Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Raphanus sativus Seeds Oil Arrested in vivo Inflammation and Angiogenesis through Down-regulation of TNF-α

Author(s): Muhammad Asif*, Hafiz Muhammad Yousaf, Mohammad Saleem, Liaqat Hussain, Mahrukh, Raghdaa Al Zarzour, Tahir Chohan, Malik Saadullah, Muhammad Usman Shamas, Hafiza Sidra Yaseen, Muhammad Umair Yousaf, Ikram Ullah Khan and Muhammad Azam Tahir

Volume 23, Issue 5, 2022

Published on: 20 August, 2021

Page: [728 - 739] Pages: 12

DOI: 10.2174/1389201022666210702120956

Price: $65

Abstract

Background: Raphanus sativus is traditionally used as an anti-inflammatory agent.

Objectives: The current study was designed to explore the in vivo anti-inflammatory and antiangiogenic properties of Raphanus sativus seeds oil.

Methods: Cold press method was used for the extraction of oil (RsSO) and was characterised by using GC-MS techniques. Three in vitro antioxidant assays (DPPH, ABTS and FRAP) were performed to explore the antioxidant potential of RsSO. Disc diffusion methods were used to study in vitro antimicrobial properties. In vivo anti-inflammatory properties were studied in both acute and chronic inflammation models. In vivo chicken chorioallantoic membrane assay was performed to study antiangiogenic effects. Molecular mechanisms were identified using TNF-α ELISA kit and docking tools.

Results: GC-MS analysis of RsSO revealed the presence of hexadecanoic and octadecanoic acid. Findings of DPPH, ABTS, and FRAP models indicated relatively moderate radical scavenging properties of RsSO. Oil showed antimicrobial activity against a variety of bacterial and fungal strains tested. Data of inflammation models showed significant (p < 0.05) anti-inflammatory effects of RsSO in both acute and chronic models. 500 mg/kg RsSO halted inflammation development significantly better (p < 0.05) as compared with lower doses. Histopathological evaluations of paws showed minimal infiltration of inflammatory cells in RsSO-treated animals. Findings of TNF-α ELSIA and docking studies showed that RsSO has the potential to down-regulate the expression of TNF-α, iNOS, ROS, and NF-κB respectively. Moreover, RsSO showed in vivo antiangiogenic effects.

Conclusion: Data of the current study highlight that Raphanus sativus seeds oil has anti-inflammatory, and antiangiogenic properties and can be used as an adjunct to standard NSAIDs therapy which may reduce the dose and related side effects.

Keywords: Inflammation, TNF-α, fatty acids, angiogenesis, docking studies, RsSO.

Graphical Abstract
[1]
Pahwa, R. Chronic inflammation.StatPearls; StatPearls Publishing: Treasure Island, FL , 2019. Internet
[2]
Islam, M. Dietary phytochemicals: Natural swords combating inflammation and oxidation-mediated degenerative diseases. Oxid. Med. Cell. Longev 2016. 2016
[http://dx.doi.org/10.1155/2016/5137431]
[3]
Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; Stehle, P.; Watzl, B. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr., 2012, 51(6), 637-663.
[http://dx.doi.org/10.1007/s00394-012-0380-y] [PMID: 22684631]
[4]
Kim, K.H.; Moon, E.; Kim, S.Y.; Choi, S.U.; Lee, J.H.; Lee, K.R. 4-Methylthio-butanyl derivatives from the seeds of Raphanus sativus and their biological evaluation on anti-inflammatory and antitumor activities. J. Ethnopharmacol., 2014, 151(1), 503-508.
[http://dx.doi.org/10.1016/j.jep.2013.11.003] [PMID: 24231071]
[5]
Jaiswal, A.K. Phenolic composition, antioxidant capacity and antibacterial activity of selected Irish Brassica vegetables. Nat. Prod. Comm, 2011, 6(9) 1934578X1100600923
[http://dx.doi.org/10.1177/1934578X1100600923]
[6]
Tsartsou, E.; Proutsos, N.; Castanas, E.; Kampa, M. Network meta-analysis of metabolic effects of olive-oil in humans shows the importance of olive oil consumption with moderate polyphenol levels as part of the Mediterranean diet. Front. Nutr., 2019, 6, 6.
[http://dx.doi.org/10.3389/fnut.2019.00006] [PMID: 30809527]
[7]
Asif, M. Evaluation of in vivo anti-inflammatory and anti-angiogenic attributes of methanolic extract of Launaea spinosa. Inflammopharmacology, 2020, 28, 993-1008.
[8]
Cassini-Vieira, P.; Araújo, F.A.; da Costa Dias, F.L.; Russo, R.C.; Andrade, S.P.; Teixeira, M.M.; Barcelos, L.S. iNOS activity modulates inflammation, angiogenesis, and tissue fibrosis in polyether-polyurethane synthetic implants. Mediators Inflamm., 2015, 2015138461
[http://dx.doi.org/10.1155/2015/138461] [PMID: 26106257]
[9]
Basilio-de-Oliveira, R.P.; Pannain, V.L.N. Prognostic angiogenic markers (endoglin, VEGF, CD31) and tumor cell proliferation (Ki67) for gastrointestinal stromal tumors. World J. Gastroenterol., 2015, 21(22), 6924-6930.
[http://dx.doi.org/10.3748/wjg.v21.i22.6924] [PMID: 26078569]
[10]
Park, M.H.; Hong, J.T. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells, 2016, 5(2), 15.
[http://dx.doi.org/10.3390/cells5020015] [PMID: 27043634]
[11]
Khare, C.P. Raphanus sativus Linn.Indian medicinal plants: An illustrated dictionary; Khare, C.P. Ed.; Springer New York: New; , 2007, pp. 1-1.
[12]
Holt, E.M.; Steffen, L.M.; Moran, A.; Basu, S.; Steinberger, J.; Ross, J.A.; Hong, C.P.; Sinaiko, A.R. Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J. Am. Diet. Assoc., 2009, 109(3), 414-421.
[http://dx.doi.org/10.1016/j.jada.2008.11.036] [PMID: 19248856]
[13]
Minich, D.M. A review of the science of colorful, plant-based food and practical strategies for eating the rainbow. J. Nutr. Metabol., 2019, 2019.
[14]
Kook, S.H.; Choi, K.C.; Lee, Y.H.; Cho, H.K.; Lee, J.C. Raphanus sativus L. seeds prevent LPS-stimulated inflammatory response through negative regulation of the p38 MAPK-NF-κB pathway. Int. Immunopharmacol., 2014, 23(2), 726-734.
[http://dx.doi.org/10.1016/j.intimp.2014.11.001] [PMID: 25467201]
[15]
Asif, M. Anticancer attributes of Illicium verum essential oils against colon cancer. S. Afr. J. Bot., 2016, 103, 156-161.
[http://dx.doi.org/10.1016/j.sajb.2015.08.017]
[16]
Mahmood, H.; Khan, I. U.; Asif, M.; Khan, R. U.; Asghar, S.; Khalid, I.; Khalid, S. H.; Irfan, M.; Rehman, F.; Shahzad, Y.; Yousaf, A. M.; Younus, A.; Niazi, Z. R.; Asim, M. In vitro and in vivo evaluation of gellan gum hydrogel films: Assessing the co impact of therapeutic oils and ofloxacin on wound healing. Int. J. Biol. Macromol 2021, 166, 483-495.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.206']
[17]
Umar, M.I.; Asmawi, M.Z.; Sadikun, A.; Abdul Majid, A.M.; Atangwho, I.J.; Khadeer Ahamed, M.B.; Altaf, R.; Ahmad, A. Multi-constituent synergism is responsible for anti-inflammatory effect of Azadirachta indica leaf extract. Pharm. Biol., 2014, 52(11), 1411-1422.
[http://dx.doi.org/10.3109/13880209.2014.895017] [PMID: 25026347]
[18]
Joy, A.M.; Appavoo, M.R.; Mohesh, M.G. Antiangiogenic activity of Strychnos nux vomica leaf extract on chick chorioallantoic membrane model. J. Chem. Pharm. Res., 2016, 8, 549-552.
[19]
Jain, A.N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem., 2003, 46(4), 499-511.
[http://dx.doi.org/10.1021/jm020406h] [PMID: 12570372]
[20]
Clark, M.; Cramer Iii, R.D.; Van Opdenbosch, N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem., 1989, 10(8), 982-1012.
[http://dx.doi.org/10.1002/jcc.540100804]
[21]
Fischmann, T.O.; Hruza, A.; Niu, X.D.; Fossetta, J.D.; Lunn, C.A.; Dolphin, E.; Prongay, A.J.; Reichert, P.; Lundell, D.J.; Narula, S.K.; Weber, P.C. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat. Struct. Biol., 1999, 6(3), 233-242.
[http://dx.doi.org/10.1038/6675] [PMID: 10074942]
[22]
de Leon-Boenig, G.; Bowman, K.K.; Feng, J.A.; Crawford, T.; Everett, C.; Franke, Y.; Oh, A.; Stanley, M.; Staben, S.T.; Starovasnik, M.A.; Wallweber, H.J.; Wu, J.; Wu, L.C.; Johnson, A.R.; Hymowitz, S.G. The crystal structure of the catalytic domain of the NF-κB inducing kinase reveals a narrow but flexible active site. Structure, 2012, 20(10), 1704-1714.
[http://dx.doi.org/10.1016/j.str.2012.07.013] [PMID: 22921830]
[23]
Awad, M.M.; Katayama, R.; McTigue, M.; Liu, W.; Deng, Y.L.; Brooun, A.; Friboulet, L.; Huang, D.; Falk, M.D.; Timofeevski, S.; Wilner, K.D.; Lockerman, E.L.; Khan, T.M.; Mahmood, S.; Gainor, J.F.; Digumarthy, S.R.; Stone, J.R.; Mino-Kenudson, M.; Christensen, J.G.; Iafrate, A.J.; Engelman, J.A.; Shaw, A.T. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med., 2013, 368(25), 2395-2401.
[http://dx.doi.org/10.1056/NEJMoa1215530] [PMID: 23724914]
[24]
Blevitt, J.M.; Hack, M.D.; Herman, K.L.; Jackson, P.F.; Krawczuk, P.J.; Lebsack, A.D.; Liu, A.X.; Mirzadegan, T.; Nelen, M.I.; Patrick, A.N.; Steinbacher, S.; Milla, M.E.; Lumb, K.J. Structural basis of small-molecule aggregate induced inhibition of a protein-protein interaction. J. Med. Chem., 2017, 60(8), 3511-3517.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01836] [PMID: 28300404]
[25]
Paddock, C.; Zhou, D.; Lertkiatmongkol, P.; Newman, P.J.; Zhu, J. Structural basis for PECAM-1 homophilic binding. Blood, 2016, 127(8), 1052-1061.
[http://dx.doi.org/10.1182/blood-2015-07-660092] [PMID: 26702061]
[26]
Aeschimann, W.; Staats, S.; Kammer, S.; Olieric, N.; Jeckelmann, J.M.; Fotiadis, D.; Netscher, T.; Rimbach, G.; Cascella, M.; Stocker, A. Self-assembled α-tocopherol transfer protein nanoparticles promote vitamin e delivery across an endothelial barrier. Sci. Rep., 2017, 7(1), 4970.
[http://dx.doi.org/10.1038/s41598-017-05148-9] [PMID: 28694484]
[27]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[28]
Ruppert, J.; Welch, W.; Jain, A. Automatic identification and representation of protein binding sites for molecular docking. Protein science : A publication of the Protein Society, , 2008, 6, 524-533.
[29]
Asif, M.; Yousaf, H.M.; Saleem, M.; Saadullah, M.; Chohan, T.A.; Shamas, M.U.; Yaseen, H.S. Mahrukh; Yousaf, M.U.; Yaseen, M. Trigonella foenum-graecum seeds oil attenuated inflammation and angiogenesis in vivo through down-regulation of tnf-α. Anticancer. Agents Med. Chem., 2021, 21, 1460-1471.
[http://dx.doi.org/10.2174/1871520620666201005100132] [PMID: 33019940]
[30]
Salis, K.; Ramabhimaiah, S. Beneficial effects of vegetable oils (rice bran and mustard oils) on anti-inflammatory and gastro intestinal profiles of indomethacin in rats. Biomed. Pharmacol. J., 2013, 6, 375-379.
[http://dx.doi.org/10.13005/bpj/429]
[31]
Devaraj, V.C.; Gopala Krishna, B.; Viswanatha, G.L.; Satya Prasad, V.; Vinay Babu, S.N. Protective effect of leaves of Raphinus sativus Linn on experimentally induced gastric ulcers in rats. Saudi Pharm. J., 2011, 19(3), 171-176.
[http://dx.doi.org/10.1016/j.jsps.2011.03.003] [PMID: 23960756]
[32]
Gutiérrez, R.M.; Perez, R.L. Raphanus sativus (Radish): Their chemistry and biology. ScientificWorldJournal, 2004, 4, 811-837.
[http://dx.doi.org/10.1100/tsw.2004.131] [PMID: 15452648]
[33]
Dzoyem, J.P. Chapter 9 - anti-inflammatory and anti-nociceptive activities of african medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press , 2017; pp. pp. 239-270.
[http://dx.doi.org/10.1016/B978-0-12-809286-6.00009-1]
[34]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[35]
Yaseen, H.S.; Asif, M.; Saadullah, M. Mahrukh; Asghar, S.; Shams, M.U.; Bazmi, R.R.; Saleem, M.; Yousaf, H.M.; Yaseen, M. Methanolic extract of Ephedra ciliata promotes wound healing and arrests inflammatory cascade in vivo through downregulation of TNF-α. Inflammopharmacology, 2020, 28(6), 1691-1704.
[http://dx.doi.org/10.1007/s10787-020-00713-7] [PMID: 32385747]
[36]
Schink, A.; Naumoska, K.; Kitanovski, Z.; Kampf, C.J.; Fröhlich-Nowoisky, J.; Thines, E.; Pöschl, U.; Schuppan, D.; Lucas, K. Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Food Funct., 2018, 9(11), 5950-5964.
[http://dx.doi.org/10.1039/C8FO01286E] [PMID: 30379176]
[37]
Kumar, R.; Gupta, Y.K.; Singh, S. Anti-inflammatory and anti-granuloma activity of Berberis aristata DC. in experimental models of inflammation. Indian J. Pharmacol., 2016, 48(2), 155-161.
[http://dx.doi.org/10.4103/0253-7613.108299] [PMID: 27114638]
[38]
Shah, K.K.; Pritt, B.S.; Alexander, M.P. Histopathologic review of granulomatous inflammation. J. Clin. Tuberc. Other Mycobact. Dis., 2017, 7, 1-12.
[http://dx.doi.org/10.1016/j.jctube.2017.02.001] [PMID: 31723695]
[39]
Lima, L.F.; Murta, G.L.; Bandeira, A.C.; Nardeli, C.R.; Lima, W.G.; Bezerra, F.S. Short-term exposure to formaldehyde promotes oxidative damage and inflammation in the trachea and diaphragm muscle of adult rats. Ann. Anat., 2015, 202, 45-51.
[http://dx.doi.org/10.1016/j.aanat.2015.08.003] [PMID: 26342159]
[40]
Cho, Y-H.; Chung, I.K.; Cheon, W.H.; Lee, H.S.; Ku, S.K. Effect of DHU001, a polyherbal formula on formalin-induced paw chronic inflammation of mice. Toxicol. Res., 2011, 27(2), 95-102.
[http://dx.doi.org/10.5487/TR.2011.27.2.095] [PMID: 24278557]
[41]
Ngoua-Meye-Misso, R-L. Phytochemical screening, antioxidant, anti-inflammatory and antiangiogenic activities of Lophira procera A. Chev. (Ochnaceae) medicinal plant from Gabon. Egyptian Journal of Basic and Applied Sciences, 2018, 5(1), 80-86.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.003]
[42]
Naik, M.; Brahma, P.; Dixit, M. A cost-effective and efficient chick ex-ovo cam assay protocol to assess angiogenesis. Methods Protoc, 2018, 1(2), 19.
[http://dx.doi.org/10.3390/mps1020019] [PMID: 31164562]
[43]
Umesalma, S.; Sudhandiran, G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin. Pharmacol. Toxicol., 2010, 107(2), 650-655.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00565.x] [PMID: 20406206]
[44]
Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des., 2012, 80(3), 434-439.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01418.x] [PMID: 22642495]
[45]
Kang, M-C.; Ham, Y.M.; Heo, S.J.; Yoon, S.A.; Cho, S.H.; Kwon, S.H.; Jeong, M.S.; Jeon, Y.J.; Sanjeewa, K.; Yoon, W.J.; Kim, K.N. Anti-inflammation effects of 8-oxo-9-octadecenoic acid isolated from Undaria peterseniana in lipopolysaccharide-stimulated macrophage cells. EXCLI J., 2018, 17, 775-783.
[PMID: 30190667]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy