisomers from wild (Oncorhynchus spp.) and aquacultured (Salmo salar) salmon in healthy men: A randomised, double-blind study. Br. J. Nutr., 2008, 99(5), 1048-1054.
[http://dx.doi.org/10.1017/S0007114507845521] [PMID: 17967218]
[28]
Zuluaga, M.; Gueguen, V.; Letourneur, D.; Pavon-Djavid, G. Astaxanthin-antioxidant impact on excessive Reactive Oxygen Species generation induced by ischemia and reperfusion injury. Chem. Biol. Interact., 2018, 279, 145-158.
[http://dx.doi.org/10.1016/j.cbi.2017.11.012] [PMID: 29179950]
[29]
Kim, S.H.; Lim, J.W.; Kim, H. Astaxanthin prevents decreases in superoxide dismutase 2 level and superoxide dismutase activity in Helicobacter pylori-infected gastric epithelial cells. J. Cancer Prev., 2019, 24(1), 54-58.
[http://dx.doi.org/10.15430/JCP.2019.24.1.54] [PMID: 30993096]
[30]
Wu, D; Xu, H; Chen, J; Zhang, L. Effects of Astaxanthin Supplementation on Oxidative Stress. International journal for vitamin and nutrition research Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 2019, 1-16.,
[31]
Kim, H.; Ahn, Y.T.; Lee, G.S.; Cho, S.I.; Kim, J.M.; Lee, C.; Lim, B.K.; Ju, S.A.; An, W.G. Effects of astaxanthin on dinitrofluorobenzene-induced contact dermatitis in mice. Mol. Med. Rep., 2015, 12(3), 3632-3638.
[http://dx.doi.org/10.3892/mmr.2015.3892] [PMID: 26044209]
[32]
Sila, A.; Ghlissi, Z.; Kamoun, Z.; Makni, M.; Nasri, M.; Bougatef, A.; Sahnoun, Z. Astaxanthin from shrimp by-products ameliorates nephropathy in diabetic rats. Eur. J. Nutr., 2015, 54(2), 301-307.
[http://dx.doi.org/10.1007/s00394-014-0711-2] [PMID: 24821271]
[33]
Islam, M.A.; Al Mamun, M.A.; Faruk, M.; Ul Islam, M.T.; Rahman, M.M.; Alam, M.N.; Rahman, A.F.M.T.; Reza, H.M.; Alam, M.A. Astaxanthin ameliorates hepatic damage and oxidative stress in carbon tetrachloride-administered rats. Pharmacol. Res., 2017, 9(Suppl. 1), S84-S91.
[http://dx.doi.org/10.4103/pr.pr_26_17] [PMID: 29333048]
[34]
Cai, X.; Chen, Y.; Xie, X.; Yao, D.; Ding, C.; Chen, M. Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB. Am. J. Transl. Res., 2019, 11(3), 1884-1894.
[PMID: 30972212]
[35]
Lu, Y.; Wang, X.; Feng, J.; Xie, T.; Si, P.; Wang, W. Neuroprotective effect of astaxanthin on newborn rats exposed to prenatal maternal seizures. Brain Res. Bull., 2019, 148, 63-69.
[http://dx.doi.org/10.1016/j.brainresbull.2019.03.009] [PMID: 30910691]
[36]
Choi, C.I. Astaxanthin as a peroxisome Proliferator-Activated Receptor (PPAR) modulator: Its therapeutic implications. Mar. Drugs, 2019, 17(4)E242
[http://dx.doi.org/10.3390/md17040242] [PMID: 31018521]
[37]
Ambati, R.R.; Phang, S-M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications--a review. Mar. Drugs, 2014, 12(1), 128-152.
[http://dx.doi.org/10.3390/md12010128] [PMID: 24402174]
[38]
Bellezza, I. Oxidative stress in Age-Related macular degeneration: Nrf2 as therapeutic target. Front. Pharmacol., 2018, 9, 1280.
[http://dx.doi.org/10.3389/fphar.2018.01280] [PMID: 30455645]
[39]
Hashimoto, K. Essential role of Keap1-Nrf2 signaling in mood disorders: Overview and future perspective. Front. Pharmacol., 2018, 9, 1182.
[http://dx.doi.org/10.3389/fphar.2018.01182] [PMID: 30386243]
[40]
Suzuki, T.; Yamamoto, M. Molecular basis of the Keap1-Nrf2 system.Free Radic. Biol. Med., 2015, 88(Pt B), 93-100.,
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.006] [PMID: 26117331]
[41]
Ashrafizadeh, M.; Fekri, H.S.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway. J. Cell. Biochem., 2020, 121(2), 1575-1585.
[http://dx.doi.org/10.1002/jcb.29392] [PMID: 31609017]
[42]
Suzuki, T.; Motohashi, H.; Yamamoto, M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci., 2013, 34(6), 340-346.
[http://dx.doi.org/10.1016/j.tips.2013.04.005] [PMID: 23664668]
[43]
Wu, S.; Lu, H.; Bai, Y. Nrf2 in cancers: A double-edged sword. Cancer Med., 2019, 8(5), 2252-2267.
[http://dx.doi.org/10.1002/cam4.2101] [PMID: 30929309]
[44]
Cloer, E.W.; Goldfarb, D.; Schrank, T.P.; Weissman, B.E.; Major, M.B. NRF2 activation in cancer: From DNA to protein. Cancer Res., 2019, 79(5), 889-898.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2723] [PMID: 30760522]
[45]
Telkoparan-Akillilar, P.; Suzen, S.; Saso, L. Pharmacological applications of Nrf2 inhibitors as potential antineoplastic drugs. Int. J. Mol. Sci., 2019, 20(8)E2025
[http://dx.doi.org/10.3390/ijms20082025] [PMID: 31022969]
[46]
Xue, Y.; Sun, C.; Hao, Q.; Cheng, J. Astaxanthin ameliorates cardiomyocyte apoptosis after coronary microembolization by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(3), 341-348.
[http://dx.doi.org/10.1007/s00210-018-1595-0] [PMID: 30506291]
[47]
Wu, Q.; Zhang, X-S.; Wang, H-D.; Zhang, X.; Yu, Q.; Li, W.; Zhou, M.L.; Wang, X.L. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar. Drugs, 2014, 12(12), 6125-6141.
[http://dx.doi.org/10.3390/md12126125] [PMID: 25528957]
[48]
Ooi, B.K.; Chan, K.G.; Goh, B.H.; Yap, W.H. The role of natural products in targeting cardiovascular diseases via Nrf2 pathway: Novel molecular mechanisms and therapeutic approaches. Front. Pharmacol., 2018, 9, 1308.
[http://dx.doi.org/10.3389/fphar.2018.01308] [PMID: 30498447]
[49]
Visioli, F.; Artaria, C. Astaxanthin in cardiovascular health and disease: Mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct., 2017, 8(1), 39-63.
[http://dx.doi.org/10.1039/C6FO01721E] [PMID: 27924978]
[50]
Cui, G.; Li, L.; Xu, W.; Wang, M.; Jiao, D.; Yao, B.; Xu, K.; Chen, Y.; Yang, S.; Long, M.; Li, P.; Guo, Y. Astaxanthin protects ochratoxin A-Induced oxidative stress and apoptosis in the heart via the Nrf2 pathway. Oxid. Med. Cell. Longev., 2020, 20207639109
[http://dx.doi.org/10.1155/2020/7639109] [PMID: 32190177]
[51]
El-Baz, F.K.; Hussein, R.A.; Abdel Jaleel, G.A.R.; Saleh, D.O. Astaxanthin-Rich Haematococcus pluvialis Algal Hepatic modulation in d-galactose-induced aging in rats: Role of Nrf2. Adv. Pharm. Bull., 2018, 8(3), 523-528.
[http://dx.doi.org/10.15171/apb.2018.061] [PMID: 30276150]
[52]
Li, S.; Takahara, T.; Fujino, M.; Fukuhara, Y.; Sugiyama, T.; Li, X-K.; Takahara, S. Astaxanthin prevents ischemia-reperfusion injury of the steatotic liver in mice. PLoS One, 2017, 12(11)e0187810
[http://dx.doi.org/10.1371/journal.pone.0187810] [PMID: 29121675]
[53]
Ma, H.; Chen, S.; Xiong, H.; Wang, M.; Hang, W.; Zhu, X.; Zheng, Y.; Ge, B.; Li, R.; Cui, H. Astaxanthin from Haematococcus pluvialis ameliorates the chemotherapeutic drug (doxorubicin) induced liver injury through the Keap1/Nrf2/HO-1 pathway in mice. Food Funct., 2020, 11(5), 4659-4671.
[http://dx.doi.org/10.1039/C9FO02429H] [PMID: 32405635]
[54]
Feng, Y.; Chu, A.; Luo, Q.; Wu, M.; Shi, X.; Chen, Y. The protective effect of astaxanthin on cognitive function via inhibition of oxidative stress and inflammation in the brains of chronic T2DM rats. Front. Pharmacol., 2018, 9, 748.
[http://dx.doi.org/10.3389/fphar.2018.00748] [PMID: 30042685]
[55]
Chen, Q.; Tao, J.; Li, G.; Zheng, D.; Tan, Y.; Li, R.; Tian, L.; Li, Z.; Cheng, H.; Xie, X. Astaxanthin ameliorates experimental diabetes-induced renal oxidative stress and fibronectin by upregulating connexin43 in glomerular mesangial cells and diabetic mice. Eur. J. Pharmacol., 2018, 840, 33-43.
[http://dx.doi.org/10.1016/j.ejphar.2018.09.028] [PMID: 30268666]
[56]
Zhu, X.; Chen, Y.; Chen, Q.; Yang, H.; Xie, X. Astaxanthin promotes Nrf2/ARE signaling to alleviate renal fibronectin and collagen IV accumulation in diabetic rats. J. Diabetes Res., 2018, 20186730315
[http://dx.doi.org/10.1155/2018/6730315] [PMID: 29744366]
[57]
Zhu, X; Chen, Y; Chen, Q; Yang, H; Xie, X. Astaxanthin promotes Nrf2/ARE signaling to alleviate renal fibronectin and collagen IV accumulation in diabetic rats. J. Diabet. Res., 2018,, 2018.
[58]
Liu, G.; Shi, Y.; Peng, X.; Liu, H.; Peng, Y.; He, L. Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis. Pharmacology, 2015, 95(3-4), 193-200.
[http://dx.doi.org/10.1159/000381314] [PMID: 25924598]
[59]
Niu, T.; Xuan, R.; Jiang, L.; Wu, W.; Zhen, Z.; Song, Y.; Hong, L.; Zheng, K.; Zhang, J.; Xu, Q.; Tan, Y.; Yan, X.; Chen, H. Astaxanthin induces the Nrf2/HO-1 antioxidant pathway in human umbilical vein endothelial cells by generating trace amounts of ROS. J. Agric. Food Chem., 2018, 66(6), 1551-1559.
[http://dx.doi.org/10.1021/acs.jafc.7b05493] [PMID: 29381356]
[60]
Zuluaga, M; Barzegari, A; Letourneur, D; Gueguen, V; Pavon-Djavid, G Oxidative stress regulation on endothelial cells by hydrophilic astaxanthin complex: Chemical, biological, and molecular antioxidant activity evaluation. Oxidative medicine and cellular longevity, 2017, 2017.,
[http://dx.doi.org/10.1155/2017/8073798]
[61]
Xue, X-L.; Han, X-D.; Li, Y.; Chu, X-F.; Miao, W-M.; Zhang, J-L.; Fan, S.J. Astaxanthin attenuates total body irradiation-induced hematopoietic system injury in mice via inhibition of oxidative stress and apoptosis. Stem Cell Res. Ther., 2017, 8(1), 7.
[http://dx.doi.org/10.1186/s13287-016-0464-3] [PMID: 28115023]
[62]
Wen, X.; Huang, A.; Hu, J.; Zhong, Z.; Liu, Y.; Li, Z.; Pan, X.; Liu, Z. Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: Involvement of the Akt/GSK-3β pathway. Neuroscience, 2015, 303, 558-568.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.034] [PMID: 26197224]
[63]
Zhang, J.; Ding, C.; Zhang, S.; Xu, Y. Neuroprotective effects of astaxanthin against oxygen and glucose deprivation damage via the PI3K/Akt/GSK3β/Nrf2 signalling pathway in vitro. J. Cell. Mol. Med., 2020, 24(16), 8977-8985.
[http://dx.doi.org/10.1111/jcmm.15531] [PMID: 32567157]
[64]
Ashrafizadeh, M.; Samarghandian, S.; Hushmandi, K.; Zabolian, A.; Shahinozzaman, M.; Saleki, H.; Esmaeili, H.; Raei, M.; Entezari, M.; Zarrabi, A.; Najafi, M. Quercetin in attenuation of ischemic/reperfusion injury: A review. Curr. Mol. Pharmacol., 2020.
[http://dx.doi.org/10.2174/1874467213666201217122544] [PMID: 33334302]
[65]
Lin, W.N.; Kapupara, K.; Wen, Y.T.; Chen, Y.H.; Pan, I.H.; Tsai, R.K. Haematococcus pluvialis-derived astaxanthin is a potential neuroprotective agent against optic nerve Ischemia. Mar. Drugs, 2020, 18(2)E85
[http://dx.doi.org/10.3390/md18020085] [PMID: 32012819]
[66]
Yuan, L; Qu, Y; Li, Q; An, T; Chen, Z; Chen, Y Protective effect of astaxanthin against La(2)O(3) nanoparticles induced neurotoxicity by activating PI3K/AKT/Nrf-2 signaling in mice. Food and chemical toxicology: An international journal published for the British Industrial Biological Research Association, 2020, 144, 111582.,
[67]
Chen, Y.; Tang, J.; Zhang, Y.; Du, J.; Wang, Y.; Yu, H.; He, Y. Astaxanthin alleviates gestational diabetes mellitus in mice through suppression of oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(12), 2517-2527.
[http://dx.doi.org/10.1007/s00210-020-01861-x] [PMID: 32279084]
[68]
Jeong, S.M.; Kim, Y.J. Astaxanthin treatment induces maturation and functional change of myeloid-derived suppressor cells in tumor-bearing mice.Antioxidants; Basel, Switzerland, 2020, 9, (4);
[69]
Mohammadi, S.; Barzegari, A.; Dehnad, A.; Barar, J.; Omidi, Y. Astaxanthin protects mesenchymal stem cells from oxidative stress by direct scavenging of free radicals and modulation of cell signaling. Chem. Biol. Interact., 2021, 333109324
[http://dx.doi.org/10.1016/j.cbi.2020.109324] [PMID: 33212048]
[70]
Li, L.; Chen, Y.; Jiao, D.; Yang, S.; Li, L.; Li, P. Protective effect of astaxanthin on ochratoxin A-Induced kidney injury to mice by regulating oxidative stress-related NRF2/KEAP1 pathway. Molecules, 2020, 25(6)E1386
[http://dx.doi.org/10.3390/molecules25061386] [PMID: 32197464]
[71]
Franceschelli, S.; Pesce, M.; Ferrone, A.; De Lutiis, M.A.; Patruno, A.; Grilli, A.; Felaco, M.; Speranza, L. Astaxanthin treatment confers protection against oxidative stress in U937 cells stimulated with lipopolysaccharide reducing O2- production. PLoS One, 2014, 9(2)e88359
[http://dx.doi.org/10.1371/journal.pone.0088359] [PMID: 24520374]
[72]
Lin, C.W.; Yang, C.M.; Yang, C.H. Protective effect of astaxanthin on blue light light-emitting diode-induced retinal cell damage via free radical scavenging and activation of PI3K/Akt/Nrf2 pathway in 661W cell model. Mar. Drugs, 2020, 18(8)E387
[http://dx.doi.org/10.3390/md18080387] [PMID: 32722441]
[73]
Lai, T.T.; Yang, C.M.; Yang, C.H. Astaxanthin protects retinal photoreceptor cells against high glucose-induced oxidative stress by induction of antioxidant enzymes via the PI3K/Akt/Nrf2 Pathway. Antioxidants; Basel, Switzerland, 2020, 9, (8);

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy