Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Review Article

Dietary Phytoestrogens: Neuroprotective Role in Parkinson’s Disease

Author(s): Ahsas Goyal*, Aanchal Verma and Neetu Agrawal

Volume 18, Issue 2, 2021

Published on: 07 July, 2021

Page: [254 - 267] Pages: 14

DOI: 10.2174/1567202618666210604121233

Price: $65

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive damage of mesencephalic dopaminergic neurons of the substantia nigra and the striatal projections. Recent studies suggest that estrogen and estrogen-like chemicals have beneficial effects on neurodegenerative diseases, particularly PD. Animal studies demonstrate that estrogen influences dopamine’s synthesis, release, and metabolism. In vivo studies have also shown the significant beneficial effects of estrogen in shielding the brain from neurodegenerative processes like PD. Moreover, the expression and function of dopamine receptors can be modified by estrogen. Phytoestrogens are non-steroidal compounds derived from plants present in a large spectrum of foods, most specifically soy and in numerous dietary supplements. Phytoestrogens share structural and functional similarities with 17β-estradiol and can be used as an alternative treatment for PD because of estrogen’s undesirable effects, such as the increased risk of breast and endometrial cancer, ischemic disorders, and irregular bleeding. Despite the beneficial effects of phytoestrogens, their impact on human health may depend on age, health status, and even the presence or absence of specific gut microflora. In addition to their antioxidant properties, soy products or phytoestrogens also exhibit neuroprotective activity in patients with PD via the interaction with estrogen receptors (ER) α and β, with a higher affinity for ERβ. Phytoestrogens offer a valuable model for fully exploring the biological effects of endocrine disruptors in general. However, observational studies and randomized controlled trials in humans have resulted in inconclusive findings within this domain. This review considered the evidence in animal models and human epidemiological data as to whether developmental exposure to various phytoestrogen classes adversely or beneficially impacts the neurobehavioral programming in PD.

Keywords: Phytoestrogen, Parkinson's disease, estrogen, dopamine, neuroprotection, flavonoids.

« Previous
[1]
Hayes MT. Parkinson’s disease and parkinsonism. Am J Med 2019; 132(7): 802-7.
[http://dx.doi.org/10.1016/j.amjmed.2019.03.001] [PMID: 30890425]
[2]
Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci 2017; 18(7): 435-50.
[http://dx.doi.org/10.1038/nrn.2017.62] [PMID: 28592904]
[3]
Diamond SG, Markham CH, Hoehn MM, McDowell FH, Muenter MD. An examination of male-female differences in progression and mortality of Parkinson’s disease. Neurology 1990; 40(5): 763-6.
[http://dx.doi.org/10.1212/WNL.40.5.763] [PMID: 2330103]
[4]
Mayeux R, Marder K, Cote LJ, et al. The frequency of idiopathic Parkinson’s disease by age, ethnic group, and sex in northern Manhattan, 1988-1993. Am J Epidemiol 1995; 142(8): 820-7.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a117721] [PMID: 7572958]
[5]
Lesage S, Brice A. Parkinson’s disease: From monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009; 18(R1): R48-59.
[http://dx.doi.org/10.1093/hmg/ddp012] [PMID: 19297401]
[6]
Callier S, Morissette M, Grandbois M, Pélaprat D, Di Paolo T. Neuroprotective properties of 17beta-estradiol, progesterone, and raloxifene in MPTP C57Bl/6 mice. Synapse 2001; 41(2): 131-8.
[http://dx.doi.org/10.1002/syn.1067] [PMID: 11400179]
[7]
Ramirez AD, Liu X, Menniti FS. Repeated estradiol treatment prevents MPTP-induced dopamine depletion in male mice. Neuroendocrinology 2003; 77(4): 223-31.
[http://dx.doi.org/10.1159/000070277] [PMID: 12766322]
[8]
Murray HE, Pillai AV, McArthur SR, et al. Dose- and sex-dependent effects of the neurotoxin 6-hydroxydopamine on the nigrostriatal dopaminergic pathway of adult rats: differential actions of estrogen in males and females. Neuroscience 2003; 116(1): 213-22.
[http://dx.doi.org/10.1016/S0306-4522(02)00578-X] [PMID: 12535954]
[9]
Meng JL, Ma YY, Luo HY, et al. Estrogen protects the dopaminergic neurons in substantia nigra against damage induced by 6-hydroxydopamine. Sheng Li Xue Bao 2008; 60(3): 369-74.
[PMID: 18560728]
[10]
Farquhar D. Postmenopausal hormone replacement therapy for chronic disease prevention: Results from the Women’s Health Initiative trial. CMAJ 2002; 167(4): 377-8.
[PMID: 12197697]
[11]
Reeves GK, Beral V, Green J, Gathani T, Bull D. Hormonal therapy for menopause and breast-cancer risk by histological type: A cohort study and meta-analysis. Lancet Oncol 2006; 7(11): 910-8.
[http://dx.doi.org/10.1016/S1470-2045(06)70911-1] [PMID: 17081916]
[12]
Gupta C, Prakash D. Phytonutrients as therapeutic agents. J Complement Integr Med 2014; 11(3): 151-69.
[http://dx.doi.org/10.1515/jcim-2013-0021] [PMID: 25051278]
[13]
Gélinas S, Martinoli MG. Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. J Neurosci Res 2002; 70(1): 90-6.
[http://dx.doi.org/10.1002/jnr.10315] [PMID: 12237867]
[14]
Rowe IJ, Baber RJ. The effects of phytoestrogens on postmenopausal health. Climacteric 2021; 24(1): 57-63.
[http://dx.doi.org/10.1080/13697137.2020.1863356] [PMID: 33395316]
[15]
Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur J Pharmacol 2006; 545(1): 51-64.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.025] [PMID: 16904103]
[16]
Carneiro AM, Moreira EA, Bragagnolo FS, et al. Soya agricultural waste as a rich source of isoflavones. Food Res Int 2020; 130: 108949.
[http://dx.doi.org/10.1016/j.foodres.2019.108949] [PMID: 32156391]
[17]
Aherne SA, O’Brien NM. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition 2002; 18(1): 75-81.
[http://dx.doi.org/10.1016/S0899-9007(01)00695-5] [PMID: 11827770]
[18]
Tutel’ian VA, Lashneva NV. Biological active substances of plant origin. Flavanones: Dietary sources, biovailability, the influence on xenobiotic metabolizing enzymes. Vopr Pitan 2011; 80(5): 4-23.
[PMID: 22238944]
[19]
Barreca D, Gattuso G, Bellocco E, et al. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017; 43(4): 495-506.
[http://dx.doi.org/10.1002/biof.1363] [PMID: 28497905]
[20]
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci 2020; 21(5): 1744.
[http://dx.doi.org/10.3390/ijms21051744] [PMID: 32143309]
[21]
Vogiatzoglou A, Heuer T, Mulligan AA, Lentjes MA, Luben RN, Kuhnle GG. Estimated dietary intakes and sources of flavanols in the German population (German National Nutrition Survey II). Eur J Nutr 2014; 53(2): 635-43.
[http://dx.doi.org/10.1007/s00394-013-0572-0] [PMID: 23917449]
[22]
Igwe EO, Charlton KE, Probst YC. Usual dietary anthocyanin intake, sources and their association with blood pressure in a representative sample of Australian adults. J Hum Nutr Diet 2019; 32(5): 578-90.
[http://dx.doi.org/10.1111/jhn.12647] [PMID: 30916431]
[23]
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 2017; 8(3): 423-35.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[24]
Tetens I, Turrini A, Tapanainen H, et al. Phytohealth WP1 working group. Dietary intake and main sources of plant lignans in five European countries. Food Nutr Res 2013; 11: 57.
[25]
Mulligan AA, Kuhnle GG, Lentjes MA, et al. Intakes and sources of isoflavones, lignans, enterolignans, coumestrol and soya-containing foods in the Norfolk arm of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk), from 7 d food diaries, using a newly updated database. Public Health Nutr 2013; 16(8): 1454-62.
[http://dx.doi.org/10.1017/S1368980012003904] [PMID: 22939391]
[26]
Chai MY. A new bioactive coumestan from the seeds of Psoralea corylifolia. J Asian Nat Prod Res 2020; 22(3): 295-301.
[http://dx.doi.org/10.1080/10286020.2018.1563073] [PMID: 30678490]
[27]
Tian B, Liu J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J Sci Food Agric 2020; 100(4): 1392-404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]
[28]
Singh A, Tripathi P, Yadawa AK, Singh S. Promising polyphenols in parkinson’s disease therapeutics. Neurochem Res 2020; 45(8): 1731-45.
[http://dx.doi.org/10.1007/s11064-020-03058-3] [PMID: 32462543]
[29]
Jung UJ, Kim SR. Beneficial effects of flavonoids against parkinson’s disease. J Med Food 2018; 21(5): 421-32.
[http://dx.doi.org/10.1089/jmf.2017.4078] [PMID: 29412767]
[30]
Ross JA, Kasum CM. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu Rev Nutr 2002; 22: 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[31]
Tanwar AK, Dhiman N, Kumar A, Jaitak V. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. Eur J Med Chem 2021; 213: 113037.
[http://dx.doi.org/10.1016/j.ejmech.2020.113037] [PMID: 33257172]
[32]
Luan F, Lu Y, Liu H, Cordeiro MN. Classification of natural estrogen-like isoflavonoids and diphenolics by QSAR tools. Comb Chem High Throughput Screen 2015; 18(8): 712-22.
[http://dx.doi.org/10.2174/1386207318666150803140614] [PMID: 26234513]
[33]
Liu LX, Chen WF, Xie JX, Wong MS. Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci Res 2008; 60(2): 156-61.
[http://dx.doi.org/10.1016/j.neures.2007.10.005] [PMID: 18054104]
[34]
Leis K, Kulczyńska A, Racinowski M, Kaczor P, Gołębiewski J, Januszko-Giergielewicz B. Genistein–a supplement improving efficiency of the human body: A review. J Sports Sci 2021.
[http://dx.doi.org/10.1016/j.scispo.2020.08.005]
[35]
Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D. Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 2012; 33(1): 85-104.
[http://dx.doi.org/10.1016/j.yfrne.2011.10.001] [PMID: 22079780]
[36]
Arnold S, Beyer C. Neuroprotection by estrogen in the brain: The mitochondrial compartment as presumed therapeutic target. J Neurochem 2009; 110(1): 1-11.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06133.x] [PMID: 19457121]
[37]
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[38]
Shulman LM, Bhat V. Gender disparities in Parkinson’s disease. Expert Rev Neurother 2006; 6(3): 407-16.
[http://dx.doi.org/10.1586/14737175.6.3.407] [PMID: 16533144]
[39]
Dalal PK, Agarwal M. Postmenopausal syndrome. Indian J Psychiatry 2015; 57(Suppl. 2): S222-32.
[http://dx.doi.org/10.4103/0019-5545.161483] [PMID: 26330639]
[40]
Nitkowska M, Czyżyk M, Friedman A. Reproductive life characteristics in females affected with Parkinson’s disease and in healthy control subjects - A comparative study on Polish population. Neurol Neurochir Pol 2014; 48(5): 322-7.
[http://dx.doi.org/10.1016/j.pjnns.2014.08.004] [PMID: 25440010]
[41]
Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 2017; 124(8): 901-5.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[42]
Molloy SA, Rowan EN, O’Brien JT, McKeith IG, Wesnes K, Burn DJ. Effect of levodopa on cognitive function in Parkinson’s disease with and without dementia and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 2006; 77(12): 1323-8.
[http://dx.doi.org/10.1136/jnnp.2006.098079] [PMID: 16952917]
[43]
Cyr M, Calon F, Morissette M, Di Paolo T. Estrogenic modulation of brain activity: Implications for schizophrenia and Parkinson’s disease. J Psychiatry Neurosci 2002; 27(1): 12-27.
[PMID: 11836973]
[44]
Rugbjerg K, Christensen J, Tjønneland A, Olsen JH. Exposure to estrogen and women’s risk for Parkinson’s disease: A prospective cohort study in Denmark. Parkinsonism Relat Disord 2013; 19(4): 457-60.
[http://dx.doi.org/10.1016/j.parkreldis.2013.01.008] [PMID: 23402992]
[45]
A randomized pilot trial of estrogen replacement therapy in post- menopausal women with Parkinson’s disease. Parkinsonism Relat Disord 2011; 17(10): 757-60.
[http://dx.doi.org/10.1016/j.parkreldis.2011.07.007] [PMID: 21824799]
[46]
Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa-induced dyskinesias. Mov Disord 2007; 22(10): 1379-89.
[http://dx.doi.org/10.1002/mds.21475] [PMID: 17427940]
[47]
Tran TN, Vo TNN, Frei K, Truong DD. Levodopa-induced dyskinesia: Clinical features, incidence, and risk factors. J Neural Transm (Vienna) 2018; 125(8): 1109-17.
[http://dx.doi.org/10.1007/s00702-018-1900-6] [PMID: 29971495]
[48]
Zappia M, Annesi G, Nicoletti G, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: An exploratory study. Arch Neurol 2005; 62(4): 601-5.
[http://dx.doi.org/10.1001/archneur.62.4.601] [PMID: 15824260]
[49]
Lecomte S, Demay F, Ferrière F, Pakdel F. Phytochemicals targeting estrogen receptors: beneficial rather than adverse effects? Int J Mol Sci 2017; 18(7): 1381.
[http://dx.doi.org/10.3390/ijms18071381] [PMID: 28657580]
[50]
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 2019; 116: 135-70.
[http://dx.doi.org/10.1016/bs.apcsb.2019.01.001] [PMID: 31036290]
[51]
Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 2015; 16(1): 17-29.
[http://dx.doi.org/10.1038/nrn3856] [PMID: 25423896]
[52]
Sanchez R, Nguyen D, Rocha W, White JH, Mader S. Diversity in the mechanisms of gene regulation by estrogen receptors. BioEssays 2002; 24(3): 244-54.
[http://dx.doi.org/10.1002/bies.10066] [PMID: 11891761]
[53]
Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 2015; 74: 125-38.
[http://dx.doi.org/10.1016/j.yhbeh.2015.06.010] [PMID: 26122294]
[54]
Goyal A, Garabadu D. Roflumilast attenuates cognitive deficits in estrogen insufficient rats. Behav Pharmacol 2020; 31(7): 671-87.
[http://dx.doi.org/10.1097/FBP.0000000000000574] [PMID: 32516271]
[55]
Saczko J, Michel O, Chwiłkowska A, Sawicka E, Mączyńska J, Kulbacka J. Estrogen receptors in cell membranes: Regulation and signaling. Adv Anat Embryol Cell Biol 2017; 227: 93-105.
[http://dx.doi.org/10.1007/978-3-319-56895-9_6] [PMID: 28980042]
[56]
Resende FA, de Oliveira AP, de Camargo MS, Vilegas W, Varanda EA. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay. PLoS One 2013; 8(10): e74881.
[http://dx.doi.org/10.1371/journal.pone.0074881] [PMID: 24098354]
[57]
Tiosano D, Paris F, Grimaldi M, et al. Evidence of ERalpha and ERbeta selectivity and partial estrogen agonism in traditional Chinese medicine. Reprod Biol Endocrinol 2014; 12: 97.
[http://dx.doi.org/10.1186/1477-7827-12-97] [PMID: 25300391]
[58]
Thangavel P, Puga-Olguín A, Rodríguez-Landa JF, Zepeda RC. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules 2019; 24(21): 3892.
[http://dx.doi.org/10.3390/molecules24213892] [PMID: 31671813]
[59]
Ricketts ML, Moore DD, Banz WJ, Mezei O, Shay NF. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review. J Nutr Biochem 2005; 16(6): 321-30.
[http://dx.doi.org/10.1016/j.jnutbio.2004.11.008] [PMID: 15936643]
[60]
Leclercq G, Jacquot Y. Interactions of isoflavones and other plant derived estrogens with estrogen receptors for prevention and treatment of breast cancer-considerations concerning related efficacy and safety. J Steroid Biochem Mol Biol 2014; 139: 237-44.
[http://dx.doi.org/10.1016/j.jsbmb.2012.12.010] [PMID: 23274118]
[61]
Kuiper GG, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998; 139(10): 4252-63.
[http://dx.doi.org/10.1210/endo.139.10.6216] [PMID: 9751507]
[62]
van de Schans MG, Vincken JP, de Waard P, Hamers AR, Bovee TF, Gruppen H. Glyceollins and dehydroglyceollins isolated from soybean act as SERMs and ER subtype-selective phytoestrogens. J Steroid Biochem Mol Biol 2016; 156: 53-63.
[http://dx.doi.org/10.1016/j.jsbmb.2015.11.020] [PMID: 26655113]
[63]
Kretzschmar G, Zierau O, Wober J, Tischer S, Metz P, Vollmer G. Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein. J Steroid Biochem Mol Biol 2010; 118(1-2): 1-6.
[http://dx.doi.org/10.1016/j.jsbmb.2009.08.005] [PMID: 19733663]
[64]
Simons R, Gruppen H, Bovee TF, Verbruggen MA, Vincken JP. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food Funct 2012; 3(8): 810-27.
[http://dx.doi.org/10.1039/c2fo10290k] [PMID: 22684228]
[65]
Bourque M, Dluzen DE, Di Paolo T. Neuroprotective actions of sex steroids in Parkinson’s disease. Front Neuroendocrinol 2009; 30(2): 142-57.
[http://dx.doi.org/10.1016/j.yfrne.2009.04.014] [PMID: 19410597]
[66]
Morissette M, Al Sweidi S, Callier S, Di Paolo T. Estrogen and SERM neuroprotection in animal models of Parkinson’s disease. Mol Cell Endocrinol 2008; 290(1-2): 60-9.
[http://dx.doi.org/10.1016/j.mce.2008.04.008] [PMID: 18515001]
[67]
Wang S, Ren P, Li X, Guan Y, Zhang YA. 17β-estradiol protects dopaminergic neurons in organotypic slice of mesencephalon by MAPK-mediated activation of anti-apoptosis gene BCL2. J Mol Neurosci 2011; 45(2): 236-45.
[http://dx.doi.org/10.1007/s12031-011-9500-z] [PMID: 21327582]
[68]
D’Astous M, Mendez P, Morissette M, Garcia-Segura LM, Di Paolo T. Implication of the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in the neuroprotective effect of estradiol in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Mol Pharmacol 2006; 69(4): 1492-8.
[http://dx.doi.org/10.1124/mol.105.018671] [PMID: 16434614]
[69]
Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des Devel Ther 2015; 10: 23-42.
[PMID: 26730179]
[70]
Li RZ, Ding XW, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Beneficial effect of genistein on diabetes-induced brain damage in the ob/ob mouse model. Drug Des Devel Ther 2020; 14: 3325-36.
[http://dx.doi.org/10.2147/DDDT.S249608] [PMID: 32884237]
[71]
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013; 138(2): 155-75.
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.004] [PMID: 23348013]
[72]
Xu SL, Bi CW, Choi RC, et al. Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: A signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med 2013; 2013: 127075.
[http://dx.doi.org/10.1155/2013/127075] [PMID: 23878590]
[73]
Kim TY, Leem E, Lee JM, Kim SR. Control of reactive oxygen species for the prevention of parkinson’s disease: The possible application of flavonoids. Antioxidants 2020; 9(7): 583.
[http://dx.doi.org/10.3390/antiox9070583] [PMID: 32635299]
[74]
Sekikawa A, Ihara M, Lopez O, et al. Effect of S-equol and soy isoflavones on heart and brain. Curr Cardiol Rev 2019; 15(2): 114-35.
[http://dx.doi.org/10.2174/1573403X15666181205104717] [PMID: 30516108]
[75]
Cooke PS, Selvaraj V, Yellayi S. Genistein, estrogen receptors, and the acquired immune response. J Nutr 2006; 136(3): 704-8.
[http://dx.doi.org/10.1093/jn/136.3.704] [PMID: 16484547]
[76]
Kajta M, Rzemieniec J, Litwa E, et al. The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience 2013; 238: 345-60.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.005] [PMID: 23419549]
[77]
Baluchnejadmojarad T, Roghani M, Nadoushan MR, Bagheri M. Neuroprotective effect of genistein in 6-hydroxydopamine hemi- parkinsonian rat model. Phytother Res 2009; 23(1): 132-5.
[http://dx.doi.org/10.1002/ptr.2564] [PMID: 18693302]
[78]
Lin CM, Lin RD, Chen ST, et al. Neurocytoprotective effects of the bioactive constituents of Pueraria thomsonii in 6-hydroxydopamine (6-OHDA)-treated nerve growth factor (NGF)-differentiated PC12 cells. Phytochemistry 2010; 71(17-18): 2147-56.
[http://dx.doi.org/10.1016/j.phytochem.2010.08.015] [PMID: 20832831]
[79]
Chen WF, Gao QG, Wong MS. Mechanism involved in genistein activation of insulin-like growth factor 1 receptor expression in human breast cancer cells. Br J Nutr 2007; 98(6): 1120-5.
[http://dx.doi.org/10.1017/S0007114507777139] [PMID: 17617943]
[80]
Gao QG, Xie JX, Wong MS, Chen WF. IGF-I receptor signaling pathway is involved in the neuroprotective effect of genistein in the neuroblastoma SK-N-SH cells. Eur J Pharmacol 2012; 677(1-3): 39-46.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.032] [PMID: 22227334]
[81]
Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: Implications for Parkinson’s disease. Neurotox Res 2013; 23(2): 145-53.
[http://dx.doi.org/10.1007/s12640-012-9328-5] [PMID: 22573480]
[82]
Sarfraz A, Javeed M, Shah MA, et al. Biochanin A: A novel bioactive multifunctional compound from nature. Sci Total Environ 2020; 722: 137907.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137907] [PMID: 32208265]
[83]
Zhang Y, Chen WA. Biochanin A inhibits lipopolysaccharide-induced inflammatory cytokines and mediators production in BV2 microglia. Neurochem Res 2015; 40(1): 165-71.
[http://dx.doi.org/10.1007/s11064-014-1480-2] [PMID: 25432463]
[84]
Tan JW, Tham CL, Israf DA, Lee SH, Kim MK. Neuroprotective effects of biochanin A against glutamate-induced cytotoxicity in PC12 cells via apoptosis inhibition. Neurochem Res 2013; 38(3): 512-8.
[http://dx.doi.org/10.1007/s11064-012-0943-6] [PMID: 23224778]
[85]
Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv 2019; 26(1): 860-9.
[http://dx.doi.org/10.1080/10717544.2019.1660732] [PMID: 31524010]
[86]
Zhao Y, Zhao J, Zhang X, et al. Botanical drug puerarin promotes neuronal survival and neurite outgrowth against MPTP/MPP+-induced toxicity via progesterone receptor signaling. Oxid Med Cell Longev 2020; 2020: 7635291.
[http://dx.doi.org/10.1155/2020/7635291] [PMID: 33123315]
[87]
Li C, Pan Z, Xu T, Zhang C, Wu Q, Niu Y. Puerarin induces the upregulation of glutathione levels and nuclear translocation of Nrf2 through PI3K/Akt/GSK-3β signaling events in PC12 cells exposed to lead. Neurotoxicol Teratol 2014; 46: 1-9.
[http://dx.doi.org/10.1016/j.ntt.2014.08.007] [PMID: 25195717]
[88]
Zhu G, Wang X, Wu S, Li X, Li Q. Neuroprotective effects of puerarin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson’s disease model in mice. Phytother Res 2014; 28(2): 179-86.
[http://dx.doi.org/10.1002/ptr.4975] [PMID: 23512787]
[89]
Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytother Res 2020; 34(12): 3137-47.
[http://dx.doi.org/10.1002/ptr.6781] [PMID: 32613637]
[90]
Sugumar M, Sevanan M, Sekar S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int J Neurosci 2019; 129(6): 534-9.
[http://dx.doi.org/10.1080/00207454.2018.1545772] [PMID: 30433834]
[91]
Sonia Angeline M, Sarkar A, Anand K, Ambasta RK, Kumar P. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 2013; 254: 379-94.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.029] [PMID: 24070629]
[92]
Hajialyani M, Hosein Farzaei M, Echeverría J, Nabavi SM, Uriarte E, Sobarzo-Sánchez E. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules 2019; 24(3): 648.
[http://dx.doi.org/10.3390/molecules24030648] [PMID: 30759833]
[93]
Khan A, Ikram M, Hahm JR, Kim MO. Antioxidant and anti-inflammatory effects of citrus flavonoid hesperetin: Special focus on neurological disorders. Antioxidants 2020; 9(7): 609.
[http://dx.doi.org/10.3390/antiox9070609] [PMID: 32664395]
[94]
Tamilselvam K, Braidy N, Manivasagam T, et al. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid Med Cell Longev 2013; 2013: 102741.
[http://dx.doi.org/10.1155/2013/102741] [PMID: 24205431]
[95]
Antunes MS, Ladd FVL, Ladd AABL, Moreira AL, Boeira SP, Cattelan Souza L. Hesperidin protects against behavioral alterations and loss of dopaminergic neurons in 6-OHDA-lesioned mice: The role of mitochondrial dysfunction and apoptosis. Metab Brain Dis 2021; 36(1): 153-67.
[http://dx.doi.org/10.1007/s11011-020-00618-y] [PMID: 33057922]
[96]
Kesh S, Kannan RR, Sivaji K, Balakrishnan A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson’s disease model. Neurosci Lett 2021; 740: 135426.
[http://dx.doi.org/10.1016/j.neulet.2020.135426] [PMID: 33075420]
[97]
Shen X, Liu Y, Luo X, Yang Z. Advances in biosynthesis, pharmacology, and pharmacokinetics of pinocembrin, a promising natural small-molecule drug. Molecules 2019; 24(12): 2323.
[http://dx.doi.org/10.3390/molecules24122323] [PMID: 31238565]
[98]
Jin X, Liu Q, Jia L, Li M, Wang X. Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell Mol Neurobiol 2015; 35(3): 323-33.
[http://dx.doi.org/10.1007/s10571-014-0128-8] [PMID: 25377066]
[99]
Habtemariam S. The Nrf2/HO-1 axis as targets for flavanones: Neuroprotection by pinocembrin, naringenin, and eriodictyol. Oxid Med Cell Longev 2019; 2019: 4724920.
[http://dx.doi.org/10.1155/2019/4724920] [PMID: 31814878]
[100]
de Oliveira MR, da Costa Ferreira G, Brasil FB, Peres A. Pinocembrin suppresses H2O2-induced mitochondrial dysfunction by a mechanism dependent on the Nrf2/HO-1 axis in SH-SY5Y Cells. Mol Neurobiol 2018; 55(2): 989-1003.
[http://dx.doi.org/10.1007/s12035-016-0380-7] [PMID: 28084593]
[101]
Cai Z, Zeng W, Tao K, Lu F, Gao G, Yang Q. Myricitrin alleviates MPP⁺-induced mitochondrial dysfunction in a DJ-1-dependent manner in SN4741 cells. Biochem Biophys Res Commun 2015; 458(2): 227-33.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.060] [PMID: 25623535]
[102]
Zhang K, Ma Z, Wang J, Xie A, Xie J. Myricetin attenuated MPP(+)-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells. Neuropharmacology 2011; 61(1-2): 329-35.
[http://dx.doi.org/10.1016/j.neuropharm.2011.04.021] [PMID: 21549720]
[103]
Li S, Pu XP. Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biol Pharm Bull 2011; 34(8): 1291-6.
[http://dx.doi.org/10.1248/bpb.34.1291] [PMID: 21804220]
[104]
Podder B, Song KS, Song HY, Kim YS. Cytoprotective effect of kaempferol on paraquat-exposed BEAS-2B cells via modulating expression of MUC5AC. Biol Pharm Bull 2014; 37(9): 1486-94.
[http://dx.doi.org/10.1248/bpb.b14-00239] [PMID: 25177032]
[105]
Filomeni G, Graziani I, De Zio D, et al. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: Possible implications for Parkinson’s disease. Neurobiol Aging 2012; 33(4): 767-85.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.021] [PMID: 20594614]
[106]
Boyina HK, Geethakhrishnan SL, Panuganti S, et al. In silico and in vivo studies on quercetin as potential anti-parkinson agent. Adv Exp Med Biol 2020; 1195: 1-11.
[http://dx.doi.org/10.1007/978-3-030-32633-3_1] [PMID: 32468451]
[107]
Mukai R, Kawabata K, Otsuka S, et al. Effect of quercetin and its glucuronide metabolite upon 6-hydroxydopamine-induced oxidative damage in Neuro-2a cells. Free Radic Res 2012; 46(8): 1019-28.
[http://dx.doi.org/10.3109/10715762.2012.673720] [PMID: 22404304]
[108]
Haleagrahara N, Siew CJ, Ponnusamy K. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J Toxicol Sci 2013; 38(1): 25-33.
[http://dx.doi.org/10.2131/jts.38.25] [PMID: 23358137]
[109]
Saw CL, Guo Y, Yang AY, et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem Toxicol 2014; 72: 303-11.
[http://dx.doi.org/10.1016/j.fct.2014.07.038] [PMID: 25111660]
[110]
Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease. J Mol Neurosci 2015; 55(3): 609-17.
[http://dx.doi.org/10.1007/s12031-014-0400-x] [PMID: 25129099]
[111]
Peng W, Fu X, Li Y, et al. Phytochemical study of stem and leaf of Clausena lansium. Molecules 2019; 24(17): 3124.
[http://dx.doi.org/10.3390/molecules24173124] [PMID: 31466274]
[112]
Liu YP, Guo JM, Wang XP, et al. Geranylated carbazole alkaloids with potential neuroprotective activities from the stems and leaves of Clausena lansium. Bioorg Chem 2019; 92: 103278.
[http://dx.doi.org/10.1016/j.bioorg.2019.103278] [PMID: 31541802]
[113]
Li BY, Yuan YH, Hu JF, Zhao Q, Zhang DM, Chen NH. Protective effect of Bu-7, a flavonoid extracted from Clausena lansium, against rotenone injury in PC12 cells. Acta Pharmacol Sin 2011; 32(11): 1321-6.
[http://dx.doi.org/10.1038/aps.2011.119] [PMID: 21963892]
[114]
Tahir MS, Almezgagi M, Zhang Y, et al. Mechanistic new insights of flavonols on neurodegenerative diseases. Biomed Pharmacother 2021; 137: 111253.
[http://dx.doi.org/10.1016/j.biopha.2021.111253] [PMID: 33545661]
[115]
Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P. p38 MAPK and PI3K/AKT signalling cascades in parkinson’s disease. Int J Mol Cell Med 2015; 4(2): 67-86.
[PMID: 26261796]
[116]
Lee KM, Lee Y, Chun HJ, et al. Neuroprotective and anti-inflammatory effects of morin in a murine model of Parkinson’s disease. J Neurosci Res 2016; 94(10): 865-78.
[http://dx.doi.org/10.1002/jnr.23764] [PMID: 27265894]
[117]
Zhang ZT, Cao XB, Xiong N, et al. Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo. Acta Pharmacol Sin 2010; 31(8): 900-6.
[http://dx.doi.org/10.1038/aps.2010.77] [PMID: 20644549]
[118]
El-Gazar AA, Soubh AA, Mohamed EA, Awad AS, El-Abhar HS. Morin post-treatment confers neuroprotection in a novel rat model of mild repetitive traumatic brain injury by targeting dementia markers, APOE, autophagy and Wnt/β-catenin signaling pathway. Brain Res 2019; 1717: 104-16.
[http://dx.doi.org/10.1016/j.brainres.2019.04.003] [PMID: 31002817]
[119]
Ao H, Feng W, Peng C. Hydroxysafflor Yellow A: A promising therapeutic agent for a broad spectrum of diseases. Evid Based Complement Alternat Med 2018; 2018: 8259280.
[http://dx.doi.org/10.1155/2018/8259280] [PMID: 30356354]
[120]
Han B, Zhao H. Effects of hydroxysafflor yellow A in the attenuation of MPTP neurotoxicity in mice. Neurochem Res 2010; 35(1): 107-13.
[http://dx.doi.org/10.1007/s11064-009-0035-4] [PMID: 19680807]
[121]
Han B, Hu J, Shen J, Gao Y, Lu Y, Wang T. Neuroprotective effect of hydroxysafflor yellow A on 6-hydroxydopamine-induced Parkinson’s disease in rats. Eur J Pharmacol 2013; 714(1-3): 83-8.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.011] [PMID: 23791614]
[122]
Park BC, Lee YS, Park HJ, et al. Protective effects of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-hydroxydopamine-induced neuronal cell death. Exp Mol Med 2007; 39(3): 316-26.
[http://dx.doi.org/10.1038/emm.2007.35] [PMID: 17603285]
[123]
Nobre Júnior HV, Cunha GM, Maia FD, Oliveira RA, Moraes MO, Rao VS. Catechin attenuates 6-hydroxydopamine (6-OHDA)-induced cell death in primary cultures of mesencephalic cells. Comp Biochem Physiol C Toxicol Pharmacol 2003; 136(2): 175-80.
[http://dx.doi.org/10.1016/S1532-0456(03)00198-4] [PMID: 14559299]
[124]
Ye Q, Ye L, Xu X, et al. Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway. BMC Complement Altern Med 2012; 12: 82.
[http://dx.doi.org/10.1186/1472-6882-12-82] [PMID: 22742579]
[125]
Renaud J, Nabavi SF, Daglia M, Nabavi SM, Martinoli MG. Epigallocatechin-3-Gallate, a promising molecule for parkinson’s disease? Rejuvenation Res 2015; 18(3): 257-69.
[http://dx.doi.org/10.1089/rej.2014.1639] [PMID: 25625827]
[126]
Teixeira MD, Souza CM, Menezes AP, et al. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol Biochem Behav 2013; 110: 1-7.
[http://dx.doi.org/10.1016/j.pbb.2013.05.012] [PMID: 23714698]
[127]
Wang YH, Yu HT, Pu XP, Du GH. Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression. Molecules 2013; 18(12): 14726-38.
[http://dx.doi.org/10.3390/molecules181214726] [PMID: 24288000]
[128]
Lee E, Park HR, Ji ST, Lee Y, Lee J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J Neurosci Res 2014; 92(1): 130-9.
[http://dx.doi.org/10.1002/jnr.23307] [PMID: 24166733]
[129]
Yu X, He GR, Sun L, et al. Assessment of the treatment effect of baicalein on a model of Parkinsonian tremor and elucidation of the mechanism. Life Sci 2012; 91(1-2): 5-13.
[http://dx.doi.org/10.1016/j.lfs.2012.05.005] [PMID: 22634324]
[130]
Xue X, Liu H, Qi L, et al. Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of Parkinson’s disease. Brain Res Bull 2014; 103: 54-9.
[http://dx.doi.org/10.1016/j.brainresbull.2014.02.004] [PMID: 24576689]
[131]
Jung EB, Lee CS. Baicalein attenuates proteasome inhibition-induced apoptosis by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. Eur J Pharmacol 2014; 730: 116-24.
[http://dx.doi.org/10.1016/j.ejphar.2014.02.039] [PMID: 24631255]
[132]
Lei K, Shen Y, He Y, et al. Baicalin represses C/EBP β via its antioxidative effect in parkinson’s disease. Oxid Med Cell Longev 2020; 2020: 8951907.
[http://dx.doi.org/10.1155/2020/8951907] [PMID: 32566108]
[133]
Zhao Z, Xue F, Gu Y, et al. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7,8-dihydroxyflavone in female mice. Mol Metab 2021; 45: 101149.
[http://dx.doi.org/10.1016/j.molmet.2020.101149] [PMID: 33352311]
[134]
Massaquoi MS, Liguore WA, Churchill MJ, Moore C, Melrose HL, Meshul CK. Gait deficits and loss of striatal tyrosine hydroxlase/Trk-B are Restored following 7,8-dihydroxyflavone treatment in a progressive MPTP mouse model of parkinson’s disease. Neuroscience 2020; 433: 53-71.
[http://dx.doi.org/10.1016/j.neuroscience.2020.02.046] [PMID: 32142862]
[135]
Mohankumar T, Chandramohan V, Lalithamba HS, et al. Design and molecular dynamic investigations of 7,8-dihydroxyflavone derivatives as potential neuroprotective agents against alpha-synuclein. Sci Rep 2020; 10(1): 599.
[http://dx.doi.org/10.1038/s41598-020-57417-9] [PMID: 31953434]
[136]
Han X, Zhu S, Wang B, et al. Antioxidant action of 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity. Neurochem Int 2014; 64: 18-23.
[http://dx.doi.org/10.1016/j.neuint.2013.10.018] [PMID: 24220540]
[137]
Ahmed S, Kwatra M, Gawali B, Panda SR, Naidu VGM. Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis 2021; 26(1-2): 52-70.
[http://dx.doi.org/10.1007/s10495-020-01645-x] [PMID: 33226552]
[138]
Emili M, Guidi S, Uguagliati B, Giacomini A, Bartesaghi R, Stagni F. Treatment with the flavonoid 7,8-Dihydroxyflavone: A promising strategy for a constellation of body and brain disorders. Crit Rev Food Sci Nutr 2020; 11: 1-38.
[http://dx.doi.org/10.1080/10408398.2020.1810625] [PMID: 32914634]
[139]
Nie S, Ma K, Sun M, et al. 7,8-dihydroxyflavone protects nigrostriatal dopaminergic neurons from rotenone-induced neurotoxicity in rodents. Parkinsons Dis 2019; 2019: 9193534.
[http://dx.doi.org/10.1155/2019/9193534] [PMID: 30944722]
[140]
Che DN, Cho BO, Kim JS, Shin JY, Kang HJ, Jang SI. Luteolin and apigenin attenuate LPS-induced astrocyte activation and cytokine production by targeting MAPK, STAT3, and NF-κB signaling pathways. Inflammation 2020; 43(5): 1716-28.
[http://dx.doi.org/10.1007/s10753-020-01245-6] [PMID: 32462548]
[141]
Nabavi SF, Khan H, D’onofrio G, et al. Apigenin as neuroprotective agent: Of mice and men. Pharmacol Res 2018; 128: 359-65.
[http://dx.doi.org/10.1016/j.phrs.2017.10.008] [PMID: 29055745]
[142]
Chen HQ, Jin ZY, Wang XJ, Xu XM, Deng L, Zhao JW. Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neurosci Lett 2008; 448(2): 175-9.
[http://dx.doi.org/10.1016/j.neulet.2008.10.046] [PMID: 18952146]
[143]
Hu LW, Yen JH, Shen YT, Wu KY, Wu MJ. Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells. PLoS One 2014; 9(5): e97880.
[http://dx.doi.org/10.1371/journal.pone.0097880] [PMID: 24846311]
[144]
Lin YP, Chen TY, Tseng HW, Lee MH, Chen ST. Chemical and biological evaluation of nephrocizin in protecting nerve growth factor-differentiated PC12 cells by 6-hydroxydopamine-induced neurotoxicity. Phytochemistry 2012; 84: 102-15.
[http://dx.doi.org/10.1016/j.phytochem.2012.07.020] [PMID: 22954731]
[145]
Nakajima A, Ohizumi Y. Potential benefits of nobiletin, a citrus flavonoid, against alzheimer’s disease and parkinson’s disease. Int J Mol Sci 2019; 20(14): 3380.
[http://dx.doi.org/10.3390/ijms20143380] [PMID: 31295812]
[146]
Yang JS, Wu XH, Yu HG, Teng LS. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology 2017; 25(4): 471-84.
[http://dx.doi.org/10.1007/s10787-017-0348-x] [PMID: 28577132]
[147]
Takano K, Tabata Y, Kitao Y, et al. Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. Am J Physiol Cell Physiol 2007; 292(1): C353-61.
[http://dx.doi.org/10.1152/ajpcell.00388.2006] [PMID: 16971492]
[148]
Ha SK, Moon E, Kim SY. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett 2010; 485(3): 143-7.
[http://dx.doi.org/10.1016/j.neulet.2010.08.064] [PMID: 20813161]
[149]
Çelik H, Kucukler S, Çomaklı S, et al. Neuroprotective effect of chrysin on isoniazid-induced neurotoxicity via suppression of oxidative stress, inflammation and apoptosis in rats. Neurotoxicology 2020; 81: 197-208.
[http://dx.doi.org/10.1016/j.neuro.2020.10.009] [PMID: 33121995]
[150]
Darendelioglu E. Neuroprotective effects of chrysin on diclofenac-induced apoptosis in SH-SY5Y Cells. Neurochem Res 2020; 45(5): 1064-71.
[http://dx.doi.org/10.1007/s11064-020-02982-8] [PMID: 32040722]
[151]
Mercer LD, Kelly BL, Horne MK, Beart PM. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: Investigations in primary rat mesencephalic cultures. Biochem Pharmacol 2005; 69(2): 339-45.
[http://dx.doi.org/10.1016/j.bcp.2004.09.018] [PMID: 15627486]
[152]
Zhang Z, Li G, Szeto SSW, et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 2015; 84: 331-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.030] [PMID: 25769424]
[153]
Kim HG, Ju MS, Ha SK, et al. Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol Pharm Bull 2012; 35(8): 1287-94.
[http://dx.doi.org/10.1248/bpb.b12-00127] [PMID: 22863927]
[154]
Kim SM, Park YJ, Shin MS, et al. Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model. Bioorg Med Chem Lett 2017; 27(23): 5207-12.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.048] [PMID: 29089232]
[155]
Ham A, Lee HJ, Hong SS, Lee D, Mar W. Moracenin D from Mori Cortex radicis protects SH-SY5Y cells against dopamine-induced cell death by regulating nurr1 and α-synuclein expression. Phytother Res 2012; 26(4): 620-4.
[http://dx.doi.org/10.1002/ptr.3592] [PMID: 21936000]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy