Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Systematic Review Article

Spleen Glucose Metabolism on [18F]-FDG PET/CT for Cancer Drug Discovery and Development cannot be Overlooked

Author(s): Romain-David Seban, Shwe Synn, Izza Muneer, Laurence Champion, Lawrence H. Schwartz and Laurent Dercle*

Volume 21, Issue 11, 2021

Published on: 26 November, 2021

Page: [944 - 952] Pages: 9

DOI: 10.2174/1568009621666210720143826

Price: $65

Abstract

Background: Fluorine-18-fluorodeoxyglucose ([18F]-FDG) Positron Emission Tomography/ Computed Tomography (PET/CT) is a useful tool that assesses glucose metabolism in tumor cells to help guide the management of cancer patients. However, the clinical relevance of glucose metabolism in healthy tissues, including hematopoietic tissues such as the spleen, has been potentially overlooked. Recent studies suggested that spleen glucose metabolism could improve the management of different cancers.

Study Eligibility Criteria: Overall, the current literature includes 1,157 patients, with a wide range of tumor types. The prognostic and/or predictive value of spleen metabolism has been demonstrated in a broad spectrum of therapies, including surgery and systemic cancer therapies. Most of these studies showed that high spleen glucose metabolism at baseline is associated with a poor outcome while treatment-induce change in spleen glucose metabolism is a multi-faceted surrogate of cancer- related inflammation, which correlates with immunosuppressive tumor microenvironment as well as with immune activation.

Conclusion: In this systematic review, we seek to unravel the prognostic/predictive significance of spleen glucose metabolism on [18F]-FDG PET/CT and discuss how it could potentially guide cancer patient management in the future.

Keywords: Positron emission tomography computed tomography, prognosis, spleen, cancer, immunotherapy, drug discovery.

Graphical Abstract
[1]
Roxburgh, C.S.D.; McMillan, D.C. Cancer and systemic inflammation: Treat the tumour and treat the host. Br. J. Cancer, 2014, 110(6), 1409-1412.
[http://dx.doi.org/10.1038/bjc.2014.90] [PMID: 24548867]
[2]
Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol., 2013, 88(1), 218-230.
[http://dx.doi.org/10.1016/j.critrevonc.2013.03.010] [PMID: 23602134]
[3]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[4]
Kamran, N.; Li, Y.; Sierra, M.; Alghamri, M.S.; Kadiyala, P.; Appelman, H.D.; Edwards, M.; Lowenstein, P.R.; Castro, M.G. Melanoma induced immunosuppression is mediated by hematopoietic dysregulation. OncoImmunology, 2017, 7(3), e1408750.
[http://dx.doi.org/10.1080/2162402X.2017.1408750] [PMID: 29399415]
[5]
Kim, S.Y.; Moon, C.M.; Yoon, H-J.; Kim, B.S.; Lim, J.Y.; Kim, T.O.; Choe, A.R.; Tae, C.H.; Kim, S-E.; Jung, H-K.; Shim, K.N.; Jung, S.A. Diffuse splenic FDG uptake is predictive of clinical outcomes in patients with rectal cancer. Sci. Rep., 2019, 9(1), 1313.
[http://dx.doi.org/10.1038/s41598-018-35912-4] [PMID: 30718566]
[6]
Seban, R-D.; Nemer, J.S.; Marabelle, A.; Yeh, R.; Deutsch, E.; Ammari, S.; Moya-Plana, A.; Mokrane, F-Z.; Gartrell, R.D.; Finkel, G.; Barker, L.; Bigorgne, A.E.; Schwartz, L.H.; Saenger, Y.; Robert, C.; Dercle, L. Prognostic and theranostic 18F-FDG PET biomarkers for anti-PD1 immunotherapy in metastatic melanoma: Association with outcome and transcriptomics. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(11), 2298-2310.
[http://dx.doi.org/10.1007/s00259-019-04411-7] [PMID: 31346755]
[7]
Wong, A.N.M.; Callahan, J.; Beresford, J.; Herschtal, A.; Fullerton, S.; Milne, D.; Hicks, R.J.; McArthur, G.A. Spleen to liver ratio (SLR): Novel pet imaging biomarker for prediction of overall survival after ipilimumab and anti-pd1 in patients with metastatic melanoma. JCO, 2016, 34, 9523-9523.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9523]
[8]
Wong, A.; Callahan, J.; Keyaerts, M.; Neyns, B.; Mangana, J.; Aberle, S.; Herschtal, A.; Fullerton, S.; Milne, D.; Iravani, A.; McArthur, G.A.; Hicks, R.J. 18F-FDG PET/CT based spleen to liver ratio associates with clinical outcome to ipilimumab in patients with metastatic melanoma. Cancer Imaging, 2020, 20(1), 36.
[http://dx.doi.org/10.1186/s40644-020-00313-2] [PMID: 32408884]
[9]
De Jaeghere, E.A.; Laloo, F.; Lippens, L.; Van Bockstal, M.; De Man, K.; Naert, E.; Van Dorpe, J.; Van de Vijver, K.; Tummers, P.; Makar, A.; De Visschere, P.J.L.; De Wever, O.; Amant, F.; Denys, H.G.; Vandecasteele, K. Splenic 18F-FDG uptake on baseline PET/CT is associated with oncological outcomes and tumor immune state in uterine cervical cancer. Gynecol. Oncol., 2020, 159(2), 335-343.
[http://dx.doi.org/10.1016/j.ygyno.2020.08.001] [PMID: 32859399]
[10]
Pak, K.; Kim, S-J.; Kim, I.J.; Kim, D.U.; Kim, K.; Kim, H.; Kim, S.J. Splenic FDG uptake predicts poor prognosis in patients with unresectable cholangiocarcinoma. Nucl. Med. (Stuttg.), 2014, 53(2), 26-31.
[http://dx.doi.org/10.3413/Nukmed-0566-13-03] [PMID: 24305850]
[11]
Seban, R-D.; Champion, L.; Schwartz, L.H.; Dercle, L. Spleen glucose metabolism on [18F]-FDG PET/CT: A dynamic double-edged biomarker predicting outcome in cancer patients. Eur. J. Nucl. Med. Mol. Imaging, 2021.
[http://dx.doi.org/10.1007/s00259-020-05126-w] [PMID: 33420612]
[12]
Prigent, K.; Lasnon, C.; Ezine, E.; Janson, M.; Coudrais, N.; Joly, E.; Césaire, L.; Stefan, A.; Depontville, M.; Aide, N. Assessing immune organs on 18F-FDG PET/CT imaging for therapy monitoring of immune checkpoint inhibitors: Inter-observer variability, prognostic value and evolution during the treatment course of melanoma patients. Eur. J. Nucl. Med. Mol. Imaging, 2021.
[http://dx.doi.org/10.1007/s00259-020-05103-3] [PMID: 33432374]
[13]
Dercle, L.; Seban, R-D.; Lazarovici, J.; Schwartz, L.H.; Houot, R.; Ammari, S.; Danu, A.; Edeline, V.; Marabelle, A.; Ribrag, V.; Michot, J.M. 18f-fdg pet and ct scans detect new imaging patterns of response and progression in patients with hodgkin lymphoma treated by anti-programmed death 1 immune checkpoint inhibitor. J. Nucl. Med., 2018, 59(1), 15-24.
[http://dx.doi.org/10.2967/jnumed.117.193011] [PMID: 28596157]
[14]
Schwenck, J.; Schörg, B.; Fiz, F.; Sonanini, D.; Forschner, A.; Eigentler, T.; Weide, B.; Martella, M.; Gonzalez-Menendez, I.; Campi, C.; Sambuceti, G.; Seith, F.; Quintanilla-Martinez, L.; Garbe, C.; Pfannenberg, C.; Röcken, M.; la Fougere, C.; Pichler, B.J.; Kneilling, M. Cancer immunotherapy is accompanied by distinct metabolic patterns in primary and secondary lymphoid organs observed by non-invasive in vivo18F-FDG-PET. Theranostics, 2020, 10(2), 925-937.
[http://dx.doi.org/10.7150/thno.35989] [PMID: 31903160]
[15]
Seith, F.; Forschner, A.; Weide, B.; Gückel, B.; Schwartz, M.; Schwenck, J.; Othman, A.E.; Fenchel, M.; Garbe, C.; Nikolaou, K.; Schwenzer, N.; la Fougère, C.; Pfannenberg, C. Is there a link between very early changes of primary and secondary lymphoid organs in 18F-FDG-PET/MRI and treatment response to checkpoint inhibitor therapy? J. Immunother. Cancer, 2020, 8(2), e000656.
[http://dx.doi.org/10.1136/jitc-2020-000656] [PMID: 32753543]
[16]
Schüle, S.C.; Eigentler, T.; Pfannenberg, C. Multiple enlarged metabolically active lymph nodes in 18F-FDG PET/CT after anti-CTLA-4 antibody therapy in metastatic melanoma - disease progression or immunologically induced side effect? RoFo Fortschr. Geb. Rontgenstr. Nuklearmed., 2015, 187(11), 1036-1037.
[http://dx.doi.org/10.1055/s-0034-1399672] [PMID: 26062178]
[17]
Tsai, K.K.; Pampaloni, M.H.; Hope, C.; Algazi, A.P.; Ljung, B-M.; Pincus, L.; Daud, A.I. Increased FDG avidity in lymphoid tissue associated with response to combined immune checkpoint blockade. J. Immunother. Cancer, 2016, 4, 58.
[http://dx.doi.org/10.1186/s40425-016-0162-9] [PMID: 27660712]
[18]
Yoon, H-J.; Kim, B.S.; Moon, C.M.; Yoo, J.; Lee, K.E.; Kim, Y. Prognostic value of diffuse splenic FDG uptake on PET/CT in patients with gastric cancer. PLoS One, 2018, 13(4), e0196110.
[http://dx.doi.org/10.1371/journal.pone.0196110] [PMID: 29698422]
[19]
Şahin, E.; Elboğa, U. Relationship between reticuloendothelial systems’ FDG uptake level and clinicopathological features in patient with invasive ductal breast cancer. Radiol. Med. (Torino), 2017, 122(10), 785-792.
[http://dx.doi.org/10.1007/s11547-017-0779-x] [PMID: 28597239]
[20]
Bang, J-I.; Yoon, H-J.; Kim, B.S. Clinical utility of FDG uptake within reticuloendothelial system on F-18 FDG PET/CT for prediction of tumor recurrence in breast cancer. PLoS One, 2018, 13(12), e0208861.
[http://dx.doi.org/10.1371/journal.pone.0208861] [PMID: 30532215]
[21]
Núñez, R.; Rini, J.N.; Tronco, G.G.; Tomas, M.B.; Nichols, K.; Palestro, C.J. Correlation of hematologic parameters with bone marrow and spleen uptake in FDG PET. Rev. Esp. Med. Nucl., 2005, 24(2), 107-112.
[http://dx.doi.org/10.1157/13071686] [PMID: 15745681]
[22]
Sachpekidis, C.; Larribère, L.; Kopp-Schneider, A.; Hassel, J.C.; Dimitrakopoulou-Strauss, A. Can benign lymphoid tissue changes in 18F-FDG PET/CT predict response to immunotherapy in metastatic melanoma? Cancer Immunol. Immunother., 2019, 68(2), 297-303.
[http://dx.doi.org/10.1007/s00262-018-2279-9] [PMID: 30478475]
[23]
Bural, G.G.; Torigian, D.A.; Chen, W.; Houseni, M.; Basu, S.; Alavi, A. Increased 18F-FDG uptake within the reticuloendothelial system in patients with active lung cancer on PET imaging may indicate activation of the systemic immune response. Hell. J. Nucl. Med., 2010, 13(1), 23-25.
[PMID: 20411166]
[24]
Dercle, L.; Mokrane, F-Z.; Schiano de Colella, J.M.; Stamatoullas, A.; Morschhauser, F.; Brice, P.; Ghesquières, H.; Casasnovas, O.; Chen, A.; Manson, G.; Houot, R. Unconventional immune-related phenomena observed using 18F-FDG PET/CT in Hodgkin lymphoma treated with anti PD-1 monoclonal antibodies. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(6), 1391-1392.
[http://dx.doi.org/10.1007/s00259-019-04310-x] [PMID: 30888476]
[25]
Seban, R-D.; Moya-Plana, A.; Antonios, L.; Yeh, R.; Marabelle, A.; Deutsch, E.; Schwartz, L.H.; Gómez, R.G.H.; Saenger, Y.; Robert, C.; Ammari, S.; Dercle, L. Prognostic 18F-FDG PET biomarkers in metastatic mucosal and cutaneous melanoma treated with immune checkpoint inhibitors targeting PD-1 and CTLA-4. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(10), 2301-2312.
[http://dx.doi.org/10.1007/s00259-020-04757-3] [PMID: 32206839]
[26]
Nam, H.-Y.; Kim, S.-J.; Kim, I.-J.; Kim, B.-S.; Pak, K.; Kim, K. The clinical implication and prediction of diffuse splenic FDG uptake during cancer surveillance. Clin. Nucl. Med., 2010, 35(10), 759-763.
[http://dx.doi.org/10.1097/RLU.0b013e3181ef0905] [PMID: 20838282]
[27]
Aktaş, G.E.; Sarıkaya, A.; Demir, S.S. Diffusely increased splenic fluorodeoxyglucose uptake in lung cancer patients. Turk Thorac J, 2017, 18(1), 6-10.
[http://dx.doi.org/10.5152/TurkThoracJ.2017.16025] [PMID: 29404150]
[28]
Yamanaka, S.; Miyagawa, M.; Sugawara, Y.; Hasebe, S.; Fujii, T.; Takeuchi, K.; Tanaka, K.; Yakushijin, Y. The prognostic significance of whole-body and spleen MTV (metabolic tumor volume) scanning for patients with diffuse large b cell lymphoma. Int. J. Clin. Oncol., 2020.
[http://dx.doi.org/10.1007/s10147-020-01807-6] [PMID: 33097970]
[29]
Dercle, L.; Ammari, S.; Seban, R-D.; Schwartz, L.H.; Houot, R.; Labaied, N.; Mokrane, F-Z.; Lazarovici, J.; Danu, A.; Marabelle, A.; Ribrag, V.; Michot, J.M. Kinetics and nadir of responses to immune checkpoint blockade by anti-PD1 in patients with classical Hodgkin lymphoma. Eur. J. Cancer, 2018, 91, 136-144.
[http://dx.doi.org/10.1016/j.ejca.2017.12.015] [PMID: 29360605]
[30]
Chen, A.; Mokrane, F-Z.; Schwartz, L.H.; Morschhauser, F.; Stamatoullas, A.; Schiano de Colella, J-M.; Vercellino, L.; Casasnovas, O.; Chauchet, A.; Delmer, A.; Nicolas-Virelizier, E.; Ghesquières, H.; Moles-Moreau, M.P.; Schmitt, A.; Dulery, R.; Bouabdallah, K.; Borel, C.; Touati, M.; Deau-Fischer, B.; Peyrade, F.; Seban, R.D.; Manson, G.; Armand, P.; Houot, R.; Dercle, L. Early 18f-fdg pet/ct response predicts survival in relapsed or refractory hodgkin lymphoma treated with nivolumab. J. Nucl. Med., 2020, 61(5), 649-654.
[http://dx.doi.org/10.2967/jnumed.119.232827] [PMID: 31628220]
[31]
Mokrane, F-Z.; Chen, A.; Schwartz, L.H.; Morschhauser, F.; Stamatoullas, A.; Schiano de Colella, J-M.; Vercellino, L.; Casasnovas, O.; Chauchet, A.; Delmer, A.; Nicolas-Virelizier, E.; Ghesquières, H.; Moles-Moreau, M.P.; Schmitt, A.; Duléry, R.; Bouabdallah, K.; Borel, C.; Touati, M.; Deau-Fischer, B.; Peyrade, F.; Seban, R.D.; Manson, G.; Houot, R.; Dercle, L. Performance of ct compared with 18f-fdg pet in predicting the efficacy of nivolumab in relapsed or refractory hodgkin lymphoma. Radiology, 2020, 295(3), 651-661.
[http://dx.doi.org/10.1148/radiol.2020192056] [PMID: 32286191]
[32]
Old, L.J.; Clarke, D.A.; Benacerraf, B.; Goldsmith, M. The reticuloendothelial system and the neoplastic process. Ann. N. Y. Acad. Sci., 1960, 88, 264-280.
[http://dx.doi.org/10.1111/j.1749-6632.1960.tb20026.x] [PMID: 13730686]
[33]
Seban, R-D.; Rouzier, R.; Latouche, A.; Deleval, N.; Guinebretiere, J-M.; Buvat, I. Total metabolic tumor volume and spleen metabolism on baseline [18F]-FDG PET/CT as independent prognostic biomarkers of recurrence in resected breast cancer. Eur J Nucl Med Mol Imaging, 2021.
[34]
van der Veen, E.L.; Giesen, D.; Pot-de Jong, L.; Jorritsma-Smit, A.; De Vries, E.G.E.; Lub-de Hooge, M.N. 89Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs. J. Immunother. Cancer, 2020, 8(2), e000938.
[http://dx.doi.org/10.1136/jitc-2020-000938] [PMID: 33020241]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy