Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Therapeutic and Protective Potential of Mesenchymal Stem Cells, Pharmaceutical Agents and Current Vaccines Against COVID-19

Author(s): Mehdi Rasouli, Fatemeh Vakilian and Javad Ranjbari*

Volume 17, Issue 2, 2022

Published on: 16 September, 2021

Page: [166 - 185] Pages: 20

DOI: 10.2174/1574888X16666201221151853

Price: $65

Abstract

It has been almost 18 months since the first outbreak of COVID-19 disease was reported in Wuhan, China. This unexpected devastating phenomenon, raised a great deal of concerns and anxiety among people around the world and imposed a huge economic burden on the nations’ health care systems. Accordingly, clinical scientists, pharmacologists and physicians worldwide felt an urgent demand for a safe, effective therapeutic agent, treatment strategy or vaccine in order to prevent or cure the recently-emerged disease. Initially, due to the lack of specific pharmacological agents and approved vaccines to combat the COVID-19, the disease control in the confirmed cases was limited to supportive care. Accordingly, repositioning or repurposing current drugs and examining their possible therapeutic efficacy received a great deal of attention. Despite revealing promising results in some clinical trials, the overall results are conflicting. For this reason, there is an urgent need to seek and investigate other potential therapeutics. Mesenchymal stem cells (MSC), representing immunomodulatory and regenerative capacity to treat both curable and intractable diseases, have been investigated in COVID-19 clinical trials carried out in different parts of the world. Nevertheless, up to now, none of the MSC-based approaches has been approved in controlling COVID-19 infection. Thanks to the fact that the final solution for defeating the pandemic is developing a safe, effective vaccine, enormous efforts and clinical research have been carried out.

In this review, we will concisely discuss the safety and efficacy of the most relevant pharmacological agents, MSC-based approaches and candidate vaccines for treating and preventing COVID-19 infection.

Keywords: Mesenchymal stem cell, cell therapy, drug, drug repositioning, vaccine, COVID-19, SARS-CoV-2.

Graphical Abstract
[1]
Morabia A. Pandemics and methodological developments in epidemiology history. J Clin Epidemiol 2020; 125: 164-9.
[http://dx.doi.org/10.1016/j.jclinepi.2020.06.008] [PMID: 32540385]
[2]
Wu Y-C, Chen C-S, Chan Y-J. The outbreak of COVID-19: An overview. J Chin Med Assoc 2020; 83(3): 217-20.
[http://dx.doi.org/10.1097/JCMA.0000000000000270] [PMID: 32134861]
[3]
Liu Y-C, Kuo R-L, Shih S-R. COVID-19: The first documented coronavirus pandemic in history. Biomed J 2020; 43(4): 328-33.
[http://dx.doi.org/10.1016/j.bj.2020.04.007] [PMID: 32387617]
[4]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[5]
Fang Y, Nie Y, Penny M. Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis. J Med Virol 2020; 92(6): 645-59.
[http://dx.doi.org/10.1002/jmv.25750] [PMID: 32141624]
[6]
She J, Liu L, Liu W. COVID-19 epidemic: Disease characteristics in children. J Med Virol 2020; 92(7): 747-54.
[http://dx.doi.org/10.1002/jmv.25807] [PMID: 32232980]
[7]
Altay O, Mohammadi E, Lam S, et al. Current status of COVID-19 therapies and drug repositioning applications. iScience 2020; 23(7): 101303.
[http://dx.doi.org/10.1016/j.isci.2020.101303] [PMID: 32622261]
[8]
McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020; 157: 104859.
[http://dx.doi.org/10.1016/j.phrs.2020.104859] [PMID: 32360480]
[9]
Javorac D, Grahovac L, Manić L, Stojilković N, Anđelković M, Bulat Z, et al. An overview of safety assessment of the medicines currently used in the treatment of COVID-19 disease. Food Chem Toxicol 2020; 144: 111639.
[http://dx.doi.org/10.1016/j.fct.2020.111639] [PMID: 32707160]
[10]
Bhandari R, Khanna G, Kuhad A. Pharmacological insight into potential therapeutic agents for the deadly COVID-19 pandemic. Eur J Pharmacol 2021; 890: 173643.
[http://dx.doi.org/10.1016/j.ejphar.2020.173643] [PMID: 33065092]
[11]
Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 Mpro: A potential target for peptidomimetics and small-molecule inhibitors. Biomolecules 2021; 11(4): 607.
[http://dx.doi.org/10.3390/biom11040607] [PMID: 33921886]
[12]
Öztürk S, Elçin AE, Koca A, Elçin YM. Therapeutic applications of stem cells and extracellular vesicles in emergency care: Futuristic perspectives. Stem Cell Rev Rep 2021; 17(2): 390-410.
[PMID: 32839921]
[13]
Choudhery MS, Harris DT. Stem cell therapy for COVID-19: Possibilities and challenges. Cell Biol Int 2020; 44(11): 2182-91.
[http://dx.doi.org/10.1002/cbin.11440] [PMID: 32767687]
[14]
Metcalfe SM. Mesenchymal stem cells and management of COVID-19 pneumonia. Med Drug Discov 2020; 5: 100019.
[15]
Verma YK, Verma R, Tyagi N, Behl A, Kumar S, Gangenahalli GU. COVID-19 and its therapeutics: Special emphasis on mesenchymal stem cells based therapy. Stem Cell Rev Rep 2021; 17(1): 113-31.
[http://dx.doi.org/10.1007/s12015-020-10037-2] [PMID: 32920752]
[16]
Yadav P, Vats R, Bano A, Bhardwaj R. Mesenchymal stem cell immunomodulation and regeneration therapeutics as an ameliorative approach for COVID-19 pandemics. Life Sci 2020; 263: 118588.
[http://dx.doi.org/10.1016/j.lfs.2020.118588] [PMID: 33049279]
[17]
Schäfer R, Spohn G, Bechtel M, Bojkova D, Baer PC, Kuçi S, et al. Human mesenchymal stromal cells are resistant to SARS-CoV-2 infection under steady-state, inflammatory conditions and in the presence of SARS-CoV-2-infected cells. Stem Cell Reports 2021; 16(3): 419-27.
[PMID: 32950067]
[18]
Kumar P, Sah AK, Tripathi G, et al. Role of ACE2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in COVID-19. Mol Cell Biochem 2021; 476(2): 553-74.
[http://dx.doi.org/10.1007/s11010-020-03924-2] [PMID: 33029696]
[19]
Vasireddy D, Atluri P, Malayala SV, Vanaparthy R, Mohan G. Review of COVID-19 vaccines approved in the United States of America for emergency use. J Clin Med Res 2021; 13(4): 204-13.
[http://dx.doi.org/10.14740/jocmr4490] [PMID: 34007358]
[20]
Soleimanpour S, Yaghoubi A. COVID-19 vaccine: Where are we now and where should we go? Expert Rev Vaccines 2021; 20(1): 23-44.
[http://dx.doi.org/10.1080/14760584.2021.1875824] [PMID: 33435774]
[21]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[22]
Gabutti G, d’Anchera E, Sandri F, Savio M, Stefanati A. Coronavirus: Update related to the current outbreak of COVID-19. Infect Dis Ther 2020; 9(2): 1-13.
[http://dx.doi.org/10.1007/s40121-020-00295-5] [PMID: 32292686]
[23]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[24]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[25]
Sharma A, Ahmad Farouk I, Lal SK. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses 2021; 13(2): 202.
[http://dx.doi.org/10.3390/v13020202] [PMID: 33572857]
[26]
Mulaw Belete T. An up-to-date overview of therapeutic agents for the treatment of COVID-19 disease. Clin Pharmacol 2020; 12: 203-12.
[http://dx.doi.org/10.2147/CPAA.S284809] [PMID: 33363416]
[27]
Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta 2020; 508: 254-66.
[http://dx.doi.org/10.1016/j.cca.2020.05.044] [PMID: 32474009]
[28]
Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or future. Stem Cell Rev Rep 2020; 16(3): 427-33.
[http://dx.doi.org/10.1007/s12015-020-09973-w] [PMID: 32281052]
[29]
Burke RM, Killerby ME, Newton S, et al. Symptom profiles of a convenience sample of patients with COVID-19-United States, January-April 2020. MMWR Morb Mortal Wkly Rep 2020; 69(28): 904-8.
[http://dx.doi.org/10.15585/mmwr.mm6928a2] [PMID: 32673296]
[30]
Shetty R, Ghosh A, Honavar SG, Khamar P, Sethu S. Therapeutic opportunities to manage COVID-19/SARS-CoV-2 infection: Present and future. Indian J Ophthalmol 2020; 68(5): 693-702.
[http://dx.doi.org/10.4103/ijo.IJO_639_20] [PMID: 32317431]
[31]
Ragia G, Manolopoulos VG. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: A promising approach for uncovering early COVID-19 drug therapies. Eur J Clin Pharmacol 2020; 76(12): 1623-30.
[http://dx.doi.org/10.1007/s00228-020-02963-4] [PMID: 32696234]
[32]
Menzella F, Biava M, Barbieri C, Livrieri F, Facciolongo N. Pharmacological treatment of COVID-19: Lights and shadows. Drugs Context 2020; 9: 9.
[http://dx.doi.org/10.7573/dic.2020-4-6] [PMID: 32499832]
[33]
Gao YM, Xu G, Wang B, Liu BC. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J Intern Med 2020.
[http://dx.doi.org/10.1111/joim.13144] [PMID: 32696489]
[34]
Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol 2020; 11: 1708.
[http://dx.doi.org/10.3389/fimmu.2020.01708] [PMID: 32754163]
[35]
Abdin SM, Elgendy SM, Alyammahi SK, Alhamad DW, Omar HA. Tackling the cytokine storm in COVID-19, challenges and hopes. Life Sci 2020; 257: 118054.
[http://dx.doi.org/10.1016/j.lfs.2020.118054] [PMID: 32663575]
[36]
Rebold N, Holger D, Alosaimy S, Morrisette T, Rybak M. COVID-19: Before the fall, an evidence-based narrative review of treatment options. Infect Dis Ther 2021; 10(1): 93-113.
[http://dx.doi.org/10.1007/s40121-021-00399-6] [PMID: 33495967]
[37]
Thevarajan I, Buising KL, Cowie BC. Clinical presentation and management of COVID-19. Med J Aust 2020; 213(3): 134-9.
[http://dx.doi.org/10.5694/mja2.50698] [PMID: 32677734]
[38]
Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases ACS Cent Sci 2020; 6(3): 315-31.
[http://dx.doi.org/10.1021/acscentsci.0c00272]
[39]
Broughton KM, Sussman MA. Empowering adult stem cells for myocardial regeneration V2.0: Success in small steps. Circ Res 2016; 118(5): 867-80.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.305227] [PMID: 26941423]
[40]
Goradel NH, Hour FG, Negahdari B, et al. Stem cell therapy: A new therapeutic option for cardiovascular diseases. J Cell Biochem 2018; 119(1): 95-104.
[http://dx.doi.org/10.1002/jcb.26169] [PMID: 28543595]
[41]
Basiri A, Mansouri F, Azari A, et al. Stem cell therapy potency in personalizing severe COVID-19 treatment. Stem Cell Rev Rep 2021; 17(1): 193-213.
[http://dx.doi.org/10.1007/s12015-020-10110-w] [PMID: 33511518]
[42]
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54(2): 789-92.
[http://dx.doi.org/10.1038/s41409-019-0616-z] [PMID: 31431712]
[43]
Steens J, Klein D. Current strategies to generate human mesenchymal stem cells in vitro. Stem Cells Int 2018; 2018: 6726185.
[http://dx.doi.org/10.1155/2018/6726185]
[44]
Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells Int 2016; 2016: 5646384.
[http://dx.doi.org/10.1155/2016/5646384] [PMID: 26770208]
[45]
Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant 2019; 28(7): 801-12.
[http://dx.doi.org/10.1177/0963689719837897] [PMID: 31018669]
[46]
Kim J, Shapiro L, Flynn A. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. Pharmacol Ther 2015; 151: 8-15.
[http://dx.doi.org/10.1016/j.pharmthera.2015.02.003] [PMID: 25709098]
[47]
Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal stem cells: A new piece in the puzzle of COVID-19 treatment. Front Immunol 2020; 11: 1563.
[http://dx.doi.org/10.3389/fimmu.2020.01563] [PMID: 32719683]
[48]
Ciccocioppo R, Klersy C, Leffler DA, Rogers R, Bennett D, Corazza GR. Systematic review with meta-analysis: Safety and efficacy of local injections of mesenchymal stem cells in perianal fistulas. JGH Open 2019; 3(3): 249-60.
[http://dx.doi.org/10.1002/jgh3.12141] [PMID: 31276044]
[49]
Gomez-Salazar M, Gonzalez-Galofre ZN, Casamitjana J, Crisan M, James AW, Péault B. Five decades later, are mesenchymal stem cells still relevant? Front Bioeng Biotechnol 2020; 8: 148.
[http://dx.doi.org/10.3389/fbioe.2020.00148] [PMID: 32185170]
[50]
Chen W, Zhuo Y, Duan D, Lu M. Effects of hypoxia on differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 2020; 15(4): 332-9.
[http://dx.doi.org/10.2174/1574888X14666190823144928] [PMID: 31441734]
[51]
Bui HTH, Nguyen LT, Than UTT. Influences of xeno-free media on mesenchymal stem cell expansion for clinical application. Tissue Eng Regen Med 2020; 18(1): 15-23.
[PMID: 33150562]
[52]
Otero-Viñas M, Falanga V. Mesenchymal stem cells in chronic wounds: The spectrum from basic to advanced therapy. Adv Wound Care 2016; 5(4): 149-63.
[http://dx.doi.org/10.1089/wound.2015.0627] [PMID: 27076993]
[53]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; What we know so far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[54]
Aranda-Valderrama P, Kaynar AM. The basic science and molecular mechanisms of lung injury and acute respiratory distress syndrome. Int Anesthesiol Clin 2018; 56(1): 1-25.
[http://dx.doi.org/10.1097/AIA.0000000000000177] [PMID: 29227309]
[55]
Revercomb L, Hanmandlu A, Wareing N, Akkanti B, Karmouty-Quintana H. Mechanisms of pulmonary hypertension in acute respiratory distress syndrome (ARDS). Front Mol Biosci 2021; 7: 624093.
[http://dx.doi.org/10.3389/fmolb.2020.624093] [PMID: 33537342]
[56]
Wang W, Lei W, Jiang L, et al. Therapeutic mechanisms of mesenchymal stem cells in acute respiratory distress syndrome reveal potentials for COVID-19 treatment. J Transl Med 2021; 19(1): 198.
[http://dx.doi.org/10.1186/s12967-021-02862-x] [PMID: 33971907]
[57]
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers 2019; 5(1): 18.
[http://dx.doi.org/10.1038/s41572-019-0069-0] [PMID: 30872586]
[58]
Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: Pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 2020; 46(4): 606-18.
[http://dx.doi.org/10.1007/s00134-020-05942-6] [PMID: 32016537]
[59]
Zhao Q, Ren H, Han Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother 2016; 2(1): 3-20.
[http://dx.doi.org/10.1016/j.jocit.2014.12.001]
[60]
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: Mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev 2016; 96(3): 1127-68.
[http://dx.doi.org/10.1152/physrev.00019.2015] [PMID: 27335447]
[61]
Simonson OE, Mougiakakos D, Heldring N, et al. In vivo effects of mesenchymal stromal cells in two patients with severe acute respiratory distress syndrome. Stem Cells Transl Med 2015; 4(10): 1199-213.
[http://dx.doi.org/10.5966/sctm.2015-0021] [PMID: 26285659]
[62]
de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 2018; 36(4): 602-15.
[http://dx.doi.org/10.1002/stem.2779] [PMID: 29341339]
[63]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[64]
Fischer UM, Harting MT, Jimenez F, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev 2009; 18(5): 683-92.
[http://dx.doi.org/10.1089/scd.2008.0253] [PMID: 19099374]
[65]
Qu W, Wang Z, Hare JM, et al. Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome. Stem Cells Transl Med 2020; 9(9): 1007-22.
[http://dx.doi.org/10.1002/sctm.20-0146] [PMID: 32472653]
[66]
Meng F, Xu R, Wang S, et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: A phase 1 clinical trial. Signal Transduct Target Ther 2020; 5(1): 172.
[http://dx.doi.org/10.1038/s41392-020-00286-5] [PMID: 32855385]
[67]
Hashemian SR, Aliannejad R, Zarrabi M, et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: A case series. Stem Cell Res Ther 2021; 12(1): 91.
[http://dx.doi.org/10.1186/s13287-021-02165-4] [PMID: 33514427]
[68]
Shu L, Niu C, Li R, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2020; 11(1): 361.
[http://dx.doi.org/10.1186/s13287-020-01875-5] [PMID: 32811531]
[69]
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6(1): 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 33731711]
[70]
Mazini L, Ezzoubi M, Malka G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: Flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther 2021; 12(1): 1-17.
[http://dx.doi.org/10.1186/s13287-020-02006-w] [PMID: 33397467]
[71]
Xiao K, Hou F, Huang X, Li B, Qian ZR, Xie L. Mesenchymal stem cells: Current clinical progress in ARDS and COVID-19. Stem Cell Res Ther 2020; 11(1): 305.
[http://dx.doi.org/10.1186/s13287-020-01804-6] [PMID: 32698898]
[72]
Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat Rev Rheumatol 2020; 16(3): 155-66.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[73]
Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A mini-review. Clin Drug Investig 2018; 38(8): 653-71.
[http://dx.doi.org/10.1007/s40261-018-0656-y] [PMID: 29737455]
[74]
Ballabio A, Bonifacino JS. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol 2020; 21(2): 101-18.
[PMID: 31768005]
[75]
Kužnik A, Benčina M, Švajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186(8): 4794-804.
[http://dx.doi.org/10.4049/jimmunol.1000702] [PMID: 21398612]
[76]
An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Antimalarial drugs as immune modulators: New mechanisms for old drugs. Annu Rev Med 2017; 68: 317-30.
[http://dx.doi.org/10.1146/annurev-med-043015-123453] [PMID: 27813878]
[77]
Zhang X, Shi H, Wu J, et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 2013; 51(2): 226-35.
[http://dx.doi.org/10.1016/j.molcel.2013.05.022] [PMID: 23747010]
[78]
Srinivasa A, Tosounidou S, Gordon C. Increased incidence of gastrointestinal side effects in patients taking hydroxychloroquine: A brand-related issue? J Rheumatol 2017; 44(3): 398.
[http://dx.doi.org/10.3899/jrheum.161063] [PMID: 28250164]
[79]
Dogar MU, Shah NN, Ishtiaq S, et al. Hydroxychloroquine-induced restrictive cardiomyopathy: A case report. Postgrad Med J 2018; 94(1109): 185-6.
[http://dx.doi.org/10.1136/postgradmedj-2017-135236] [PMID: 29353247]
[80]
Fasano S, Pierro L, Pantano I, Iudici M, Valentini G. Longterm hydroxychloroquine therapy and low-dose aspirin may have an additive effectiveness in the primary prevention of cardiovascular events in patients with systemic lupus erythematosus. J Rheumatol 2017; 44(7): 1032-8.
[http://dx.doi.org/10.3899/jrheum.161351] [PMID: 28507183]
[81]
Gevers S, Kwa MSG, Wijnans E, van Nieuwkoop C. Safety considerations for chloroquine and hydroxychloroquine in the treatment of COVID-19. Clin Microbiol Infect 2020; 26(9): 1276-7.
[http://dx.doi.org/10.1016/j.cmi.2020.05.006] [PMID: 32422406]
[82]
D’Acquarica I, Agranat I. Chiral switches of chloroquine and hydroxychloroquine: Potential drugs to treat COVID-19. Drug Discov Today 2020; 25(7): 1121-3.
[http://dx.doi.org/10.1016/j.drudis.2020.04.021] [PMID: 32371138]
[83]
Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr 2020; 14(3): 241-6.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[84]
Zhou N, Pan T, Zhang J, et al. Glycopeptide antibiotics potently inhibit cathepsin l in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J Biol Chem 2016; 291(17): 9218-32.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[85]
Ou T, Mou H, Zhang L, Ojha A, Choe H, Farzan M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog 2021; 17(1): e1009212.
[http://dx.doi.org/10.1371/journal.ppat.1009212] [PMID: 33465165]
[86]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[87]
Chen Z, Hu J, Zhang Z, et al. Efficacy of hydroxychloroquine in patients with COVID-19: Results of a randomized clinical trial. medrxiv 2020.
[http://dx.doi.org/10.1101/2020.03.22.20040758]
[88]
Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med 2020; 382(25): 2411-8.
[http://dx.doi.org/10.1056/NEJMoa2012410] [PMID: 32379955]
[89]
Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[90]
Andreani J, Le Bideau M, Duflot I, et al. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog 2020; 145: 104228.
[http://dx.doi.org/10.1016/j.micpath.2020.104228] [PMID: 32344177]
[91]
Gautret P, Lagier J-C, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis 2020; 34: 101663.
[http://dx.doi.org/10.1016/j.tmaid.2020.101663] [PMID: 32289548]
[92]
Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 2020; 50(4): 384.
[http://dx.doi.org/10.1016/j.medmal.2020.03.006] [PMID: 32240719]
[93]
Yakoub-Agha I. Hydroxychloroquine in COVID-19: Does the end justify the means? Curr Res Transl Med 2020; 68(3): 81-2.
[http://dx.doi.org/10.1016/j.retram.2020.04.002] [PMID: 32340837]
[94]
Funck-Brentano C, Salem J-E, Nguyen LS, Drici M-D, Roden DM. Response to the editorial “COVID-19 in patients with cardiovascular diseases”: COVID-19 treatment with hydroxychloroquine or chloroquine and azithromycin: A potential risk of Torsades de Pointes. Arch Cardiovasc Dis 2020; 113(5): 367-8.
[http://dx.doi.org/10.1016/j.acvd.2020.04.001] [PMID: 32331979]
[95]
Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 2020; 295(15): 4773-9.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[96]
Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis 2020; 35: 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[97]
Lin HXJ, Cho S, Meyyur Aravamudan V, et al. Remdesivir in Coronavirus Disease 2019 (COVID-19) treatment: A review of evidence. Infection 2021; 49(3): 401-10.
[http://dx.doi.org/10.1007/s15010-020-01557-7] [PMID: 33389708]
[98]
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[99]
Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[100]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[101]
Kramer DG, Da Silva MJL, Da Silva GSE, De Moura AMMA, Junior GBC, De Sousa AM, et al. Favipiravir as a potential drug in the treatment of COVID-19. Int J Res-Granthaalayah 2020; 8(4): 7-12.
[http://dx.doi.org/10.29121/granthaalayah.v8.i4.2020.2]
[102]
Sood S, Bhatia GK, Seth P, et al. Efficacy and Safety of New and Emerging Drugs for COVID-19: Favipiravir and dexamethasone. Curr Pharmacol Rep 2021; 1-6.
[PMID: 33619447]
[103]
Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res 2018; 153: 85-94.
[http://dx.doi.org/10.1016/j.antiviral.2018.03.003] [PMID: 29524445]
[104]
Noda A, Shirai T, Nakajima H, et al. Case report: Two cases of COVID-19 pneumonia including use of favipiravir. 2020. Available from: https://www.kansensho.or.jp/uploads/files/topics/2019ncov/covid19_casereport_en_200408_2.pdf.
[105]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[106]
Chen C, Huang J, Cheng Z, et al. Favipiravir versus arbidol for COVID-19: A randomized clinical trial. Med Rxiv 2020.
[http://dx.doi.org/10.1101/2020.03.17.20037432]
[107]
Lian N, Xie H, Lin S, Huang J, Zhao J, Lin Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: A retrospective study. Clin Microbiol Infect 2020; 26(7): 917-21.
[http://dx.doi.org/10.1016/j.cmi.2020.04.026] [PMID: 32344167]
[108]
Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen L-L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-19.
[109]
Liu X, Wang X-J. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 2020; 47(2): 119-21.
[http://dx.doi.org/10.1016/j.jgg.2020.02.001] [PMID: 32173287]
[110]
Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Ther Clin Risk Manag 2008; 4(5): 1023-33.
[PMID: 19209283]
[111]
Rezaee H, Pourkarim F, Pourtaghi-Anvarian S, Entezari-Maleki T, Asvadi-Kermani T, Nouri-Vaskeh M. Drug-drug interactions with candidate medications used for COVID-19 treatment: An overview. Pharmacol Res Perspect 2021; 9(1): e00705.
[http://dx.doi.org/10.1002/prp2.705] [PMID: 33421347]
[112]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[113]
Lim J, Jeon S, Shin H-Y, et al. Case of the index patient who caused tertiary transmission of coronavirus disease 2019 in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J Korean Med Sci 2020; 35(7): e89.
[http://dx.doi.org/10.3346/jkms.2020.35.e89] [PMID: 32080993]
[114]
Ahamad S, Branch S, Harrelson S, Hussain MK, Saquib M, Khan S. Primed for global coronavirus pandemic: Emerging research and clinical outcome. Eur J Med Chem 2021; 209: 112862.
[http://dx.doi.org/10.1016/j.ejmech.2020.112862] [PMID: 33070079]
[115]
Minor PD. Live attenuated vaccines: Historical successes and current challenges. Virology 2015; 479-480: 379-92.
[http://dx.doi.org/10.1016/j.virol.2015.03.032] [PMID: 25864107]
[116]
Garg M, Mufti N, Palmore TN, Hasni SA. Recommendations and barriers to vaccination in systemic lupus erythematosus. Autoimmun Rev 2018; 17(10): 990-1001.
[http://dx.doi.org/10.1016/j.autrev.2018.04.006] [PMID: 30103044]
[117]
Tregoning JS, Brown ES, Cheeseman HM, et al. Vaccines for COVID-19. Clin Exp Immunol 2020; 202(2): 162-92.
[http://dx.doi.org/10.1111/cei.13517] [PMID: 32935331]
[118]
Pandey A, Cabello A, Akoolo L, et al. The case for live attenuated vaccines against the neglected zoonotic diseases brucellosis and bovine tuberculosis. PLoS Negl Trop Dis 2016; 10(8): e0004572.
[http://dx.doi.org/10.1371/journal.pntd.0004572] [PMID: 27537413]
[119]
Graham RL, Donaldson EF, Baric RS. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat Rev Microbiol 2013; 11(12): 836-48.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[120]
Stauffer F, El-Bacha T, Da Poian AT. Advances in the development of inactivated virus vaccines. Recent Patents Anti-Infect Drug Disc 2006; 1(3): 291-6.
[http://dx.doi.org/10.2174/157489106778777673] [PMID: 18221154]
[121]
Sanders B, Koldijk M, Schuitemaker H. Inactivated viral vaccines. In: Nunnally BK, Turula VE, Sitrin RD, Eds. Vaccine analysis: Strategies, principles, and control. Heidelberg: Springer 2014; pp. 45-80.
[http://dx.doi.org/10.1007/978-3-662-45024-6_2]
[122]
Belete TM. A review on promising vaccine development progress for COVID-19 disease. Vacunas 2020; 21(2): 121-8.
[http://dx.doi.org/10.1016/j.vacun.2020.05.002]
[123]
Umakanthan S, Chattu VK, Ranade AV, Das D, Basavarajegowda A, Bukelo M. A rapid review of recent advances in diagnosis, treatment and vaccination for COVID-19. AIMS Public Health 2021; 8(1): 137-53.
[http://dx.doi.org/10.3934/publichealth.2021011] [PMID: 33575413]
[124]
Schindewolf C, Menachery VD. Middle East respiratory syndrome vaccine candidates: Cautious optimism. Viruses 2019; 11(1): 74.
[http://dx.doi.org/10.3390/v11010074] [PMID: 30658390]
[125]
Apostolico JdS, Lunardelli VAS, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: Classification, modus operandi, and licensing. J Immunol Res 2016; 2016: 1459394.
[126]
Sheridan C. The business of making vaccines. Nat Biotechnol 2005; 23(11): 1359-66.
[http://dx.doi.org/10.1038/nbt1105-1359] [PMID: 16273061]
[127]
de Vries RD, Rimmelzwaan GF. Viral vector-based influenza vaccines. Hum Vaccin Immunother 2016; 12(11): 2881-901.
[http://dx.doi.org/10.1080/21645515.2016.1210729] [PMID: 27455345]
[128]
Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and applications of viral vectored vaccines to combat zoonotic and emerging public health threats. Vaccines 2020; 8(4): E680.
[http://dx.doi.org/10.3390/vaccines8040680] [PMID: 33202961]
[129]
Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS. Recent advances in the vaccine development against Middle East respiratory syndrome-coronavirus. Front Microbiol 2019; 10: 1781.
[http://dx.doi.org/10.3389/fmicb.2019.01781] [PMID: 31428074]
[130]
Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020; 396(10249): 467-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[131]
Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397(10269): 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[132]
Hobernik D, Bros M. DNA vaccines-how far from clinical use? Int J Mol Sci 2018; 19(11): 3605.
[http://dx.doi.org/10.3390/ijms19113605] [PMID: 30445702]
[133]
Liu MA. DNA vaccines: An historical perspective and view to the future. Immunol Rev 2011; 239(1): 62-84.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00980.x] [PMID: 21198665]
[134]
Fioretti D, Iurescia S, Rinaldi M. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. Recent Pat Anticancer Drug Discov 2014; 9(1): 66-82.
[http://dx.doi.org/10.2174/1574891X113089990037] [PMID: 23444943]
[135]
Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020; 5(1): 237.
[http://dx.doi.org/10.1038/s41392-020-00352-y] [PMID: 33051445]
[136]
Badgujar KC, Badgujar VC, Badgujar SB. Vaccine development against coronavirus (2003 to present): An overview, recent advances, current scenario, opportunities and challenges. Diabetes Metab Syndr 2020; 14(5): 1361-76.
[http://dx.doi.org/10.1016/j.dsx.2020.07.022] [PMID: 32755836]
[137]
Smith TRF, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11(1): 2601.
[http://dx.doi.org/10.1038/s41467-020-16505-0] [PMID: 32433465]
[138]
Tebas P, Yang S, Boyer JD, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine 2021; 31: 100689.
[http://dx.doi.org/10.1016/j.eclinm.2020.100689] [PMID: 33392485]
[139]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[140]
Sandbrink JB, Shattock RJ. RNA Vaccines: A suitable platform for tackling emerging pandemics? Front Immunol 2020; 11: 608460.
[http://dx.doi.org/10.3389/fimmu.2020.608460] [PMID: 33414790]
[141]
Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol 2012; 9(11): 1319-30.
[http://dx.doi.org/10.4161/rna.22269] [PMID: 23064118]
[142]
Piyush R, Rajarshi K, Chatterjee A, Khan R, Ray S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020; 6(9): e05007.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05007] [PMID: 32984620]
[143]
Bashirullah A, Cooperstock RL, Lipshitz HD. Spatial and temporal control of RNA stability. Proc Natl Acad Sci USA 2001; 98(13): 7025-8.
[http://dx.doi.org/10.1073/pnas.111145698] [PMID: 11416182]
[144]
Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2-preliminary report. N Engl J Med 2020; 383(20): 1.
[http://dx.doi.org/10.1056/NEJMoa2022483]
[145]
Chilamakuri R, Agarwal S. COVID-19: Characteristics and therapeutics. Cells 2021; 10(2): 206.
[http://dx.doi.org/10.3390/cells10020206] [PMID: 33494237]
[146]
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384(5): 403-16.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[147]
Goepfert PA, Fu B, Chabanon A-L, et al. Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: A randomised, placebo-controlled, dose-ranging study. medRxiv 2021.
[148]
Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit 2020; 26: e924700-1.
[PMID: 32366816]
[149]
Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med 2020; 383(16): 1544-55.
[http://dx.doi.org/10.1056/NEJMoa2024671] [PMID: 32722908]
[150]
Prüβ BM. Current state of the first COVID-19 vaccines. Vaccines 2021; 9(1): 30.
[http://dx.doi.org/10.3390/vaccines9010030] [PMID: 33429880]
[151]
Izda V, Jeffries MA, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin Immunol 2021; 222: 108634.
[http://dx.doi.org/10.1016/j.clim.2020.108634] [PMID: 33217545]
[152]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[153]
Chodcik G, Tene L, Patalon T, et al. The effectiveness of the first dose of BNT162 b 2 vaccine in reducing SARS-CoV-2 infection 13-24 days after immunization: Real-world evidence Medrxiv 2021.
[154]
Fries CN, Curvino EJ, Chen J-L, Permar SR, Fouda GG, Collier JH. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat Nanotechnol 2021; 16(4): 1-14.
[http://dx.doi.org/10.1038/s41565-020-0739-9] [PMID: 32807876]
[155]
Kroll AV, Jiang Y, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic nanoparticle vaccines for cancer therapy. Adv Biosyst 2019; 3(1): e1800219.
[http://dx.doi.org/10.1002/adbi.201800219] [PMID: 31728404]
[156]
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and vaccine research. ACS Nano 2020; 14(7): 7760-82.
[http://dx.doi.org/10.1021/acsnano.0c04006] [PMID: 32571007]
[157]
Vahedifard F, Chakravarthy K, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin Immunology 2021; 222: 108634.
[158]
Shim B-S, Park S-M, Quan J-S, et al. Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and cellular immune responses. BMC Immunol 2010; 11(1): 65.
[http://dx.doi.org/10.1186/1471-2172-11-65] [PMID: 21194475]
[159]
Raghuwanshi D, Mishra V, Das D, Kaur K, Suresh MR. Dendritic cell targeted chitosan nanoparticles for nasal DNA immunization against SARS CoV nucleocapsid protein. Mol Pharm 2012; 9(4): 946-56.
[http://dx.doi.org/10.1021/mp200553x] [PMID: 22356166]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy