Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Advanced Copper and Copper Alternatives for Crop Protection - A Mini-Review

Author(s): Jorge Pereira, Alex King, Maria Gabriela Nogueira Campos and Swadeshmukul Santra*

Volume 18, Issue 4, 2022

Published on: 12 January, 2022

Page: [410 - 424] Pages: 15

DOI: 10.2174/1573413717666211004090915

Price: $65

Abstract

Copper (Cu) has been used in agriculture for centuries as a standard bactericide/fungicide due to its low cost, superior disease control efficacy, and relatively low toxicity to humans. However, the extensive use of copper as a pesticide has caused the development of Cu-tolerant microorganisms as well as negative environmental impacts due to the accumulation of copper in soil and bodies of water. Therefore, there is a strong demand for advanced Cu products and alternatives to minimize the Cu footprint in the environment. This minireview will cover the limitations of Cu usage and the strategies being investigated to develop advanced Cu materials and alternatives for crop protection using nanotechnology.

Keywords: Nanoparticle, nanopesticide, copper, quat, magnesium, zinc, bactericide, fungicide, sulfur.

Graphical Abstract
[1]
Department of Economic and Social Affairs. P. D. World Population Prospects 2019: Highlights; United Nations, 2019.
[2]
FAO. International Year of Plant Health 2020: Communication guide; FAO: Rome, Italy, 2019, p. 31.
[3]
José Villaverde, J.; Sevilla-Morán, B.; López-Goti, C.; Sandín-España, P.; Luis Alonso-Prados, J. 6 - An overview of nanopesticides in the framework of European legislation. New Pesticides and Soil Sensors; Grumezescu, A.M., Ed.; Academic Press, 2017, pp. 227-271.
[http://dx.doi.org/10.1016/B978-0-12-804299-1.00007-2]
[4]
Karimi, B.; Masson, V.; Guilland, C.; Leroy, E.; Pellegrinelli, S.; Giboulot, E.; Maron, P.A.; Ranjard, L. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Environ. Chem. Lett., 2021, 19, 2013-2030.
[http://dx.doi.org/10.1007/s10311-020-01155-x]
[5]
Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. Computational methodologies for the risk assessment of pesticides in the european union. J. Agric. Food Chem., 2017, 65(10), 2017-2018.
[http://dx.doi.org/10.1021/acs.jafc.7b00516] [PMID: 28252293]
[6]
Crandall, C.S. Bordeaux mixture. University of illinois agricultural experiment station: Urbana, Ill., 1909. Bulletin no. 135.
[7]
Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J-N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev., 2018, 38(3), 28.
[http://dx.doi.org/10.1007/s13593-018-0503-9]
[8]
Shane, B. Copper products, characteristics, and uses. 2010. Available from: https://www.canr.msu.edu/news/copper_products_characteristics_and_uses (Accessed March 25, 2021).
[9]
Guilaran, Y-T.; Anita, P. Copper compounds: interim registration review decision case Nos. 0636, 0649, 4025, 4026. 2018.
[10]
Copper sulfate and other copper products for use as plant disease control and for use as algicide and invertebrate pest control., 2011.
[11]
Carvalho, R.; Duman, K.; Jones, J.B.; Paret, M.L. Bactericidal activity of copper-zinc hybrid nanoparticles on copper-tolerant Xanthomonas perforans. Scientific Reports, 2019, 20124, 1-9.
[http://dx.doi.org/10.1038/s41598-019-56419-6]
[12]
Griffin, K.; Gambley, C.; Brown, P.; Li, Y. Copper-tolerance in Pseudomonas syringae pv. tomato and Xanthomonas spp. and the control of diseases associated with these pathogens in tomato and pepper. A systematic literature review. Crop Prot., 2017, 96, 144-150.
[http://dx.doi.org/10.1016/j.cropro.2017.02.008]
[13]
Cha, J.S.; Cooksey, D.A. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA, 1991, 88(20), 8915-8919.
[http://dx.doi.org/10.1073/pnas.88.20.8915] [PMID: 1924351]
[14]
Mellano, M.A.; Cooksey, D.A. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J. Bacteriol., 1988, 170(6), 2879-2883.
[http://dx.doi.org/10.1128/jb.170.6.2879-2883.1988] [PMID: 3372485]
[15]
Teixeira, E.C.; Franco de Oliveira, J.C.; Marques Novo, M.T.; Bertolini, M.C. The copper resistance operon copAB from Xanthomonas axonopodis pathovar citri: Gene inactivation results in copper sensitivity. Microbiology, 2008, 154(Pt 2), 402-412.
[http://dx.doi.org/10.1099/mic.0.2007/013821-0] [PMID: 18227244]
[16]
Voloudakis, A.E.; Bender, C.L.; Cooksey, D.A. Similarity between copper resistance genes from Xanthomonas campestris and Pseudomonas syringae. Appl. Environ. Microbiol., 1993, 59(5), 1627-1634.
[http://dx.doi.org/10.1128/aem.59.5.1627-1634.1993] [PMID: 16348942]
[17]
Cervantes, C.; Gutierrez-Corona, F. Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev., 1994, 14(2), 121-137.
[http://dx.doi.org/10.1111/j.1574-6976.1994.tb00083.x] [PMID: 8049096]
[18]
Bondarczuk, K.; Piotrowska-Seget, Z. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol. Toxicol., 2013, 29(6), 397-405.
[http://dx.doi.org/10.1007/s10565-013-9262-1] [PMID: 24072389]
[19]
Fortunato, G.; Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Effect of copper and zinc as sulfate or nitrate salts on soil microbiome dynamics and blaVIM-positive Pseudomonas aeruginosa survival. J. Hazard. Mater., 2021, 415, 125631(1-12).
[20]
Rocca, J.D.; Simonin, M.; Blaszczak, J.R.; Ernakovich, J.G.; Gibbons, S.M.; Midani, F.S.; Washburne, A.D. The microbiome stress project: Toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front. Microbiol., 2019, 9(3272), 3272.
[http://dx.doi.org/10.3389/fmicb.2018.03272] [PMID: 30687263]
[21]
Pradhan, A.; Seena, S.; Pascoal, C.; Cássio, F. Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb. Ecol., 2011, 62(1), 58-68.
[http://dx.doi.org/10.1007/s00248-011-9861-4] [PMID: 21553058]
[22]
Zhang, R.; Vivanco, J.M.; Shen, Q. The unseen rhizosphere root-soil-microbe interactions for crop production. Curr. Opin. Microbiol., 2017, 37, 8-14.
[http://dx.doi.org/10.1016/j.mib.2017.03.008] [PMID: 28433932]
[23]
Andreazza, R.; Okeke, B.C.; Pieniz, S.; Camargo, F.A.O. Characterization of copper-resistant rhizosphere bacteria from Avena sativa and Plantago lanceolata for copper bioreduction and biosorption. Biol. Trace Elem. Res., 2012, 146(1), 107-115.
[http://dx.doi.org/10.1007/s12011-011-9228-1] [PMID: 22002857]
[24]
Miotto, A.; Ceretta, C.A.; Brunetto, G.; Nicoloso, F.T.; Girotto, E.; Farias, J.G.; Tiecher, T.L.; De Conti, L.; Trentin, G. Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil, 2014, 374(1), 593-610.
[http://dx.doi.org/10.1007/s11104-013-1886-7]
[25]
Zhang, S.; Guo, Z.; Wang, S.; Ren, D.; Zhang, X. Soil heavy metal leaching agent useful for removing copper, zinc, lead and cadmium in heavy metal contaminated soil, comprises ferric nitrate and citric acid. CN112453041-A
[26]
Xu, J.; Han, X.; Sun, S.; Meng, F.; Dai, S. Leaching behavior of copper (II) in a soil column experiment. Bull. Environ. Contam. Toxicol., 2005, 75(5), 1028-1033.
[http://dx.doi.org/10.1007/s00128-005-0852-3] [PMID: 16400594]
[27]
Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 2003, 189(1-2), 147-163.
[http://dx.doi.org/10.1016/S0300-483X(03)00159-8] [PMID: 12821289]
[28]
Arnal, N.; Astiz, M.; de Alaniz, M.J.T.; Marra, C.A. Clinical parameters and biomarkers of oxidative stress in agricultural workers who applied copper-based pesticides. Ecotoxicol. Environ. Saf., 2011, 74(6), 1779-1786.
[http://dx.doi.org/10.1016/j.ecoenv.2011.05.018] [PMID: 21700338]
[29]
Pfeiffer, C.C.; Mailloux, R. Excess copper as a factor in human diseases. J. Orthomol. Med., 1987, 2(3), 171-182.
[30]
Elmer, W.H.; White, J.C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano, 2016, 3(5), 1072-1079.
[http://dx.doi.org/10.1039/C6EN00146G]
[31]
Elmer, W.; De La Torre-Roche, R.; Pagano, L.; Majumdar, S.; Zuverza-Mena, N.; Dimkpa, C.; Gardea-Torresdey, J.; White, J.C. Effect of metalloid and metal oxide nanoparticles on fusarium wilt of watermelon. Plant Dis., 2018, 102(7), 1394-1401.
[http://dx.doi.org/10.1094/PDIS-10-17-1621-RE] [PMID: 30673561]
[32]
Borgatta, J.; Ma, C.X.; Hudson-Smith, N.; Elmer, W.; Perez, C.D.P.; De la Torre-Roche, R.; Zuverza-Mena, N.; Haynes, C.L.; White, J.C.; Hamers, R.J. Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): Role of particle morphology, composition and dissolution behavior. ACS Sustain. Chem.& Eng., 2018, 6(11), 14847-14856.
[http://dx.doi.org/10.1021/acssuschemeng.8b03379]
[33]
Ma, C.X.; Borgatta, J.; De La Torre-Roche, R.; Zuverza-Mena, N.; White, J.C.; Hamers, R.J.; Elmer, W.H. Time-dependent transcriptional response of tomato (Solanum lycopersicum L.) to Cu nanoparticle exposure upon infection with Fusarium oxysporum f. sp. lycopersici. ACS Sustain. Chem.& Eng., 2019, 7(11), 10064-10074.
[http://dx.doi.org/10.1021/acssuschemeng.9b01433]
[34]
Sidhu, A.; Barmota, H.; Bala, A. Antifungal evaluation studies of copper sulfide nano-aquaformulations and its impact on seed quality of rice (Oryzae sativa). Appl. Nanosci., 2017, 7(8), 681-689.
[http://dx.doi.org/10.1007/s13204-017-0606-7]
[35]
Shang, H.; Ma, C.; Li, C.; White, J.C.; Polubesova, T.; Chefetz, B.; Xing, B. Copper sulfide nanoparticles suppress Gibberella fujikuroi infection in rice (Oryza sativa L.) by multiple mechanisms: Contact-mortality, nutritional modulation and phytohormone regulation. Environ. Sci. Nano, 2020, 7(9), 2632-2643.
[http://dx.doi.org/10.1039/D0EN00535E]
[36]
Roy, S.; Rhim, J.W.; Jaiswal, L. Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocoll., 2019, 93, 156-166.
[http://dx.doi.org/10.1016/j.foodhyd.2019.02.034]
[37]
Li, F.; Liu, Y. N.; Cao, Y. Y.; Zhang, Y. L.; Zhe, T. T.; Guo, Z. R.; Sun, X. Y.; Wang, Q. Z.; Wang, L. Copper sulfide nanoparticle-carrageenan films for packaging application. Food Hydrocolloids, 2020, 109, 106094(1-10).
[38]
Dong, H.Q.; Xiong, R.C.; Liang, Y.; Tang, G.; Yang, J.L.; Tang, J.Y.; Niu, J.F.; Gao, Y.H.; Zhou, Z.Y.; Cao, Y.S. Development of glycine-copper(ii) hydroxide nanoparticles with improved biosafety for sustainable plant disease management. RSC Advances, 2020, 10(36), 21222-21227.
[http://dx.doi.org/10.1039/D0RA02050H]
[39]
Maniprasad, P.; Santra, S. Novel copper (Cu) loaded core-shell silica nanoparticles with improved Cu bioavailability: Synthesis, characterization and study of antibacterial properties. J. Biomed. Nanotechnol., 2012, 8(4), 558-566.
[http://dx.doi.org/10.1166/jbn.2012.1423] [PMID: 22852465]
[40]
Young, M.; Santra, S. Copper (Cu)-silica nanocomposite containing valence-engineered Cu: A new strategy for improving the antimicrobial efficacy of Cu biocides. J. Agric. Food Chem., 2014, 62(26), 6043-6052.
[http://dx.doi.org/10.1021/jf502350w] [PMID: 24911959]
[41]
Strayer-Scherer, A.; Liao, Y.Y.; Young, M.; Ritchie, L.; Vallad, G.E.; Santra, S.; Freeman, J.H.; Clark, D.; Jones, J.B.; Paret, M.L. Advanced copper composites against copper-tolerant Xanthomonas perforans and tomato bacterial spot. Phytopathology, 2018, 108(2), 196-205.
[http://dx.doi.org/10.1094/PHYTO-06-17-0221-R] [PMID: 28990482]
[42]
Fan, Q.R.; Liao, Y.Y.; Kunwar, S.; Da Silva, S.; Young, M.; Santra, S.; Minsavage, G.V.; Freeman, J.H.; Jones, J.B.; Paret, M.L. Antibacterial effect of copper composites against Xanthomonas euvesicatoria. Crop Prot., 2021, 139(2), 105366.
[http://dx.doi.org/10.1016/j.cropro.2020.105366]
[43]
Young, M.; Ozcan, A.; Myers, M.E.; Johnson, E.G.; Graham, J.H.; Santra, S. Multimodal generally recognized as safe ZnO/nanocopper composite: A novel antimicrobial material for the management of citrus phytopathogens. J. Agric. Food Chem., 2018, 66(26), 6604-6608.
[http://dx.doi.org/10.1021/acs.jafc.7b02526] [PMID: 28832140]
[44]
Ozcan, A.; Young, M.; Lee, B.; Liao, Y-Y.; Da Silva, S.; Godden, D.; Colee, J.; Huang, Z.; Mendis, H.C.; Campos, M.G.N.; Jones, J.B.; Freeman, J.H.; Paret, M.L.; Tetard, L.; Santra, S. Copper-fixed quat: A hybrid nanoparticle for application as a locally systemic pesticide (LSP) to manage bacterial spot disease of tomato. Nanoscale Adv., 2021, 3, 1473-1483.
[http://dx.doi.org/10.1039/D0NA00917B]
[45]
Abbai, R.; Kim, Y.J.; Mohanan, P.; Farh, M.E.; Mathiyalagan, R.; Yang, D.U.; Rangaraj, S.; Venkatachalam, R.; Kim, Y.J.; Yang, D.C. Silicon confers protective effect against ginseng root rot by regulating sugar efflux into apoplast. Scientific Reports, 2019, 9, 18259(1-10).
[http://dx.doi.org/10.1038/s41598-019-54678-x]
[46]
El-Shetehy, M.; Moradi, A.; Maceroni, M.; Reinhardt, D.; Petri-Fink, A.; Rothen-Rutishauser, B.; Mauch, F.; Schwab, F. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat. Nanotechnol., 2021, 16(3), 344-353.
[http://dx.doi.org/10.1038/s41565-020-00812-0] [PMID: 33318639]
[47]
Kah, M.; Navarro, D.; Kookana, R.S.; Kirby, J.K.; Santra, S.; Ozcan, A.; Kabiri, S. Impact of (nano)formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves. Environ. Chem., 2019, 16(6), 401-410.
[http://dx.doi.org/10.1071/EN18279]
[48]
Saharan, V.; Sharma, G.; Yadav, M.; Choudhary, M.K.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol., 2015, 75, 346-353.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.027] [PMID: 25617841]
[49]
Saharan, V.; Kumaraswamy, R.V.; Choudhary, R.C.; Kumari, S.; Pal, A.; Raliya, R.; Biswas, P. Cu-Chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J. Agric. Food Chem., 2016, 64(31), 6148-6155.
[http://dx.doi.org/10.1021/acs.jafc.6b02239] [PMID: 27460439]
[50]
Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S. S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports, 2017, 7(1-11), 9754.
[51]
Cao, X.; Wang, C.; Luo, X.; Yue, L.; White, J.C.; Elmer, W.; Dhankher, O.P.; Wang, Z.; Xing, B. Elemental sulfur nanoparticles enhance disease resistance in tomatoes; ACS Nano Article ASAP, 2021.
[http://dx.doi.org/10.1021/acsnano.1c02917]
[52]
Varaprasad, K.; Mohan, Y.M.; Ravindra, S.; Reddy, N.N.; Vimala, K.; Monika, K.; Sreedhar, B.; Raju, K.M. Hydrogel-silver nanoparticle composites: A new generation of antimicrobials. J. Appl. Polym. Sci., 2010, 115(2), 1199-1207.
[http://dx.doi.org/10.1002/app.31249]
[53]
Liu, S.; Wang, Q.; Liu, W.; Tang, Y.; Liu, J.; Zhang, H.; Liu, X.; Liu, J.; Yang, J.; Zhang, L.C.; Wang, Y.; Xu, J.; Lu, W.; Wang, L. Multi-scale hybrid modified coatings on titanium implants for non-cytotoxicity and antibacterial properties. Nanoscale, 2021, 13(23), 10587-10599.
[http://dx.doi.org/10.1039/D1NR02459K] [PMID: 34105578]
[54]
Zhong, X.; Tong, C.; Liu, T.; Li, L.; Liu, X.; Yang, Y.; Liu, R.; Liu, B. Silver nanoparticles coated by green graphene quantum dots for accelerating the healing of MRSA-infected wounds. Biomater. Sci., 2020, 8(23), 6670-6682.
[http://dx.doi.org/10.1039/D0BM01398F] [PMID: 33084664]
[55]
Ocsoy, I.; Paret, M.L.; Ocsoy, M.A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 2013, 7(10), 8972-8980.
[http://dx.doi.org/10.1021/nn4034794] [PMID: 24016217]
[56]
Strayer, A.; Ocsoy, I.; Tan, W.; Jones, J.B.; Paret, M.L. Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis., 2016, 100(7), 1460-1465.
[http://dx.doi.org/10.1094/PDIS-05-15-0580-RE] [PMID: 30686188]
[57]
Vanti, G. L.; Nargund, V. B.; Basavesha, K. N.; Vanarchi, R.; Kurjogi, M.; Mulla, S. I.; Tubaki, S.; Patil, R. R. Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. App. Organometallic Chem., 2019, 33(1-9), e4630.
[58]
Shahryari, F.; Rabiei, Z.; Sadighian, S. Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. J. Plant Pathol., 2020, 102(2), 469-475.
[http://dx.doi.org/10.1007/s42161-019-00478-1]
[59]
Larue, C.; Castillo-Michel, H.; Sobanska, S.; Cécillon, L.; Bureau, S.; Barthès, V.; Ouerdane, L.; Carrière, M.; Sarret, G. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. J. Hazard. Mater., 2014, 264, 98-106.
[http://dx.doi.org/10.1016/j.jhazmat.2013.10.053] [PMID: 24275476]
[60]
Rossi, L.; Zhang, W.; Ma, X. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environ. Pollut., 2017, 229, 132-138.
[http://dx.doi.org/10.1016/j.envpol.2017.05.083] [PMID: 28582676]
[61]
Wang, Y.Y.; Zhang, P.; Li, M.S.; Guo, Z.L.; Ullah, S.; Rui, Y.K.; Lynch, I. Alleviation of nitrogen stress in rice (Oryza sativa) by ceria nanoparticles. Environ. Sci. Nano, 2020, 7(10), 2930-2940.
[http://dx.doi.org/10.1039/D0EN00757A]
[62]
An, J.; Hu, P.G.; Li, F.J.; Wu, H.H.; Shen, Y.; White, J.C.; Tian, X.L.; Li, Z.H.; Giraldo, J.P. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ. Sci. Nano, 2020, 7(8), 2214-2228.
[http://dx.doi.org/10.1039/D0EN00387E]
[63]
Maxwell, T.J.; Rajasekaran, P.; Young, M.; Schaff, M.; Heetai, R.; Santra, S. Non-phytotoxic zinc based nanoparticle adjuvant for improving rainfastness and sustained release of streptomycin. Environ. Nanotechnol. Monit. Manag., 2020, 14, 100355.
[http://dx.doi.org/10.1016/j.enmm.2020.100355]
[64]
Yu, M.L.; Sun, C.J.; Xue, Y.M.; Liu, C.; Qiu, D.W.; Cui, B.; Zhang, Y.; Cui, H.X.; Zeng, Z.H. Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention. RSC Advances, 2019, 9(46), 27096-27104.
[http://dx.doi.org/10.1039/C9RA05843E]
[65]
Attia, M.S.; Balabel, N.M.; Ababutain, I.M.; Osman, M.S.; Nofel, M.M.; Abd Elkodous, M.; Elkhatib, W.F.; El-Sayyad, G.S.; El-Batal, A.I. Protective role of copper oxide-streptomycin nano-drug against potato brown rot disease caused by Ralstonia solanacearum. J. Cluster Sci., 2021.
[http://dx.doi.org/10.1007/s10876-021-02048-x]
[66]
Meng, W. Y.; Tian, Z. F.; Yao, P. J.; Fang, X. L.; Wu, T.; Cheng, J. G.; Zou, A. H. Preparation of a novel sustained-release system for pyrethroids by using metal-organic frameworks (MOFs) nanoparticle. Colloids Surf. A-Physicochem. Eng. Aspects, 2020, 604(1-8), 125266.
[67]
Xin, X.P.; Judy, J.D.; Sumerlin, B.B.; He, Z.L. Nano-enabled agriculture: From nanoparticles to smart nanodelivery systems. Environ. Chem., 2020, 17(6), 413-425.
[http://dx.doi.org/10.1071/EN19254]
[68]
Graham, J.H.; Johnson, E.G.; Myers, M.E.; Young, M.; Rajasekaran, P.; Das, S.; Santra, S. Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis., 2016, 100(12), 2442-2447.
[http://dx.doi.org/10.1094/PDIS-05-16-0598-RE] [PMID: 30686171]
[69]
Ghosh, D.K.; Kokane, S.; Kumar, P.; Ozcan, A.; Warghane, A.; Motghare, M.; Santra, S.; Sharma, A.K. Antimicrobial nano-zinc oxide-2S albumin protein formulation significantly inhibits growth of “Candidatus Liberibacter asiaticus” in planta. PLoS One, 2018, 13(10), e0204702.
[http://dx.doi.org/10.1371/journal.pone.0204702] [PMID: 30304000]
[70]
Malandrakis, A.A.; Kavroulakis, N.; Chrysikopoulos, C.V. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ., 2019, 670, 292-299.
[http://dx.doi.org/10.1016/j.scitotenv.2019.03.210] [PMID: 30903901]
[71]
Imada, K.; Sakai, S.; Kajihara, H.; Tanaka, S.; Ito, S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol., 2016, 65(4), 551-560.
[http://dx.doi.org/10.1111/ppa.12443]
[72]
Liao, Y.Y.; Strayer-Scherer, A.; White, J.C.; De La Torre-Roche, R.; Ritchie, L.; Colee, J.; Vallad, G.E.; Freeman, J.; Jones, J.B.; Paret, M.L. Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato. Sci. Rep., 2019, 9(1), 18530.
[http://dx.doi.org/10.1038/s41598-019-54717-7] [PMID: 31811183]
[73]
Huang, Z.; Rajasekaran, P.; Ozcan, A.; Santra, S. Antimicrobial magnesium hydroxide nanoparticles as an alternative to cu biocide for crop protection. J. Agric. Food Chem., 2018, 66(33), 8679-8686.
[http://dx.doi.org/10.1021/acs.jafc.8b01727] [PMID: 30025447]
[74]
Song, J.; Kong, H.; Jang, J. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles. Colloids Surf. B Biointerfaces, 2011, 82(2), 651-656.
[http://dx.doi.org/10.1016/j.colsurfb.2010.10.027] [PMID: 21115282]
[75]
Carpenter, A.W.; Worley, B.V.; Slomberg, D.L.; Schoenfisch, M.H. Dual action antimicrobials: nitric oxide release from quaternary ammonium-functionalized silica nanoparticles. Biomacromolecules, 2012, 13(10), 3334-3342.
[http://dx.doi.org/10.1021/bm301108x] [PMID: 22998760]
[76]
Young, M.; Ozcan, A.; Rajasekaran, P.; Kumrah, P.; Myers, M.E.; Johnson, E.; Graham, J.H.; Santra, S. Fixed-Quat: An attractive nonmetal alternative to copper biocides against plant pathogens. J. Agric. Food Chem., 2018, 66(50), 13056-13064.
[http://dx.doi.org/10.1021/acs.jafc.8b04189] [PMID: 30511854]
[77]
Choudhury, S.R.; Ghosh, M.; Mandal, A.; Chakravorty, D.; Pal, M.; Pradhan, S.; Goswami, A. Surface-modified sulfur nanoparticles: An effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl. Microbiol. Biotechnol., 2011, 90(2), 733-743.
[http://dx.doi.org/10.1007/s00253-011-3142-5] [PMID: 21350853]
[78]
Choudhury, S.R.; Roy, S.; Goswami, A.; Basu, S. Polyethylene glycol-stabilized sulphur nanoparticles: An effective antimicrobial agent against multidrug-resistant bacteria. J. Antimicrob. Chemother., 2012, 67(5), 1134-1137.
[http://dx.doi.org/10.1093/jac/dkr591] [PMID: 22269475]
[79]
Rao, K.J.; Paria, S. Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Advances, 2013, 3(26), 10471-10478.
[http://dx.doi.org/10.1039/c3ra40500a]
[80]
Shankar, S.; Pangeni, R.; Park, J.W.; Rhim, J.W. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater. Sci. Eng. C, 2018, 92, 508-517.
[http://dx.doi.org/10.1016/j.msec.2018.07.015] [PMID: 30184776]
[81]
Shankar, S.; Rhim, J.W. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll., 2018, 82, 116-123.
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.054]
[82]
Jaiswal, L.; Shankar, S.; Rhim, J. W. Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydrate Polymers, 2019, 224, 115191(1-10).
[http://dx.doi.org/10.1016/j.carbpol.2019.115191]
[83]
Kim, Y.H.; Kim, G.H.; Yoon, K.S.; Shankar, S.; Rhim, J.W. Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb. Pathog., 2020, 144, 104178.
[http://dx.doi.org/10.1016/j.micpath.2020.104178] [PMID: 32240768]
[84]
Spielman-Sun, E.; Lombi, E.; Donner, E.; Avellan, A.; Etschmann, B.; Howard, D.; Lowry, G.V. Temporal evolution of copper distribution and speciation in roots of Triticum aestivum exposed to CuO, Cu(OH)2, and CuS Nanoparticles. Environ. Sci. Technol., 2018, 52(17), 9777-9784.
[http://dx.doi.org/10.1021/acs.est.8b02111] [PMID: 30078329]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy