Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Research Article

Knowledge Landscape of Starter Cultures: A Bibliometric and Patentometric Study

Author(s): Rosmery Cruz-O'Byrne*, Cristian Casallas-Useche, Nelson Piraneque-Gambasica and Sonia Aguirre-Forero

Volume 15, Issue 3, 2021

Published on: 28 September, 2021

Page: [232 - 246] Pages: 15

DOI: 10.2174/1872208315666210928115503

Price: $65

Abstract

Background: Starter cultures are essential in food industry biotechnology, consisting of microorganism preparations inoculated to produce safe fermented foods with desirable sensory characteristics.

Objective: This study aims to identify and analyze the growth and flow of knowledge regarding starter cultures by creating scientific and technological profiles using patentometric and bibliometric indicators.

Methods: A search for patents and scientific articles was conducted in December 2020 following a proposed 10-step methodology using the Scopus® and Patentinspiration databases. The search strategy was based on the keywords “starter culture” and “fermentation” considering publications up to 2020.

Results: A total of 3035 articles and 719 patents were published until 2020, presenting a more significant number in the last ten (10) years due to the development of biological sciences and molecular biology involving enzymes and microorganisms. Italy leads the scientific production while China leads the technological. It was also possible to determine the most productive author and inventors, the most influential articles and inventions, and the main scientific journals and patent offices.

Conclusion: Scientific and technological activities have an exponential behavior showing that the knowledge about starter cultures continues to grow, becoming a field of interest for optimizing industrial processes related to food fermentation, thus achieving diversification of products that can satisfy the demand for food in an increasingly competitive global market.

Keywords: Biotechnology, fermentation, food science, lactic acid bacteria, microbiology, patents, scientometrics, yeast.

Graphical Abstract
[1]
Medina E, de Castro A, Romero C, Ramírez EM, Brenes M. Safety of fermented fruits and vegetables. In: Prakash W, Martín-Belloso O, Keener L, et al., Eds., Regulating safety of traditional and ethnic foods. Waltham: Academic Press 2016; pp. 355-67.
[http://dx.doi.org/10.1016/B978-0-12-800605-4.00018-9]
[2]
De Melo Pereira VG, De Carvalho Neto DP, Junqueira ACDO, et al. A review of selection criteria for starter culture development in the food fermentation industry. Food Rev Int 2020; 36: 135-67.
[http://dx.doi.org/10.1080/87559129.2019.1630636]
[3]
Laranjo M, Potes ME, Elias M. Role of starter cultures on the safety of fermented meat products. Front Microbiol 2019; 10: 853.
[http://dx.doi.org/10.3389/fmicb.2019.00853] [PMID: 31133993]
[4]
Haile M, Kang WH. The role of microbes in coffee fermentation and their impact on coffee quality. J Food Qual 2019; 2019: 4836709.
[http://dx.doi.org/10.1155/2019/4836709]
[5]
Collado-Fernandez M. BREAD | Dough fermentation. In: Caballero B, Ed. Encyclopedia of food sciences and nutrition. San Diego: Academic Press 2003; pp. 647-55.
[http://dx.doi.org/10.1016/B0-12-227055-X/00877-4]
[6]
Silva CF, Batista LR, Abreu LM, Dias ES, Schwan RF. Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiol 2008; 25(8): 951-7.
[http://dx.doi.org/10.1016/j.fm.2008.07.003] [PMID: 18954729]
[7]
De Melo Pereira GV, Soccol VT, Soccol CR. Current state of research on cocoa and coffee fermentations. Curr Opin Food Sci 2016; 7: 50-7.
[http://dx.doi.org/10.1016/j.cofs.2015.11.001]
[8]
Evangelista SR, Miguel MG, Cordeiro CdeS, Silva CF, Pinheiro AC, Schwan RF. Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process. Food Microbiol 2014; 44: 87-95.
[http://dx.doi.org/10.1016/j.fm.2014.05.013] [PMID: 25084650]
[9]
Dolci P, Alessandria V, Rantsiou K, Cocolin L. Advanced methods for the identification, enumeration, and characterization of microorganisms in fermented foods. In: Holzapfel W, Ed. Advances in fermented foods and beverages. Cambridge: Woodhead Publishing 2015; pp. 157-76.
[http://dx.doi.org/10.1016/B978-1-78242-015-6.00007-4]
[10]
Corsetti A, Perpetuini G, Schirone M, Tofalo R, Suzzi G. Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front Microbiol 2012; 3: 248.
[http://dx.doi.org/10.3389/fmicb.2012.00248] [PMID: 22833739]
[11]
Tamime AY. Microbiology of starter cultures. In: Robinson RK, Ed. Dairy microbiology handbook: the microbiology of milk and milk products. Hoboken: Wiley & Sons 2002; pp. 261-366.
[http://dx.doi.org/10.1002/0471723959.ch7]
[12]
Gilliland SE. Role of starter culture bacteria in food preservation. In: Gilliland SE, Ed. Bacterial starter cultures for foods. Boca Raton: CRC Press 2018; pp. 175-85.
[http://dx.doi.org/10.1201/9781351070065-13]
[13]
Parente E, Cogan TM, Powell IB. Starter cultures: general aspects. In: McSweeney PLH, Fox PF, Cotter PD, Everett DW, Eds. Cheese. London: Academic Press 2017; pp. 201-26.
[http://dx.doi.org/10.1016/B978-0-12-417012-4.00008-9]
[14]
Rai AK, Pandey A, Sahoo D. Biotechnological potential of yeasts in functional food industry. Trends Food Sci Technol 2019; 83: 129-37.
[http://dx.doi.org/10.1016/j.tifs.2018.11.016]
[15]
Carr FJ, Chill D, Maida N. The lactic acid bacteria: a literature survey. Crit Rev Microbiol 2002; 28(4): 281-370.
[http://dx.doi.org/10.1080/1040-840291046759] [PMID: 12546196]
[16]
Lowe DP, Arendt EK. The use and effects of lactic acid bacteria in malting and brewing with their relationships to antifungal activity, mycotoxins and gushing: a review. J Inst Brew 2004; 110: 163-80.
[http://dx.doi.org/10.1002/j.2050-0416.2004.tb00199.x]
[17]
Smit G, Smit BA, Engels WJ. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 2005; 29(3): 591-610.
[http://dx.doi.org/10.1016/j.fmrre.2005.04.002] [PMID: 15935512]
[18]
Capozzi V, Russo P, Dueñas MT, López P, Spano G. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Appl Microbiol Biotechnol 2012; 96(6): 1383-94.
[http://dx.doi.org/10.1007/s00253-012-4440-2] [PMID: 23093174]
[19]
Peyer LC, Zannini E, Arendt EK. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci Technol 2016; 54: 17-25.
[http://dx.doi.org/10.1016/j.tifs.2016.05.009]
[20]
Arevalo-Villena M, Briones-Perez A, Corbo MR, Sinigaglia M, Bevilacqua A. Biotechnological application of yeasts in food science: starter cultures, probiotics and enzyme production. J Appl Microbiol 2017; 123(6): 1360-72.
[http://dx.doi.org/10.1111/jam.13548] [PMID: 28744990]
[21]
Comitini F, Capece A, Ciani M, Romano P. New insights on the use of wine yeasts. Curr Opin Food Sci 2017; 13: 44-9.
[http://dx.doi.org/10.1016/j.cofs.2017.02.005]
[22]
Garofalo C, Arena M, Laddomada B, et al. Starter cultures for sparkling wine. Fermentation (Basel) 2016; 2(4): 21.
[http://dx.doi.org/10.3390/fermentation2040021]
[23]
De Vuyst L, Weckx S. The cocoa bean fermentation process: from ecosystem analysis to starter culture development. J Appl Microbiol 2016; 121(1): 5-17.
[http://dx.doi.org/10.1111/jam.13045] [PMID: 26743883]
[24]
Mohammadi R, Sohrabvandi S, Mohammad A. The starter culture characteristics of probiotic microorganisms in fermented milks. Eng Life Sci 2012; 12: 399-409.
[http://dx.doi.org/10.1002/elsc.201100125]
[25]
Cruz-O’Byrne R, Piraneque-Gambasica N, Aguirre- Forero S, Ramirez-Vergara J. Microorganisms in coffee fermentation: a bibliometric and systematic literature network analysis related to agriculture and beverage quality (1965-2019). Coffee Sci 2020; 15: e151773.
[http://dx.doi.org/10.25186/.v15i.1773]
[26]
De Oliveira OJ, Da Silva FF, Juliani F, Ferreira LC, Vieira Nunhes T. Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. In: Kunosic S, Zerem E, Eds. Scientometrics recent advances. London: IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.85856]
[27]
Cooper ID. Bibliometrics basics. J Med Libr Assoc 2015; 103(4): 217-8.
[http://dx.doi.org/10.3163/1536-5050.103.4.013] [PMID: 26512226]
[28]
Trippe L. Guidelines for Preparing Patent Landscape Reports. Geneva: WIPO 2015.
[29]
World Intellectual Property Organization (WIPO). Guide to using Patent information 2015. Available from: https://www.wipo.int/publications/en/details.jsp?id=180&plang=EN
[30]
World Intellectual Property Organization (WIPO). Module 6: patent information 2016. Available from: https://www.wipo.int/export/sites/www/sme/en/documents/pdf/ip_panorama_6_learning_points.pdf
[31]
Mahony J, McAuliffe O, Cotter PD, Fitzgerald GF. Starter cultures.Food microbiology: fundamentals and frontiers. Washington, D.C.: ASM Press 2019; pp. 787-813.
[http://dx.doi.org/10.1128/9781555819972.ch30]
[32]
Van Nunen K, Li J, Reniers G, Ponnet K. Bibliometric analysis of safety culture research. Saf Sci 2018; 108: 248-58.
[http://dx.doi.org/10.1016/j.ssci.2017.08.011]
[33]
De Melo Pereira GV, Da Silva Vale A, De Carvalho Neto DP, Muynarsk ES, Soccol VT, Soccol CR. Lactic acid bacteria: what coffee industry should know? Curr Opin Food Sci 2020; 31: 1-8.
[http://dx.doi.org/10.1016/j.cofs.2019.07.004]
[34]
Pavli FG, Argyri AA, Chorianopoulos NG, Nychas G-JE, Tassou CC. Effect of Lactobacillus plantarum L125 strain with probiotic potential on physicochemical, microbiological and sensorial characteristics of dry-fermented sausages. Lebensm Wiss Technol 2020; 118: 108810.
[http://dx.doi.org/10.1016/j.lwt.2019.108810]
[35]
Zhang Y, Qin Y, Wang Y, Huang Y, Li P. Lactobacillus plantarum LPL-1, a bacteriocin producing strain, changed the bacterial community composition and improved the safety of low-salt fermented sausages. Lebensm Wiss Technol 2020; 128: 109385.
[http://dx.doi.org/10.1016/j.lwt.2020.109385]
[36]
Campaniello D, Speranza B, Bevilacqua A, Altieri C, Rosaria Corbo M, Sinigaglia M. Industrial validation of a promising functional strain of Lactobacillus plantarum to improve the quality of Italian sausages. Microorganisms 2020; 8(1): 116.
[http://dx.doi.org/10.3390/microorganisms8010116] [PMID: 31952139]
[37]
Zhang SS, Xu ZS, Qin LH, Kong J. Low-sugar yogurt making by the co-cultivation of Lactobacillus plantarum WCFS1 with yogurt starter cultures. J Dairy Sci 2020; 103(4): 3045-54.
[http://dx.doi.org/10.3168/jds.2019-17347] [PMID: 32059863]
[38]
Hang F, Jiang Y, Yan L, et al. Preliminary study for the stimulation effect of plant-based meals on pure culture Lactobacillus plantarum growth and acidification in milk fermentation. J Dairy Sci 2020; 103(5): 4078-87.
[http://dx.doi.org/10.3168/jds.2019-17200] [PMID: 32113760]
[39]
Russo P, Englezos V, Capozzi V, et al. Effect of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on management of malolactic fermentation. Food Res Int 2020; 134: 109246.
[http://dx.doi.org/10.1016/j.foodres.2020.109246] [PMID: 32517918]
[40]
Tufariello M, Capozzi V, Spano G, et al. Effect of co-inoculation of Candida zemplinina, Saccharomyces cerevisiae and Lactobacillus plantarum for the industrial production of negroamaro wine in Apulia (southern Italy). Microorganisms 2020; 8(5): 726.
[http://dx.doi.org/10.3390/microorganisms8050726] [PMID: 32414096]
[41]
Wang SY, Zhu HZ, Lan YB, et al. Modifications of phenolic compounds, biogenic amines, and volatile compounds in cabernet gernishct wine through malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni. Fermentation (Basel) 2020; 6: 15.
[http://dx.doi.org/10.3390/fermentation6010015]
[42]
Saito Y, Tonouchi A, Harada Y, Ogino R, Toba T. Isolation of Streptococcus thermophilus Strains from plants in Japan and their application to milk fermentation. Food Sci Technol Res 2020; 26: 1-8.
[http://dx.doi.org/10.3136/fstr.26.1]
[43]
Ayyash M, Olaimat A, Al-Nabulsi A, Liu SQ. Bioactive properties of novel probiotic Lactococcus lactis fermented camel sausages: cytotoxicity, angiotensin converting enzyme inhibition, antioxidant capacity, and antidiabetic activity. Food Sci Anim Resour 2020; 40(2): 155-71.
[http://dx.doi.org/10.5851/kosfa.2020.e1] [PMID: 32161912]
[44]
Avila M, Gomez-Torres N, Gaya P, Garde S. Effect of a nisin-producing lactococcal starter on the late blowing defect of cheese caused by Clostridium tyrobutyricum. Int J Food Sci Technol 2020; 55(10): 3343-9.
[http://dx.doi.org/10.1111/ijfs.14598]
[45]
Berbegal C, Khomenko I, Russo P, et al. PTR-ToF-MS for the Online monitoring of alcoholic fermentation in wine: assessment of VOCs variability associated with different combinations of Saccharomyces/Non-Saccharomyces as a Case-Study. Fermentation (Basel) 2020; 6: 55.
[http://dx.doi.org/10.3390/fermentation6020055]
[46]
Capece A, Pietrafesa R, Siesto G, Romano P. Biotechnological approach based on selected Saccharomyces cerevisiae starters for reducing the use of sulfur dioxide in wine. Microorganisms 2020; 8(5): 738.
[http://dx.doi.org/10.3390/microorganisms8050738] [PMID: 32429079]
[47]
Wang X, Ren X, Shao Q, et al. Transformation of microbial negative correlations into positive correlations by Saccharomyces cerevisiae inoculation during pomegranate wine fermentation. Appl Environ Microbiol 2020; 86(24): e01847-20.
[http://dx.doi.org/10.1128/AEM.01847-20] [PMID: 33036987]
[48]
Pietrafesa A, Capece A, Pietrafesa R, Bely M, Romano P. Saccharomyces cerevisiae and Hanseniaspora uvarum mixed starter cultures: influence of microbial/physical interactions on wine characteristics. Yeast 2020; 37(11): 609-21.
[http://dx.doi.org/10.1002/yea.3506] [PMID: 32567694]
[49]
Nielsen S, Guldager H, Nielsen C. Lactobacillus rhamnosus with increased diacetyl production. US2020345023A1, CN111315225A, AU2018355 721A1, 2020.
[50]
Nielsen S, Guldager H, Nielsen C. Lactobacillus rhamnosus with increased diacetyl production CA3084465A1, WO20190815 77A1, 2019.
[51]
Jimenez L, Oeregaard G, Trihaas J, et al. Flavor-enhancing Lactobacillus rhamnosus. WO2012136832A1, 2012.
[52]
Jimenez L, Oeregaard G, Trihaas J, et al. Flavor-enhancing Lactobacillus rhamnosus. CN103501622A, 2014.
[53]
Jimenez L, Oeregaard G, Trihaas J, et al. Flavor-enhancing Lactobacillus rhamnosus. MX2013011625A, 2013.
[54]
Nielsen C, Hornbaek T, Rasmussen P, et al. Lactobacillus fermentum bacteria with antifungal activity. AU2018204698A1, US20182 49727A1, CN108138124A, MX2018002278A, 2018.
[55]
Nielsen C, Hornbaek T, Rasmussen P, et al. Lactobacillus fermentum bacteria with antifungal activity. WO2017037046A1, 2017.
[56]
Janzen T, Christiansen D. Lactic bacterium with modified galactokinase expression for texturizing food products by overexpression of exopolysaccharide. WO2011026863A1, 2011.
[57]
Janzen T, Christiansen D. Lactic bacterium with modified galactokinase expression for texturizing food products by overexpression of exopolysaccharide. MX2012002594A, US2012164275A1, CN102695420A, 2012.
[58]
Janzen T, Christiansen D. Novel lactic acid bacterium having supertexturizing property with mutations in the galk gene and methods for manufacturing same. EA201270351A1, 2012.
[59]
360ResearchReports. Global dairy starter culture sales market report 2020. Maharashtra: 360ResearchReports 2020. 2020. Available from: https://www.360researchreports.com/global-dairy-starter-culture-sales-market-16691241
[60]
National Research Council (NRC). The fundamental role of science and technology in international development. Washington, D.C: National Academies Press 2006.
[http://dx.doi.org/10.17226/11583]
[61]
Bamel UK, Pandey R, Gupta A. Safety climate: systematic literature network analysis of 38 years (1980-2018) of research. Accid Anal Prev 2020; 135: 105387.
[http://dx.doi.org/10.1016/j.aap.2019.105387] [PMID: 31838322]
[62]
Rey-Marti A, Ribeiro-Soriano D, Palacios-Marques D. A bibliometric analysis of social entrepreneurship. J Bus Res 2016; 69: 1651-5.
[http://dx.doi.org/10.1016/j.jbusres.2015.10.033]
[63]
Roudil L, Russo P, Berbegal C, Albertin W, Spano G, Capozzi V. Non-Saccharomyces commercial starter cultures: scientific trends, recent patents and innovation in the wine sector. Recent Pat Food Nutr Agric 2020; 11(1): 27-39.
[http://dx.doi.org/10.2174/2212798410666190131103713] [PMID: 30706832]
[64]
Garrigues C, Gilleladen C, Curic M, et al. Method of producing a fermented milk product with improved control of post acidification. EP2957180A1, WO2015193459A1, 2015.
[65]
Garrigues C, Gilleladen C, Curic M, et al. Method of producing a fermented milk product with improved control of post acidification. AU2015276091A1, 2016.
[66]
Garrigues C, Gilleladen C, Curic M, et al. Method of producing a fermented milk product with improved control of post acidification. US2017135360A1, MX2016015792A, EA201692283A1, CN106714 565A, 2017.
[67]
Xu Y, Zhou T, Tang H, et al. Probiotic potential and amylolytic properties of lactic acid bacteria isolated from Chinese fermented cereal foods. Food Control 2020; 111: 107057.
[http://dx.doi.org/10.1016/j.foodcont.2019.107057]
[68]
Changdong Y. Humic acid-rich biologic soil conditioner made from alcohol waste liquid and sludge from sugar mill. WO2014139360A1, AU2014100 226A4, 2014.
[69]
Tabasco R, Paarup T, Janer C, Pelaez C, Requena T. Method for the specific simultaneous identification and detection of lactic acid bacteria and bifidobacteria in fermented milks and starter cultures for fermented milks. WO2008003811A1, 2008.
[70]
Tabasco R, Paarup T, Janer C, Pelaez C, Requena T. Method for the specific simultaneous identification and detection of lactic acid bacteria and bifidobacteria in fermented milks and starter cultures for fermented milks. ES2322827A1, 2009.
[71]
Tamang JP, Cotter PD, Endo A, et al. Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 2020; 19(1): 184-217.
[http://dx.doi.org/10.1111/1541-4337.12520] [PMID: 33319517]
[72]
Padgett R. Ethanol production by fermentation. WO2010144332A2, US201031 1138A1, CA2764997A1, 2010.
[73]
Padgett R. Adapted culture for cellulosic fermentation. US2012231516A1, AU2010258 996A1, MX2011013178A, 2012.
[74]
Bockwoldt JA, Stahl L, Ehrmann MA, Vogel RF, Jakob F. Persistence and β-glucan formation of beer-spoiling lactic acid bacteria in wheat and rye sourdoughs. Food Microbiol 2020; 91: 103539.
[http://dx.doi.org/10.1016/j.fm.2020.103539] [PMID: 32539972]
[75]
Wolfschoon A, Eyselee H, Martinez A, Douglas N. Cream cheese and method of manufacture. CA2708548A1, 2010.
[76]
Wolfschoon A, Eyselee H, Martinez A, Douglas N. Cream cheese and method of manufacture. MX2010007313A, 2012.
[77]
Wolfschoon A, Eyselee H, Martinez A, Douglas N. Cream cheese and method of manufacture. AU2010202638A1, US2011020 495A1, EP2269466A2, JP2011024574A, 2011.http://www.patentinspiration.com/redirect?url=/patent/AU2010202638A1
[78]
Park C, Cheon-Yong L, Sang-Min S, Young B, Sin-Hak O, Byeong K. Methods of manufacturing a natural sourdough starter for baking. WO2014054838A1, KR20140043988A, 2014.
[79]
Park C, Cheon-Yong L, Sang-Min S, Young B, Sin-Hak O, Byeong K. Methods of making natural sourdough starter for baking bread and methods of making bread using the same. US2015164091A1, 2015.
[80]
Bayili GR, Johansen PG, Hougaard AB, et al. Technological properties of indigenous Lactococcus lactis strains isolated from Lait caillé, a spontaneous fermented milk from Burkina Faso. J Dairy Res 2020; 87(1): 110-6.
[http://dx.doi.org/10.1017/S0022029919000888] [PMID: 31948493]
[81]
Janzen T, Christiansen D. Lactic bacterium for texturizing food products selected on basis of phage resistance. WO2011092300A1, 2011.
[82]
Janzen T, Christiansen D. Lactic bacterium for texturizing food products selected on basis of phage resistance. MX 2012008089A, CN102770527A, US2012301575A1, 2012.
[83]
Janzen T, Christiansen D. Phage resistant lactic acid bacteria for texturizing food products. EA201290709A1, 2013.
[84]
Janzen T, Christiansen D. Bacterium. US2015099273A1, US2015322 415A1, 2015.
[85]
Janzen T, Christiansen D. Lactic acid bacteria for texturizing food products selected on basis of phage resistance. JP20160006466, CN201510813347, US201615045932, 2016.
[86]
Janzen T. Lactic bacterium for texturizing food products selected on the basis of phage resistance. US2017096635A1, 2017.
[87]
Borremans A, Smets R, Van Campenhout L. Fermentation versus meat preservatives to extend the shelf life of mealworm (Tenebrio molitor) paste for feed and food applications. Front Microbiol 2020; 11: 1510.
[http://dx.doi.org/10.3389/fmicb.2020.01510] [PMID: 32760364]
[88]
De Vuyst L, Camu N. Starter cultures and fermentation method. WO2007031186A1, 2007.
[89]
De Vuyst L, Camu N. Starter cultures and fermentation method. EP1931763A1, US2008193595A1, 2008.
[90]
De Vuyst L, Camu N. Cacao starter cultures and fermentation method. EP2325295A2, 2011.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy