Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Advancement of Prodrug Approaches for Nucleotide Antiviral Agents

Author(s): Yanping Li, Bo Yang, Yanni Quan and Zhuorong Li*

Volume 21, Issue 32, 2021

Published on: 27 July, 2021

Page: [2909 - 2927] Pages: 19

DOI: 10.2174/1568026621666210728094019

Price: $65

Abstract

Synthetic nucleoside or nucleotide analogues played a key role to the development of antiviral agents in past decades. However, low membrane permeability and insufficient cellular phosphorylation impaired the biological activity of polar nucleoside drugs because they have to penetrate the cell membrane and be phosphorylated to active metabolite stepwise by intracellular enzymes. To overcome these limitations, diverse lipophilic prodrug modifications based on nucleoside mono-, di-, and triphosphate were designed and put into practice to efficiently deliver nucleoside into the target site, and bypass the rate-limited phosphorylation step. As the most successful prodrug strategy, ProTide technology has led to the discovery of three FDA-approved antiviral agents, including sofosbuvir, tenofovir alafenadmide, and remdesivir, which has been authorized for emergency use in patients of COVID-19 in the US. In recent years, nucleoside di- and triphosphate prodrugs have also made the significant progress. This review will focus on the summary of design approach and metabolic activation path of different nucleotide prodrug strategies. The potential application of nucleotide prodrugs for the treatment of COVID-19 was also described due to the pandemic of SARS-CoV-2.

Keywords: Nucleoside, Nucleotide prodrug, ProTide, Antiviral, Phosphorylation, Metabolic activation.

Graphical Abstract

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy