Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Overview of Polyethylene Glycol-based Materials with a Special Focus on Core-Shell Particles for Drug Delivery Application

Author(s): Nasrullah Shah*, Manzoor Hussain, Touseef Rehan, Abbas Khan and Zubair Ullah Khan

Volume 28, Issue 5, 2022

Published on: 30 November, 2021

Page: [352 - 367] Pages: 16

DOI: 10.2174/1381612827666210910104333

Price: $65

Abstract

Polyethylene glycols (PEG) are water-soluble non-ionic polymeric molecules. PEG and PEG-based materials are used for various important applications, such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications, specifically their use in drug delivery.

Keywords: PEGs, PEG-based composite materials, core-shell particles, applications, drug delivery applications, adhesive.

[1]
Harris JM. Introduction to biotechnical and biomedical applications of poly [ethylene glycol]. In: Poly [ethylene glycol] Chemistry. Springer 1992; pp. 1-14.
[2]
Soni J, Sahiba N, Sethiya A, Agarwal S. Polyethylene glycol: A promising approach for sustainable organic synthesis. J Mol Liq 2020; 315: 113766.
[3]
Venkatasubbu GD, Ramasamy S, Avadhani G, Ramakrishnan V, Kumar J. Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Powder Technol 2013; 235: 437-42.
[4]
Hong L, Wang Z, Wei X, Shi J, Li C. Antibodies against polyethylene glycol in human blood: A literature review. J Pharmacol Toxicol Methods 2020; 102: 106678.
[5]
He X, Wang D, Chen P, Qiao Y, Yang T, Yu Z. Construction of a novel “ball-and-rod” MSNs-pp-PEG system: A promising antitumor drug delivery system with a particle size switchable function. Chem Commun 2020; 56(35): 4785-8.
[6]
Liu J, Qiao SZ, Chen JS, Lou XW, Xing X, Lu GQ. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun 2011; 47(47): 12578-91.
[7]
Zhang X-l, Niu H-y, Li W-h, Shi Y-l, Cai Y-q. A core-shell magnetic mesoporous silica sorbent for organic targets with high extraction performance and anti-interference ability. Chem Commun 2011; 47(15): 4454-6.
[8]
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 2012; 112(4): 2373-433.
[9]
Shah N, Gul S, Ul-Islam M. Core-shell molecularly imprinted polymer nanocomposites for biomedical and environmental applications. Curr Pharm Des 2019; 25(34): 3633-44.
[10]
Gul S, Shah N, Arain MB, Rahman N, Rehan T, Ul-Islam M. Fabrication of magnetic core-shell particles coated with phenylalanine imprinted polymer. Polym Test 2019; 75: 262-9.
[11]
Lien Y-H, Wu T-M. Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles. J Colloid Interface Sci 2008; 326(2): 517-21.
[12]
Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 2001; 17(10): 2900-6.
[13]
Chertok B, David AE, Yang VC. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 2010; 31(24): 6317-24.
[14]
Pathak C, Jaiswal Y, Vinayak M. Modified base queuine promotes cellular antioxidant defense system in cancer. Biosci Rep 2008; 28: 73-81.
[15]
Shah N, Claessyns F, Rimmer S, Balal Arain M, Rehan T, Wazwaz A. Effective role of magnetic core-shell nanocomposites in removing organic and inorganic wastes from water. Recent Pat Nanotechnol 2016; 10(3): 202-12.
[16]
Daneshvar H, Nelms J, Muhammad O. et al. Imaging characteristics of zinc sulfide shell, cadmium telluride core quantum dots. Nanomedicine 2008; 30(1): 21-9.
[17]
Stanciu L, Won Y-H, Ganesana M, Andreescu S. Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors (Basel) 2009; 9(4): 2976-99.
[18]
Qiu J-D, Cui S-G, Deng M-Q, Liang R-P. Direct electrochemistry of myoglobin immobilized in NiO/MWNTs hybrid nanocomposite for electrocatalytic detection of hydrogen peroxide. J Appl Electrochem 2010; 40(9): 1651-7.
[19]
Yoo S-H, Liu L, Park S. Nanoparticle films as a conducting layer for anodic aluminum oxide template-assisted nanorod synthesis. J Colloid Interface Sci 2009; 339(1): 183-6.
[20]
Wu Y, Livneh T, Zhang YX, Cheng G, Wang J, Tang J. Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano Lett 2004; 4(12): 2337-42.
[21]
Jang D, Oh B, Kim D, Eds. Generation of metal nanoparticles by laser ablation of metal microparticles and plume dynamics. High-Power Laser Ablation IV. International Society for Optics and Photonics 2002.
[22]
Park J-I, Kim MG, Jun Y-w, Lee JS, Lee W-r, Cheon J. Characterization of superparamagnetic “core-shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys. J Am Chem Soc 2004; 126(29): 9072-8.
[23]
Maliakal A, Katz H, Cotts PM, Subramoney S, Mirau P. Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J Am Chem Soc 2005; 127(42): 14655-62.
[24]
Hutanu D, Frishberg MD, Guo L, Darie CC. Recent applications of polyethylene glycols [PEGs] and PEG derivatives. Mod Chem Appl 2014; 2(2): 1-6.
[25]
Li D, Zhou J, Zhang M, Ma Y, Yang Y, Han X. Long-term delivery of alendronate through an injectable tetra-PEG hydrogel to promote osteoporosis therapy. Biomater Sci 2020; 8(11): 3138-46.
[26]
Cui L, Tong W, Zhou H, Yan C, Chen J, Xiong D. PVA-BA/PEG hydrogel with bilayer structure for biomimetic articular cartilage and investigation of its biotribological and mechanical properties. J Mater Sci 2021; 56(5): 3935-46.
[27]
D’souza AA, Shegokar R. Polyethylene glycol [PEG]: a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 2016; 13(9): 1257-75.
[28]
Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J Control Release 2017; 260: 46-60.
[29]
Wang J, Youngblood R, Cassinotti L, Skoumal M, Corfas G, Shea L. An injectable PEG hydrogel controlling neurotrophin-3 release by affinity peptides. J Control Release 2021; 330: 575-86.
[30]
Hayes R, Ahmed A, Edge T, Zhang H. Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A 2014; 1357: 36-52.
[31]
Bailon P, Berthold W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharm Sci Technol Today 1998; 1(8): 352-6.
[32]
Fruijtier-Pölloth C. Safety assessment on polyethylene glycols [PEGs] and their derivatives as used in cosmetic products. Toxicology 2005; 214(1-2): 1-38.
[33]
Wenande E, Garvey L. Immediate-type hypersensitivity to polyethylene glycols: a review. Clin Exp Allergy 2016; 46(7): 907-22.
[34]
Craig DQ. A review of thermal methods used for the analysis of the crystal form, solution thermodynamics and glass transition behaviour of polyethylene glycols. Thermochim Acta 1995; 248: 189-203.
[35]
Guo X, Mao T, Wang Z, Cheng P, Chen Y, Ma S. Fabrication of photoresponsive crystalline artificial muscles based on PEGylated covalent organic framework membranes. ACS Cent Sci 2020; 6(5): 787-94.
[36]
Shi X, Bai S, Li Y, Yu X, Naito K, Zhang Q. Effect of polyethylene glycol surface modified nanodiamond on properties of polylactic acid nanocomposite films. Diamond Related Materials 2020; 109: 108092.
[37]
Webster R, Didier E, Harris P, Siegel N, Stadler J, Tilbury L. PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos 2007; 35(1): 9-16.
[38]
Li J, Kao WJ. Synthesis of Polyethylene Glycol [PEG] Derivatives and PEGylated-Peptide Biopolymer Conjugates. Biomacromolecules 2003; 4(4): 1055-67.
[39]
Bailon P, Won C-Y. PEG-modified biopharmaceuticals. Expert Opin Drug Deliv 2009; 6(1): 1-16.
[40]
Thomas A, Müller SS, Frey H. Beyond poly [ethylene glycol]: linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromolecules 2014; 15(6): 1935-54.
[41]
Zacchigna M, Cateni F, Drioli S, Bonora GM. Multimeric, multifunctional derivatives of poly [ethylene glycol]. Polymers (Basel) 2011; 3(3): 1076-90.
[42]
Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci 2010; 99(6): 2557-75.
[43]
Macewen EG, Rosenthal R, Matus R, Viau AT, Abuchowski A. A preliminary study on the evaluation of asparaginase. Polyethylene glycol conjugate against canine malignant lymphoma. Cancer 1987; 59(12): 2011-5.
[44]
Sergi M, Caboi F, Maullu C, Orsini G, Tonon G. Enzymatic techniques for PEGylation of biopharmaceuticals. In: PEGylated protein drugs: Basic science and clinical applications. Springer 2009; pp. 75-88.
[45]
Zhang D, Zhang J. Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2020; 230: 119646.
[46]
Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A. PEG—a versatile conjugating ligand for drugs and drug delivery systems. J Control Release 2014; 192: 67-81.
[47]
Rabanel J-M, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Control Release 2014; 185: 71-87.
[48]
Li W, Huang Z, MacKay JA, Grube S, Szoka FC Jr. Low‐pH-sensitive poly [ethylene glycol][PEG]-stabilized plasmid nanolipoparticles: Effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J Gene Med A cross-disciplinary Res Sci Gene Trans Clin Appl 2005; 7(1): 67-79.
[49]
Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 1977; 252(11): 3582-6.
[50]
Noiri M, Asawa K, Okada N, Kodama T, Murayama Y, Inoue Y. Modification of human MSC surface with oligopeptide-PEG-lipids for selective binding to activated endothelium. J Biomed Mater Res A 2019; 107(8): 1779-92.
[51]
Arduino I, Depalo N, Re F, Dal Magro R, Panniello A, Margiotta N. PEGylated solid lipid nanoparticles for brain delivery of lipophilic kiteplatin Pt [IV] prodrugs: An in vitro study. Int J Pharm 2020; 583: 119351.
[52]
Akolpoglu MB, Inceoglu Y, Kizilel S. An all-aqueous approach for physical immobilization of PEG-lipid microgels on organoid surfaces. Colloids Surf B Biointerfaces 2020; 186: 110708.
[53]
Birchenough HL, Swann MJ, Zindy E, Day AJ, Jowitt TA. Enhanced avidin binding to lipid bilayers using PDP-PE lipids with PEG-biotin linkers. Nanoscale Adv 2020; 2(4): 1625-33.
[54]
Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005; 22(1): 11-23.
[55]
Nie T, He Z, Zhu J, Liu L, Chen Y. One-Pot Synthesis of PEGylated lipoplexes to facilitate mucosal permeation for oral insulin gene delivery. Adv Ther (Weinh) 2020; 3(3): 2000016.
[56]
Momoh MA, Emmanuel OC, Onyeto AC, Darlington Y, Kenechukwu FC, Ofokansi KC. Preparation of snail cyst and PEG-4000 composite carriers via PEGylation for oral delivery of insulin: An in vitro and in vivo evaluation. Trop J Pharm Res 2019; 18(5).
[57]
Liu K-Y, Abebe DG, Wiley ER, Fujiwara T. Characterization and optimization of PLA stereocomplexed hydrogels for local gene delivery systems. Polymers (Basel) 2019; 11(5): 796.
[58]
Baek A, Baek YM, Kim H-M, Jun B-H, Kim D-E. Polyethylene glycol-engrafted graphene oxide as biocompatible materials for peptide nucleic acid delivery into cells. Bioconjug Chem 2018; 29(2): 528-37.
[59]
Jang H-J, Shin CY, Kim K-B. Safety evaluation of polyethylene glycol [PEG] compounds for cosmetic use. Toxicol Res 2015; 31(2): 105-36.
[60]
Boyer I, Burnett CL, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD. Safety assessment of PEGs cocamine and related ingredients as used in cosmetics. Int J Toxicol 2018; 37(2)(Suppl.): 10S-60S.
[61]
Fiume MM, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC. Safety assessment of pegylated alkyl glycerides as used in cosmetics. Int J Toxicol 2020; 39(2)(Suppl.): 26S-58S.
[62]
Fan R-J, Sun Q, Zhang L, Zhang Y, Lu A-H. Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon 2014; 71: 87-93.
[63]
Idris A, Zain NM, Noordin M. Synthesis, characterization and performance of asymmetric polyethersulfone [PES] ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination 2007; 207(1-3): 324-39.
[64]
Bai T, Shao D, Chen J, Li Y, Xu BB, Kong J. pH-responsive dithiomaleimide-amphiphilic block copolymer for drug delivery and cellular imaging. J Colloid Interface Sci 2019; 552: 439-47.
[65]
Derle ND, Bhamber R. Permeability enhancement techniques for poorly permeable drugs: A review. J Appl Pharm Sci 2012; 2(06): 34-9.
[66]
Jiang H, Zhao Q, Wang P, Ma J, Zhai X. Improved separation and antifouling properties of PVDF gravity-driven membranes by blending with amphiphilic multi-arms polymer PPG-Si-PEG. J Membr Sci 2019; 588: 117148.
[67]
Ma C, Hu J, Sun W, Ma Z, Yang W, Wang L. Graphene oxide-polyethylene glycol incorporated PVDF nanocomposite ultrafiltration membrane with enhanced hydrophilicity, permeability, and antifouling performance. Chemosphere 2020; 253: 126649.
[68]
Nayak AK, Panigrahi PP. Solubility enhancement of etoricoxib by cosolvency approach. ISRN Physical Chemistry 2012; 820653.
[69]
Wu J, Zhao C, Lin W, Hu R, Wang Q, Chen H. Binding characteristics between polyethylene glycol [PEG] and proteins in aqueous solution. J Mater Chem B Mater Biol Med 2014; 2(20): 2983-92.
[70]
Stylianopoulos T, Poh M-Z, Insin N, Bawendi MG, Fukumura D, Munn LL. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 2010; 99(5): 1342-9.
[71]
Colipa. The European Cosmetic Toiletry and Perfumery Association. Cosmetic Frame Formulations 2000. 2000.
[72]
Kamal A, Reddy DR. A simple and green procedure for the conjugate addition of thiols to conjugated alkenes employing polyethylene glycol [PEG] as an efficient recyclable medium. Tetrahedron Lett 2005; 46(46): 7951-3.
[73]
Corma A, García H, Leyva A. Polyethyleneglycol as scaffold and solvent for reusable CC coupling homogeneous Pd catalysts. J Catal 2006; 240(2): 87-99.
[74]
Vafaeezadeh M, Hashemi MM. Polyethylene glycol [PEG] as a green solvent for carbon–carbon bond formation reactions. J Mol Liq 2015; 207: 73-9.
[75]
Yang H, Morris JJ, Lopina ST. Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J Colloid Interface Sci 2004; 273(1): 148-54.
[76]
Das B, Krishnaiah M, Balasubramanyam P, Veeranjaneyulu B, Kumar DN. A remarkably simple N-formylation of anilines using polyethylene glycol. Tetrahedron Lett 2008; 49(14): 2225-7.
[77]
Ali ME, Lamprecht A. Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation. Int J Pharm 2013; 456(1): 135-42.
[78]
Liu Y, Liang J, Liu XH, Fan JC, Shang ZC. Polyethylene glycol [PEG] as a benign solvent for Knoevenagel condensation. Chin Chem Lett 2008; 19(9): 1043-6.
[79]
Konda SG, Shaikh BM, Chavan SA, Dawane BS. Polyethylene glycol [PEG-400]: An efficient and recyclable reaction medium for the synthesis of novel 1; 5-benzodiazepines and their antimicrobial activity. Chin Chem Lett 2011; 22(1): 65-8.
[80]
Behr A, Miao Q. A new temperature-dependent solvent system based on polyethylene glycol 1000 and its use in rhodium catalyzed cooligomerization. J Mol Catal Chem 2004; 222(1-2): 127-32.
[81]
Brundrett MC, Kendrick B, Peterson CA. Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol. Biotech Histochem 1991; 66(3): 111-6.
[82]
Chandrasekhar S, Narsihmulu C, Sultana SS, Reddy NR. Poly [ethylene glycol][PEG] as a reusable solvent medium for organic synthesis. Application in the Heck reaction. Org Lett 2002; 4(25): 4399-401.
[83]
Ferraboschi P, Fiecchi A, Grisenti P, Santaniello E, Trave S. Polyethylene glycols as solvents for anionic activation: synthesis of thioacetates by means of potassium thioacetate in polyethylene glycol 400. Synth Commun 1987; 17(13): 1569-75.
[84]
Fisher AA. Immediate and delayed allergic contact reactions to polyethylene glycol. Contact Dermat 1978; 4(3): 135-8.
[85]
Namboodiri VV, Varma RS. Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol. Green Chem 2001; 3(3): 146-8.
[86]
Liang J, Lv J, Fan J-c, Shang Z-c. Polyethylene glycol as a nonionic liquid solvent for the synthesis of N-alkyl and N-arylimides. Synth Commun 2009; 39(16): 2822-8.
[87]
Kidwai M, Jahan A, Bhatnagar D. Polyethylene glycol: A recyclable solvent system for the synthesis of benzimidazole derivatives using CAN as catalyst. J Chem Sci 2010; 122(4): 607-12.
[88]
Heldebrant DJ, Jessop PG. Liquid poly [ethylene glycol] and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts. J Am Chem Soc 2003; 125(19): 5600-1.
[89]
Haimov A, Neumann R. Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation. Chem Commun 2002; (8): 876-7.
[90]
Nalage SV, Kalyankar MB, Patil VS, Bhosale SV, Deshmukh SU, Pawar RP. An efficient noncatalytic protocol for the synthesis of trisubstituted imidazole in polyethylene glycol using microwaves. Open Catal J 2010; 3: 58-61.
[91]
Tokiwa F, Tsujii K. Solubilization behavior of the surfactant-polyethylene glycol complex in relation to the degree of polymerization. Bull Chem Soc Jpn 1973; 46(9): 2684-6.
[92]
Ferlin F, Yetra SR, Warratz S, Vaccaro L, Ackermann L. Reusable Pd@ PEG Catalyst for Aerobic Dehydrogenative C− H/C− H Arylations of 1, 2, 3-Triazoles. Chemistry 2019; 25(49): 11427-31.
[93]
Peng Z, Ji C, Zhou Y, Zhao T, Leblanc RM. Polyethylene glycol [PEG] derived carbon dots: Preparation and applications. Appl Mater Today 2020; 20: 100677.
[94]
Ghom MH, Naykode MS, Humne VT, Lokhande PD. A one-pot direct regioselective iodination of Fischer-Borsche product using periodic acid in PEG-400. Tetrahedron Lett 2019; 60(15): 1029-31.
[95]
Feng L, Zheng J, Yang H, Guo Y, Li W, Li X. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol Energy Mater Sol Cells 2011; 95(2): 644-50.
[96]
Luo S-p, Cao J-z, Wang X. Properties of PEG/thermally modified wood flour/polypropylene [PP] composites. For Stud China 2012; 14(4): 307-14.
[97]
Rajeswari A, Amalraj A, Pius A. Adsorption studies for the removal of nitrate using chitosan/PEG and chitosan/PVA polymer composites. J Water Process Eng 2016; 9: 123-34.
[98]
Li B, Shu D, Wang R, Zhai L, Chai Y, Lan Y. Polyethylene glycol/silica [PEG@ SiO2] composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage. Renew Energy 2020; 145: 84-92.
[99]
Chen J, Zhang W, Shi X, Yao C, Kuai C. Use of PEG/SiO2 phase change composite to control porous asphalt concrete temperature. Constr Build Mater 2020; 245: 118459.
[100]
Kumar P, Dehiya BS, Sindhu A. Synthesis and characterization of nHA-PEG and nBG-PEG scaffolds for hard tissue engineering applications. Ceram Int 2019; 45(7): 8370-9.
[101]
Kurfürst MM. Detection and molecular weight determination of polyethylene glycol-modified hirudin by staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 1992; 200(2): 244-8.
[102]
Matsushima A, Okada M, Inada Y. Chymotrypsin modified with polyethylene glycol catalyzes peptide synthesis reaction in benzene. FEBS Lett 1984; 178(2): 275-7.
[103]
Ajisaka K, Iwashita Y. Modification of human hemoglobin with polyethylene glycol: a new candidate for blood substitute. Biochem Biophys Res Commun 1980; 97(3): 1076-81.
[104]
Bruin G, Chang J, Kuhlman R, Zegers K, Kraak J, Poppe H. Capillary zone electrophoretic separations of proteins in polyethylene glycol-modified capillaries. J Chromatogr A 1989; 471: 429-36.
[105]
Katre NV, Knauf MJ, Laird WJ. Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model. Proc Natl Acad Sci USA 1987; 84(6): 1487-91.
[106]
Mok H, Palmer DJ, Ng P, Barry MA. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther 2005; 11(1): 66-79.
[107]
Price M, Cornelius R, Brash J. Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochimica et Biophysica Acta [BBA]-. Biomembranes 2001; 1512(2): 191-205.
[108]
Sacchetti C, Motamedchaboki K, Magrini A, Palmieri G, Mattei M, Bernardini S. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano 2013; 7(3): 1974-89.
[109]
Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycol–modified fullerene on tumor. Jpn J Cancer Res 1997; 88(11): 1108-16.
[110]
Takahashi K, Ajima A, Yoshimoto T, Inada Y. Polyethylene glycol-modified catalase exhibits unexpectedly high activity in benzene. Biochem Biophys Res Commun 1984; 125(2): 761-6.
[111]
Tang G, Zeng J, Gao S, Ma Y, Shi L, Li Y. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials 2003; 24(13): 2351-62.
[112]
Yoshioka H. Surface modification of haemoglobin-containing liposomes with polyethylene glycol prevents liposome aggregation in blood plasma. Biomaterials 1991; 12(9): 861-4.
[113]
Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 2011; 32(8): 2183-93.
[114]
Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S. ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol [PEG]: influences of the corona [PEG chain length and surface density] and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000; 18(3-4): 301-13.
[115]
Hershfield MS, Chaffee S, Koro-Johnson L, Mary A, Smith AA, Short SA. Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol. Proc Natl Acad Sci USA 1991; 88(16): 7185-9.
[116]
Takahashi K, Kodera Y, Yoshimoto T, Ajima A, Matsushima A, Inada Y. Ester-exchange catalyzed by lipase modified with polyethylene glycol. Biochem Biophys Res Commun 1985; 131(2): 532-6.
[117]
Fuertges F, Abuchowski A. The clinical efficacy of poly [ethylene glycol]-modified proteins. J Control Release 1990; 11(1-3): 139-48.
[118]
Tsuji J-i, Hirose K, Kasahara E, Naitoh M, Yamamoto I. Studies on antigenicity of the polyethylene glycol [PEG]-modified uricase. Int J Immunopharmacol 1985; 7(5): 725-30.
[119]
Ramli RA, Laftah WA, Hashim S. Core–shell polymers: a review. RSC Advances 2013; 3(36): 15543-65.
[120]
Barbe C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M. Silica particles: a novel drug-delivery system. Adv Mater 2004; 16(21): 1959-66.
[121]
Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm 2003; 255(1-2): 13-32.
[122]
Sounderya N, Zhang Y. Use of core/shell structured nanoparticles for biomedical applications. Recent Pat Biomed Eng 2008; 1(1): 34-42.
[123]
Mahdavi Z, Rezvani H, Moraveji MK. Core–shell nanoparticles used in drug delivery-microfluidics: A review. RSC Advances 2020; 10(31): 18280-95.
[124]
Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials 2008; 29(10): 1509-17.
[125]
Wu Z, Ma X, Ma Y, Yang Z, Yuan Y, Liu C. Core/Shell PEGS/HA hybrid nanoparticle via micelle-coordinated mineralization for tumor-specific therapy. ACS Appl Mater Interfaces 2020; 12(10): 12109-19.
[126]
Jenjob R, Phakkeeree T, Crespy D. Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomater Sci 2020; 8(10): 2756-70.
[127]
Gan D, Lyon LA. Synthesis and protein adsorption resistance of PEG-modified poly [N-isopropylacrylamide] core/shell microgels. Macromolecules 2002; 35(26): 9634-9.
[128]
Gillich T, Acikgöz C, Isa L, Schlüter AD, Spencer ND, Textor M. PEG-stabilized core–shell nanoparticles: Impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation. ACS Nano 2012; 7(1): 316-29.
[129]
He S, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. Injectable biodegradable polymer composites based on poly [propylene fumarate] crosslinked with poly [ethylene glycol]-dimethacrylate. Biomaterials 2000; 21(23): 2389-94.
[130]
Ho H, Lee J. PEG/PLA core/shell particles from coaxial electrohydrodynamic spray drying. Macromol Res 2011; 19(8): 815-21.
[131]
Li J, He L, Liu T, Cao X, Zhu H. Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 2013; 118: 48-53.
[132]
Alqahtani MS, Islam MS, Podaralla S, Kaushik RS, Reineke J, Woyengo T. Food protein based core–shell nanocarriers for oral drug delivery: Effect of shell composition on in vitro and in vivo functional performance of zein nanocarriers. Mol Pharm 2017; 14(3): 757-69.
[133]
Chen T, Wu W, Xiao H, Chen Y, Chen M, Li J. Intelligent drug delivery system based on mesoporous silica nanoparticles coated with an ultra-pH-sensitive gatekeeper and poly [ethylene glycol]. ACS Macro Lett 2015; 5(1): 55-8.
[134]
Lee WC, Li YC, Chu IM. Amphiphilic poly [D, L-lactic acid]/poly [ethylene glycol]/poly [D, L-lactic acid] nanogels for controlled release of hydrophobic drugs. Macromol Biosci 2006; 6(10): 846-54.
[135]
Prabaharan M, Grailer JJ, Steeber DA, Gong S. Thermosensitive micelles based on folate-conjugated poly [N-vinylcaprolactam]-block-poly [ethylene glycol] for tumor-targeted drug delivery. Macromol Biosci 2009; 9(8): 744-53.
[136]
Tardy BL, Dam HH, Kamphuis MM, Richardson JJ, Caruso F. Self-assembled stimuli-responsive polyrotaxane core–shell particles. Biomacromolecules 2013; 15(1): 53-9.
[137]
Yu H, Jia Y, Yao C, Lu Y. PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique. Int J Pharm 2014; 469(1): 17-22.
[138]
Zamani S, Khoee S. Preparation of core–shell chitosan/PCL-PEG triblock copolymer nanoparticles with ABA and BAB morphologies: Effect of intraparticle interactions on physicochemical properties. Polymer (Guildf) 2012; 53(25): 5723-36.
[139]
Zhang L, Hu Y, Jiang X, Yang C, Lu W, Yang YH. Camptothecin derivative-loaded poly [caprolactone-co-lactide]-b-PEG-b-poly [caprolactone-co-lactide] nanoparticles and their biodistribution in mice. J Control Release 2004; 96(1): 135-48.
[140]
Qi Z, Shi J, Zhang Z, Cao Y, Li J, Cao S. PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Mater Sci Eng C 2019; 104: 109889.
[141]
Rajkumar S, Prabaharan M. Multi-functional core-shell Fe3O4@ Au nanoparticles for cancer diagnosis and therapy. Colloids Surf B Biointerfaces 2019; 174: 252-9.
[142]
Campani V, Giarra S, De Rosa G. Lipid-based core-shell nanoparticles: Evolution and potentialities in drug delivery. OpenNano 2018; 3: 5-17.
[143]
Ghaznavi H, Hosseini-Nami S, Kamrava SK, Irajirad R, Maleki S, Shakeri-Zadeh A. Folic acid conjugated PEG coated gold–iron oxide core–shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. Artif Cells Nanomed Biotechnol 2018; 46(8): 1594-604.
[144]
Danafar H, Sharafi A. Co-delivery of sulforaphane and curcumin with pegylated iron oxide-gold core shell nanoparticles for delivery to breast cancer cell line. Iranian journal of pharmaceutical research. IJPR 2018; 17(2): 480.
[145]
Massoumi B, Abbasian M, Jahanban-Esfahlan R, Motamedi S, Samadian H, Rezaei A. PEGylated hollow pH-responsive polymeric nanocapsules for controlled drug delivery. Polym Int 2020; 69(5): 519-27.
[146]
Prasad SR, Jayakrishnan A, Kumar TS. Combinational delivery of anticancer drugs for osteosarcoma treatment using electrosprayed core shell nanocarriers. J Mater Sci Mater Med 2020; 31(5): 1-11.
[147]
Akhavi SS, Dehaghi SM. Drug Delivery of Amphotericin B through Core-Shell Composite Based on PLGA/Ag/Fe3O4: In Vitro Test. Appl Biochem Biotechnol 2020; 191(2): 496-510.
[148]
Zomorodian K, Veisi H, Mousavi SM, Ataabadi MS, Yazdanpanah S, Bagheri J. Modified magnetic nanoparticles by PEG-400-immobilized Ag nanoparticles [Fe3O4@ PEG–Ag] as a core/shell nanocomposite and evaluation of its antimicrobial activity. Int J Nanomedicine 2018; 13: 3965.
[149]
Xie P, Liu P. Core-shell-corona chitosan-based micelles for tumor intracellular pH-triggered drug delivery: Improving performance by grafting polycation. Int J Biol Macromol 2019; 141: 161-70.
[150]
Xiang J, Li Y, Zhang Y, Wang G, Xu H, Zhou Z. Polyphenol-cisplatin complexation forming core-shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. J Control Release 2021; 330: 992-1003.
[151]
Hernández-Montoto A, Gorbe M, Llopis-Lorente A, Terrés JM, Montes R, Cao-Milán R. A NIR light-triggered drug delivery system using core–shell gold nanostars–mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG. Chem Commun 2019; 55(61): 9039-42.
[152]
Choi JE, Kim H-K, Kim Y, Kim G, Lee TS, Kim S. 800 nm near-infrared light-excitable intense green-emitting Li [Gd, Y] F4: Yb, Er-based core/shell/shell upconversion nanophosphors for efficient liver cancer cell imaging. Mater Des 2020; 195: 108941.
[153]
Joshy K, Snigdha S, George A, Kalarikkal N, Pothen LA, Thomas S. Core–shell nanoparticles of carboxy methyl cellulose and compritol-PEG for antiretroviral drug delivery. Cellulose 2017; 24(11): 4759-71.
[154]
Bharti S, Kaur G, Gupta S, Tripathi S. Pegylated CdSe/ZnS core/shell nanoparticles for controlled drug release. Mater Sci Eng B 2019; 243: 115-24.
[155]
Oladipo AO, Nkambule TT, Mamba BB, Msagati TA. The stimuli-responsive properties of doxorubicin adsorbed onto bimetallic Au@ Pd nanodendrites and its potential application as drug delivery platform. Mater Sci Eng C 2020; 110: 110696.
[156]
Taufiq A, Hidayat A, Saputro RE, Mufti N, Eds. Preparation and characterization of magnetite/peg nanoparticles combined with curcumin for drug delivery application. Key Engineering Materials 2020; 855: 299-307.
[157]
(a) Mohanta SC, Saha A, Devi PS. PEGylated iron oxide nanoparticles for pH responsive drug delivery application. Mater Today Proc 2018; 5(3): 9715-25. (b) An N, Wang Y, Li M, Lin H, Qu F. The synthesis of core–shell Cu9S5@mSiO2–ICG@PEG–LA for photothermal and photodynamic therapy. New J. Chem 2018; 42(22): 18318-27.
[158]
Chen J, Cao L, Cui Y, Tu K, Wang H, Wang L-Q. The exploration of endocytic mechanisms of PLA-PEG nanoparticles prepared by coaxialtri-capillary electrospray-template removal method. Colloids Surf B Biointerfaces 2018; 161: 10-7.
[159]
Cong H-L, Jia F-F, Wang S, Yu M-T, Shen Y-Q, Yu B. Core-Shell Upconversion Nanoparticle@ Metal-Organic Framework Nanoprobes for Targeting and Drug Delivery. Integr Ferroelectr 2020; 206(1): 66-78.
[160]
Domac B, AlKhatib S, Zirhli O, Akdogan N, Dirican ŞÖ, Bulut G. Effects of PEGylated Fe–Fe3O4 core-shell nanoparticles on NIH3T3 and A549 cell lines. Heliyon 2020; 6(1): e03124.
[161]
Joshy K, Snigdha S, Anne G, Nandakumar K, Sabu T. Poly [vinyl pyrrolidone]-lipid based hybrid nanoparticles for anti viral drug delivery. Chem Phys Lipids 2018; 210: 82-9.
[162]
Li H, Niu Y. Synthesis and characterization of amphiphilic block polymer poly [ethylene glycol]-poly [propylene carbonate]-poly [ethylene glycol] for drug delivery. Mater Sci Eng C 2018; 89: 160-5.
[163]
Li Z, Li Z, Sun L, Du B, Wang Y, Zhao G. Core-Shell Bi2Se3@ mSiO2-PEG as a multifunctional drug-delivery nanoplatform for synergistic thermo-chemotherapy with infrared thermal imaging of cancer cells. Part Part Syst Charact 2018; 35(3): 1700337.
[164]
Ebadi M, Bullo S, Buskara K, Hussein MZ, Fakurazi S, Pastorin G. Release of a liver anticancer drug, sorafenib from its PVA/LDH-and PEG/LDH-coated iron oxide nanoparticles for drug delivery applications. Sci Rep 2020; 10(1): 1-19.
[165]
Sengel-Turk CT, Ozmen N, Bakar-Ates F. Design, characterization and evaluation of cucurbitacin B-loaded core–shell-type hybrid nano-sized particles using DoE approach. Polym Bull 2021; 78(6): 3327-51.
[166]
Thambiraj S, Hema S, Shankaran DR. Functionalized gold nanoparticles for drug delivery applications. Mater Today Proc 2018; 5(8): 16763-73.
[167]
Jose R, Jothi NN. The synthesis and characterisation of curcumin loaded Ag [1-X] Ni X Fe2O4 for drug delivery. Mater Technol 2021; 36(6): 339-46.
[168]
Villarreal-Gómez LJ, Serrano-Medina A, Torres-Martínez EJ, Perez-González GL, Cornejo-Bravo JM. Polymeric advanced delivery systems for antineoplasic drugs: Doxorubicin and 5-fluorouracil. e-Polymers. 2018; 18(4): 359-72.
[169]
Liu X, Wang Q, Li C, Zou R, Li B, Song G. Cu 2− x Se@ mSiO 2–PEG core–shell nanoparticles: a low-toxic and efficient difunctional nanoplatform for chemo-photothermal therapy under near infrared light radiation with a safe power density. Nanoscale 2014; 6(8): 4361-70.
[170]
Covaliu CI, Jitaru I, Paraschiv G, Vasile E, Biriş S-Ş, Diamandescu L. Core–shell hybrid nanomaterials based on CoFe2O4 particles coated with PVP or PEG biopolymers for applications in biomedicine. Powder Technol 2013; 237: 415-26.
[171]
Chan JM, Zhang L, Yuet KP, Liao G, Rhee J-W, Langer R. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 2009; 30(8): 1627-34.
[172]
Koo AN, Min KH, Lee HJ, Lee S-U, Kim K, Kwon IC. Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell- corona micelles with shell-specific redox-responsive cross-links. Biomaterials 2012; 33(5): 1489-99.
[173]
Wydra RJ, Kruse AM, Bae Y, Anderson KW, Hilt JZ. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy. Mater Sci Eng C 2013; 33(8): 4660-6.
[174]
Luo Z, Jiang J. pH-sensitive drug loading/releasing in amphiphilic copolymer PAE–PEG: Integrating molecular dynamics and dissipative particle dynamics simulations. J Control Release 2012; 162(1): 185-93.
[175]
Chan Y, Bulmus V, Zareie MH, Byrne FL, Barner L, Kavallaris M. Acid-cleavable polymeric core–shell particles for delivery of hydrophobic drugs. J Control Release 2006; 115(2): 197-207.
[176]
Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung W-J, Porter JE. Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C. Bioconjug Chem 2001; 12(2): 195-202.
[177]
Danafar H, Davaran S, Rostamizadeh K, Valizadeh H, Hamidi M. Biodegradable m-PEG/PCL core-shell micelles: preparation and characterization as a sustained release formulation for curcumin. Adv Pharm Bull 2014; 4(Suppl. 2): 501.
[178]
Thangaraja A, Savitha V, Jegatheesan K. Preparation and characterization of polyethylene glycol coated silica nanoparticles for drug delivery application. Comp Gen Pharmacol 2010; 4: 31-8.
[179]
Qiao M, Chen D, Ma X, Liu Y. Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 2005; 294(1-2): 103-12.
[180]
Song Z, Xu Y, Yang W, Cui L, Zhang J, Liu J. Graphene/tri-block copolymer composites prepared via RAFT polymerizations for dual controlled drug delivery via pH stimulation and biodegradation. Eur Polym J 2015; 69: 559-72.
[181]
Wu H, Liu G, Zhang S, Shi J, Zhang L, Chen Y. Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and cancer-cell-specific ligands. J Mater Chem 2011; 21(9): 3037-45.
[182]
Dong Y, Feng S-S. Methoxy poly [ethylene glycol]-poly [lactide][MPEG-PLA] nanoparticles for controlled delivery of anticancer drugs. Biomaterials 2004; 25(14): 2843-9.
[183]
Zhang X, Zhang H, Wu Z, Wang Z, Niu H, Li C. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm 2008; 68(3): 526-34.
[184]
Dong P, Wang X, Gu Y, Wang Y, Wang Y, Gong C. Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surf A Physicochem Eng Asp 2010; 358(1-3): 128-34.
[185]
Nguyen TTT, Ghosh C, Hwang S-G, Chanunpanich N, Park JS. Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 2012; 439(1-2): 296-306.
[186]
Hu Y, Jiang X, Ding Y, Zhang L, Yang C, Zhang J. Preparation and drug release behaviors of nimodipine-loaded poly [caprolactone]–poly [ethylene oxide]–polylactide amphiphilic copolymer nanoparticles. Biomaterials 2003; 24(13): 2395-404.
[187]
Endres TK, Beck-Broichsitter M, Samsonova O, Renette T, Kissel TH. Self-assembled biodegradable amphiphilic PEG–PCL–lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials 2011; 32(30): 7721-31.
[188]
Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Control Release 2000; 63(1-2): 155-63.
[189]
Gao X, Wang B, Wei X, Rao W, Ai F, Zhao F. Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer. Int J Nanomedicine 2013; 8: 971.
[190]
Khoee S, Hassanzadeh S, Goliaie B. Effects of hydrophobic drug–polyesteric core interactions on drug loading and release properties of poly [ethylene glycol]–polyester–poly [ethylene glycol] triblock core–shell nanoparticles. Nanotechnology 2007; 18(17): 175602.
[191]
Banerjee SS, Aher N, Patil R, Khandare J. Poly [ethylene glycol]-prodrug conjugates: concept, design, and applications. Journal of Drug Delivery 2012; 2012: 103973.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy