Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Antibacterial Activity of Isatin Hybrids

Author(s): Bi Liu, Dan Jiang and Guowen Hu*

Volume 22, Issue 1, 2022

Published on: 13 December, 2021

Page: [25 - 40] Pages: 16

DOI: 10.2174/1568026621666211116090456

Price: $65

Abstract

Abstract: Bacterial infections, which cause a wide range of host immune disorders leading to local and systemic tissue damage, are still one of the main causes of patient morbidity and mortality worldwide. Treatment of bacterial infections is challenging, mainly attributed to the rapidly evolving resistance mechanisms, creating an urgent demand to develop novel antibacterial agents. Hybridization is one of the most promising strategies in the development of novel antibacterial drugs with the potential to address drug resistance since different pharmacophores in the hybrid molecules could modulate multiple targets and exert synergistic effects. Isatin, distributed widely in nature, can exert antibacterial properties by acting on diverse enzymes, proteins, and receptors. Accordingly, hybridization of isatin pharmacophores with other antibacterial pharmacophores in one molecule may provide novel antibacterial candidates with broad-spectrum activity against various pathogens, including drug-resistant forms. This review aims to outline the recent advances of natural and synthetic isatin hybrids with antibacterial potential and summarizes the structure-activity relationship (SAR) to provide an insight for the rational design of more active candidates, covering articles published between January 2012 and June 2021.

Keywords: Isatin, Hybrid compounds, Antibacterial, Structure-activity relationship, MRSE, MRSA.

Graphical Abstract
[1]
Chatterjee, R.; Chowdhury, A.R.; Mukherjee, D.; Chakravortty, D. Lipid larceny: channelizing host lipids for establishing successful pathogenesis by bacteria. Virulence, 2021, 12(1), 195-216.
[http://dx.doi.org/10.1080/21505594.2020.1869441] [PMID: 33356849]
[2]
Gollan, B.; Grabe, G.; Michaux, C.; Helaine, S. Bacterial persisters and infection: past, present, and progressing. Annu. Rev. Microbiol., 2019, 73, 359-385.
[http://dx.doi.org/10.1146/annurev-micro-020518-115650] [PMID: 31500532]
[3]
Kaczor, A.A.; Polski, A.; Sobótka-Polska, K.; Pachuta-Stec, A.; Makarska-Bialokoz, M.; Pitucha, M. Novel antibacterial compounds and their drug targets - successes and challenges. Curr. Med. Chem., 2017, 24(18), 1948-1982.
[http://dx.doi.org/10.2174/0929867323666161213102127] [PMID: 27978802]
[4]
Fura, J.M.; Sarkar, S.; Pidgeon, S.E.; Pires, M.M. Combatting bacterial pathogens with immunomodulation and infection tolerance strategies. Curr. Top. Med. Chem., 2017, 17(3), 290-304.
[http://dx.doi.org/10.2174/1568026616666160829160707] [PMID: 27572083]
[5]
Khan, R.; Kumar, A. Overview of antibiotic resistance. J. Pharm. Res., 2017, 11(6), 703-711.
[6]
Provenzani, A.; Hospodar, A.R.; Meyer, A.L.; Leonardi Vinci, D.; Hwang, E.Y.; Butrus, C.M.; Polidori, P. Multidrug-resistant gram-negative organisms: a review of recently approved antibiotics and novel pipeline agents. Int. J. Clin. Pharm., 2020, 42(4), 1016-1025.
[http://dx.doi.org/10.1007/s11096-020-01089-y] [PMID: 32638294]
[7]
Liu, W.T.; Chen, E.Z.; Yang, L.; Peng, C.; Wang, Q.; Xu, Z.; Chen, D.Q. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: a comprehensive review. Microb. Pathog., 2021, 156, 104915.
[http://dx.doi.org/10.1016/j.micpath.2021.104915] [PMID: 33930416]
[8]
Gajdács, M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics (Basel), 2019, 8(2), e52.
[http://dx.doi.org/10.3390/antibiotics8020052] [PMID: 31052511]
[9]
Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; Timsit, J.F.; Du, B.; Wittebole, X.; Máca, J.; Kannan, S.; Gorordo-Delsol, L.A.; De Waele, J.J.; Mehta, Y.; Bonten, M.J.M.; Khanna, A.K.; Kollef, M.; Human, M.; Angus, D.C. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA, 2020, 323(15), 1478-1487.
[http://dx.doi.org/10.1001/jama.2020.2717] [PMID: 32207816]
[10]
Yu, T.; Jiang, G.; Gao, R.; Chen, G.; Ren, Y.; Liu, J.; van der Mei, H.C.; Busscher, H.J. Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies. Expert Opin. Drug Deliv., 2020, 17(8), 1151-1164.
[http://dx.doi.org/10.1080/17425247.2020.1779697] [PMID: 32510243]
[11]
Sampath Kumar, H.M.; Herrmann, L.; Tsogoeva, S.B. Structural hybridization as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett., 2020, 30(23), 127514.
[http://dx.doi.org/10.1016/j.bmcl.2020.127514] [PMID: 32860980]
[12]
Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr. Top. Med. Chem., 2019, 19(19), 1694-1711.
[http://dx.doi.org/10.2174/1568026619666190619115735] [PMID: 31237210]
[13]
Nath, P.; Mukherjee, A.; Mukherjee, S.; Banerjee, S.; Das, S.; Banerjee, S. Isatin: a scaffold with immense biodiversity. Mini Rev. Med. Chem., 2021, 21(9), 1096-1112.
[http://dx.doi.org/10.2174/2211536609666201125115559] [PMID: 33238872]
[14]
Varpe, B.D.; Kulkarni, A.A.; Jadhav, S.B.; Mali, A.S.; Jadhav, S.Y. Isatin hybrids and their pharmacological investigations. Mini Rev. Med. Chem., 2021, 21(10), 1182-1225.
[http://dx.doi.org/10.2174/1389557520999201209213029] [PMID: 33302835]
[15]
Song, F.; Li, Z.; Bian, Y.; Huo, X.; Fang, J.; Shao, L.; Zhou, M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch. Pharm. (Weinheim), 2020, 353(10), e2000143.
[http://dx.doi.org/10.1002/ardp.202000143] [PMID: 32667714]
[16]
Kumar, G.; Singh, N.P.; Kumar, K. Recent advancement of synthesis of isatins as a versatile pharmacophore: a review. Drug Res. (Stuttg.), 2021, 71(3), 115-121.
[http://dx.doi.org/10.1055/a-1238-2639] [PMID: 33296925]
[17]
Sharma, P.; Thummuri, D.; Reddy, T.S.; Senwar, K.R.; Naidu, V.G.M.; Srinivasulu, G.; Bharghava, S.K.; Shankaraiah, N. New (E)-1-alkyl-1H-benzo[d]imidazol-2-yl)methylene)indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies. Eur. J. Med. Chem., 2016, 122, 584-600.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.019] [PMID: 27448916]
[18]
Satish, G.; Polu, A.; Ramar, T.; Ilangovan, A. I odine-Mediated C–H Functionalization of sp, sp2, and sp3 Carbon: a unified multisubstrate domino approach for isatin synthesis. J. Org. Chem., 2015, 80(10), 5167-5175.
[http://dx.doi.org/10.1021/acs.joc.5b00581] [PMID: 25906247]
[19]
Zhang, C.; Li, S.; Bures, F.; Lee, R.; Ye, X.; Jiang, Z. Visible light photocatalytic aerobic oxygenation of indoles and pH as a chemoselective Switch. ACS Catal., 2016, 6(10), 6853-6860.
[http://dx.doi.org/10.1021/acscatal.6b01969]
[20]
Varun, A.; Sonam, A.; Kakkar, R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. MedChemComm, 2019, 10(3), 351-368.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[21]
Duc, D.X. Recent progress in the synthesis of furan. Mini Rev. Org. Chem., 2019, 16(5), 422-452.
[http://dx.doi.org/10.2174/1570193X15666180608084557]
[22]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[23]
Iqbal, S.; Rasheed, H.; Awan, R.J.; Awan, R.J.; Mukhtar, A.; Moloney, M.G. Recent advances in the synthesis of pyrroles. Curr. Org. Chem., 2020, 24(11), 1196-1229.
[http://dx.doi.org/10.2174/1385272824999200528125651]
[24]
Alizadeh, M.; Jalal, M.; Hamed, K.; Saber, A.; Kheirouri, S.; Pourteymour Fard Tabrizi, F.; Kamari, N. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. J. Inflamm. Res., 2020, 13, 451-463.
[http://dx.doi.org/10.2147/JIR.S262132] [PMID: 32884326]
[25]
Liu, Y.; Cui, Y.; Lu, L.; Gong, Y.; Han, W.; Piao, G. Natural indole-containing alkaloids and their antibacterial activities. Arch. Pharm. (Weinheim), 2020, 353(10), e2000120.
[http://dx.doi.org/10.1002/ardp.202000120] [PMID: 32557757]
[26]
Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem., 2020, 208, 112783.
[http://dx.doi.org/10.1016/j.ejmech.2020.112783] [PMID: 32916311]
[27]
Gao, F.; Wang, T.; Gao, M.; Zhang, X.; Liu, Z.; Zhao, S.; Lv, Z.; Xiao, J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur. J. Med. Chem., 2019, 165, 323-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.042] [PMID: 30690301]
[28]
Wang, Y.L.; Zhao, S.J.; Liu, Y.; Xu, Z. Design, synthesis and in vitro anti-bacterial activities of benzofuran-isatin hybrids. Rev. Roum. Chim., 2019, 64(8), 687-710.
[http://dx.doi.org/10.33224/rrch/2019.64.8.6]
[29]
Kenchappa, R.; Bodke, Y.D.; Telkar, S.; Nagaraja, O. Synthesis and antimicrobial activity of fused isatin and diazepine derivatives derived from 2-acetyl benzofuran. Russ. J. Gen. Chem., 2017, 87(9), 2027-2038.
[http://dx.doi.org/10.1134/S1070363217090195]
[30]
Santoshkumar, S.; Satyanarayan, N.D.; Anantacharya, R.; Sameer, P. Synthesis, antimicrobial, antitubercular and cheminformatic studies of 2-(1-benzofuran-2-yl)-N'-[(3Z)-2-oxo-1,2-dihydro-3H-indol-3-ylidene]quinoline-4-carbohydrazide and its derivatives. Int. J. Pharm. Pharm. Sci., 2017, 9(5), 260-267.
[http://dx.doi.org/10.22159/ijpps.2017v9i5.17564]
[31]
Baharfar, R.; Asghari, S.; Rassi, S.; Mohseni, M. Synthesis and evaluation of novel isatin and 5-isatinylidenerhodanine-based furan derivatives as antibacterial agents. Res. Chem. Intermed., 2015, 41, 6975-6984.
[http://dx.doi.org/10.1007/s11164-014-1792-5]
[32]
Abdel-Aziz, H.A.; Azzam, R.A.; Hussein, H.S.; Masoud, D.M.; Mekawey, A.A.I. Synthesis of some novel substituted nicotines and evaluation of their antimicrobial activity. Egypt. J. Chem., 2020, 63(3), 791-803.
[33]
Akhaja, T.N.; Raval, J.P. Design, synthesis, in vitro evaluation of tetrahydropyrimidine-isatin hybrids as potential antibacterial, antifungal and anti-tubercular agents. Chin. Chem. Lett., 2012, 23, 446-449.
[http://dx.doi.org/10.1016/j.cclet.2012.01.040]
[34]
Anjum, K.; Kaleem, S.; Yi, W.; Zheng, G.; Lian, X.; Zhang, Z. Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275. Mar. Drugs, 2019, 17(2), e89.
[http://dx.doi.org/10.3390/md17020089] [PMID: 30717135]
[35]
El-Hawary, S.S.; Sayed, A.M.; Mohammed, R.; Hassan, H.M.; Rateb, M.E.; Amin, E.; Mohammed, T.A.; El-Mesery, M.; Bin Muhsinah, A.; Alsayari, A.; Wajant, H.; Anany, M.A.; Abdelmohsen, U.R. Bioactive brominated oxindole alkaloids from the red sea sponge Callyspongia siphonella. Mar. Drugs, 2019, 17(8), e465.
[http://dx.doi.org/10.3390/md17080465] [PMID: 31395834]
[36]
Sayed, A.M.; Alhadrami, H.A.; El-Hawary, S.S.; Mohammed, R.; Hassan, H.M.; Rateb, M.E.; Abdelmohsen, U.R.; Bakeer, W. Discovery of two brominated oxindole alkaloids as Staphylococcal DNA gyrase and pyruvate kinase inhibitors via inverse virtual screening. Microorganisms, 2020, 8(2), e293.
[http://dx.doi.org/10.3390/microorganisms8020293] [PMID: 32093370]
[37]
Li, P.L.; Ren, X.T. Bioactive alkaloids from the indole-3-carbinol exposed culture of Daldinia eschscholzii. Chin. J. Chem., 2018, 36, 749-754.
[http://dx.doi.org/10.1002/cjoc.201800160]
[38]
Al-Wabli, R.I.; Zakaria, A.S.; Attia, M.I. Synthesis, spectroscopic characterization and antimicrobial potential of certain new isatin-indole molecular hybrids. Molecules, 2017, 22(11), e1958.
[http://dx.doi.org/10.3390/molecules22111958] [PMID: 29140257]
[39]
Wang, K.B.; Hu, X.; Li, S.G.; Li, X.Y.; Li, D.H.; Bai, J.; Pei, Y.H.; Li, Z.L.; Hua, H.M. Racemic indole alkaloids from the seeds of Peganum harmala. Fitoterapia, 2018, 125, 155-160.
[http://dx.doi.org/10.1016/j.fitote.2018.01.008] [PMID: 29355750]
[40]
Kathirvelan, D.; Haribabu, J.; Reddy, B.S.R.; Balachandran, C.; Duraipandiyan, V. Facile and diastereoselective synthesis of 3,2′-spiropyrrolidine-oxindoles derivatives, their molecular docking and antiproliferative activities. Bioorg. Med. Chem. Lett., 2015, 25(2), 389-399.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.099] [PMID: 25435149]
[41]
Swathy, S.S.; Biju, R.; Mohanan, K. Synthesis, spectroscopic characterization, antibacterial and corrosion inhibitory activities of some 3d-metal complexes of [(2-pyrrole-2-carboxaldehyde)-3-isatin]bishydrazone. Asian J. Chem., 2015, 27(12), 4679-4685.
[http://dx.doi.org/10.14233/ajchem.2015.19346]
[42]
Qin, H.L.; Zhang, Z.W.; Ravindar, L.; Rakesh, K.P. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur. J. Med. Chem., 2020, 207, 112832.
[http://dx.doi.org/10.1016/j.ejmech.2020.112832] [PMID: 32971428]
[43]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109, 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[44]
Feng, D.; Zhang, A.; Yang, Y.; Yang, P. Coumarin-containing hybrids and their antibacterial activities. Arch. Pharm. (Weinheim), 2020, 353(6), e1900380.
[http://dx.doi.org/10.1002/ardp.201900380] [PMID: 32253782]
[45]
Kumar, P. A review on quinoline derivatives as anti-methicillin resistant Staphylococcus aureus (MRSA) agents. BMC Chem., 2020, 14(1), 17.
[http://dx.doi.org/10.1186/s13065-020-00669-3] [PMID: 32190843]
[46]
Ezelarab, H.A.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm. (Weinheim), 2018, 351(9), e1800141.
[http://dx.doi.org/10.1002/ardp.201800141] [PMID: 30048015]
[47]
Gao, F.; Wang, P.; Yang, H.; Miao, Q.; Ma, L.; Lu, G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur. J. Med. Chem., 2018, 157, 1223-1248.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.095] [PMID: 30193220]
[48]
Jin, X.; Xu, Y.; Yang, X.; Chen, X.; Wu, M.; Guan, J.; Feng, L. Design, synthesis and in vitro anti-microbial evaluation of ethylene/propylene-1H-1,2,3-triazole-4-methylene-tethered isatin-coumarin hybrids. Curr. Top. Med. Chem., 2017, 17(29), 3213-3218.
[PMID: 29243578]
[49]
Bhagat, K.; Bhagat, J.; Gupta, M.K.; Singh, J.V.; Gulati, H.K.; Singh, A.; Kaur, K.; Kaur, G.; Sharma, S.; Rana, A.; Singh, H.; Sharma, S.; Singh Bedi, P.M. Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids. ACS Omega, 2019, 4(5), 8720-8730.
[http://dx.doi.org/10.1021/acsomega.8b02481] [PMID: 31459961]
[50]
Awolade, P.; Cele, N.; Ebenezer, O.; Kerru, N.; Gummidi, L.; Gu, L.; Palma, G.; Kaur, M.; Singh, P. Synthesis of 1H-1,2,3-triazole-linked quinoline-isatin molecular hybrids as anti-breast cancer and anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. Anticancer Agents Med. Chem., 2021, 21(10), 1228-1239.
[http://dx.doi.org/10.2174/1871520620666200929153138] [PMID: 32990543]
[51]
Ajani, O.O.; Iyaye, K.T.; Audu, O.Y.; Olorunshola, S.J.; Kuye, A.O.; Olanrewaju, I.O. Microwave assisted synthesis and antimicrobial potential of quinoline-based 4-hydrazide-hydrazone derivatives. J. Heterocycl. Chem., 2018, 55(1), 302-312.
[http://dx.doi.org/10.1002/jhet.3050]
[52]
Ashoka, K.S.; Mamatha, G.P.; Santhosh, H.M. Synthesis, antimicrobial and electrochemical studies of four substituted isatin derivatives at a glassy carbon electrode. Anal. Bioanal. Electrochem., 2020, 12(3), 415-424.
[53]
Wang, R.; Yin, X.; Zhang, Y.; Yan, W. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids. Eur. J. Med. Chem., 2018, 156, 580-586.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.025] [PMID: 30025351]
[54]
Guo, H. Design, synthesis, and antibacterial evaluation of propylene-tethered 8-methoxyl ciprofloxacin-isatin hybrids. J. Heterocycl. Chem., 2018, 55(10), 2434-2440.
[http://dx.doi.org/10.1002/jhet.3279]
[55]
Niveditha, N.; Begum, M.; Prathibha, D.; Sirisha, K.; Mahender, P.; Chitra, C.; Rao, V.R.; Reddy, V.M.; Achaiah, G. Design, synthesis and pharmacological evaluation of some C3 heterocyclic-substituted ciprofloxacin derivatives as chimeric antitubercular agents. Chem. Pharm. Bull. (Tokyo), 2020, 68(12), 1170-1177.
[http://dx.doi.org/10.1248/cpb.c20-00525] [PMID: 33268649]
[56]
Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc., 2013, 17(3), 337-344.
[http://dx.doi.org/10.1016/j.jscs.2011.10.022]
[57]
Guo, H. Design, synthesis, and in vitro antibacterial activities of propylene-tethered gatifloxacin-isatin hybrids. J. Heterocycl. Chem., 2018, 55(8), 1899-1905.
[http://dx.doi.org/10.1002/jhet.3226]
[58]
Guo, H.; Diao, Q.P. Gatifloxacin-1,2,3-triazole-isatin hybrids tethered through methylene and acetyl and their antibacterial activities. Rev. Roum. Chim., 2020, 65(3), 239-246.
[http://dx.doi.org/10.33224/rrch.2020.65.3.03]
[59]
Gao, F.; Ye, L.; Kong, F.; Huang, G.; Xiao, J. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids. Bioorg. Chem., 2019, 91, 103162.
[http://dx.doi.org/10.1016/j.bioorg.2019.103162] [PMID: 31382058]
[60]
Gangrade, D.M.; Waghmare, N.N. Synthesis of Mannich bases of norfloxacin: conventional and microwave assisted synthesis. Int. J. Pharm. Sci. Res., 2018, 9(12), 5121-5130.
[61]
Zhang, H.Z.; Gan, L.L.; Wang, H.; Zhou, C.H. New progress in azole compounds as antimicrobial agents. Mini Rev. Med. Chem., 2017, 17(2), 122-166.
[http://dx.doi.org/10.2174/1389557516666160630120725] [PMID: 27484625]
[62]
Othman, A.A.; Kihel, M.; Amara, S. 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents. Arab. J. Chem., 2019, 12(7), 1660-1675.
[http://dx.doi.org/10.1016/j.arabjc.2014.09.003]
[63]
Zhou, Y.; Ju, Y.; Yang, Y.; Sang, Z.; Wang, Z.; He, G.; Yang, T.; Luo, Y. Discovery of hybrids of indolin-2-one and nitroimidazole as potent inhibitors against drug-resistant bacteria. J. Antibiot. (Tokyo), 2018, 71(10), 887-897.
[http://dx.doi.org/10.1038/s41429-018-0076-5] [PMID: 29968851]
[64]
Girija, K.; Karthika, S.; Mathew, N. Synthesis and anti-microbial activity of some novel Mannich base aryl imidazole derivatives. Res. J. Pharm. Tech., 2014, 7(9), 1025-1028.
[65]
Chaithanya, B.; Kasiviswanath, I.V.; Chary, D.P. Synthesis and pharmacological screening of new isatin-3-[N2-(benzimidazol-1-acetyl)]hydrazine. Bull. Chem. Soc. Ethiop., 2019, 33(2), 321-329.
[http://dx.doi.org/10.4314/bcse.v33i2.12]
[66]
Haj Mohammad Ebrahim Tehrani, K.; Hashemi, M.; Hassan, M.; Kobarfard, F.; Mohebbi, S. Synthesis and antibacterial activity of Schiff bases of 5-substituted isatins. Chin. Chem. Lett., 2016, 27(2), 221-225.
[http://dx.doi.org/10.1016/j.cclet.2015.10.027]
[67]
Jabbar, S.S. Synthesis, characterization and antimicrobial activity of new isatin derivatives. Int. Res. J. Pharm., 2019, 10(1), 98-102.
[http://dx.doi.org/10.7897/2230-8407.100118]
[68]
Rajyalakshmi, G.; Reddy, A.R.N.; Sarangapani, M. Synthesis and biological activities of some novel 2-amino-(5 or 7-substituted-2-oxoindolin-3-ylidene) benzoxazole-5-carbohydrazide derivatives. Lett. Drug Des. Discov., 2012, 9, 625-632.
[http://dx.doi.org/10.2174/157018012800673029]
[69]
Kandile, N.G.; Zaky, H.T.; Mohamed, M.I.; Ismaeel, H.M.; Ahmed, N.A. Synthesis, characterization and in vitro antimicrobial evaluation of new compounds incorporating oxindole nucleus. J. Enzyme Inhib. Med. Chem., 2012, 27(4), 599-608.
[http://dx.doi.org/10.3109/14756366.2011.576251] [PMID: 21534861]
[70]
Chundawat, T.S.; Kumari, P.; Sharma, N.; Bhagat, S. Strategic synthesis and in vitro antimicrobial evaluation of novel difluoromethylated 1-(1,3-diphenyl-1H-pyrazol-4-yl)-3,3-difluoro-1, 3-dihydro-indol-2-ones. Med. Chem. Res., 2016, 25, 2335-2348.
[http://dx.doi.org/10.1007/s00044-016-1658-z]
[71]
Hamidi, M.; Ramezanpour, N.; Karimitabar, F.; Khazaei, A.; Zolfigol, M.A.; Nikokar, I.; Mirzaei, R.; Araghian, A.V. Study on antibacterial activity of newly synthesized derivatives of pyranopyrazole, pyrazolo[1,2-b]phtalazine and bis-pyrazole. Acta Microbiologica Hellenica, 2019, 64(1), 33-40.
[72]
Tataringa, G.; Stan, C.D.; Zbancioc, A.M.; Jitareanu, A.; Tuchilus, C. Preliminary screening of biological activities of some new Schiff bases of isatins. Farmacia, 2013, 62(1), 14-22.
[73]
Amani, A.M. Synthesis, characterization and biological activities of some novel isatin derivatives. Izv. Him., 2014, 46(4), 795-800.
[74]
Abo-Ashour, M.F.; Eldehna, W.M.; George, R.F.; Abdel-Aziz, M.M.; Elaasser, M.M.; Abdel Gawad, N.M.; Gupta, A.; Bhakta, S.; Abou-Seri, S.M. Novel indole-thiazolidinone conjugates: Design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents. Eur. J. Med. Chem., 2018, 160, 49-60.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.008] [PMID: 30317025]
[75]
Bari, S.; Manda, S.; Ugale, V.; Jupally, V.R.; Akena, V. Rational design and synthesis of benzothiazolo-isatins for antimicrobial and cytotoxic activities. Indian J. Chem., 2015, 54B, 418-429.
[76]
Khubeiz, M.J. Synthesis and spectroscopic studies on the new Schiff base derived from the 1:1 condensation of isatin with amines and its evaluating biological activity. Int. J. Chemtech Res., 2016, 9(7), 516-522.
[77]
Badahdah, K.O.; Hamid, H.M.A.; Noureddin, S.A. Functionalized 2-hydrazinobenzothiazole with isatin and some carbohydrates under conventional and ultrasound methods and their biological activities. J. Heterocycl. Chem., 2015, 52(1), 67-74.
[http://dx.doi.org/10.1002/jhet.1986]
[78]
El-Mawgoud, H.K.A.; Atta-Allah, S.R.; Hemdan, M.M. Uses of 2-(thiophene-2-carbonylcarbamothioylthio)acetic acid as a good synthon for construction of some new thiazole and annulated thiazole derivatives. Chem. Pharm. Bull. (Tokyo), 2018, 66(10), 992-998.
[http://dx.doi.org/10.1248/cpb.c18-00482] [PMID: 30270245]
[79]
Hussain, A.Z.; Meeran, M.N.; Sankar, A. Synthesis, characterization and antimicrobial activity of spiro-4-thiazolidione derivatives from 5-substituted indole-2,3-dione. Pharma Chem., 2016, 8(2), 292-296.
[80]
Madhu, G.; Jayaveera, K.N.; Ravindra Nath, L.K.; Santosh Kumar, B.; Nagarjuna Reddy, P. Synthesis, characterization and biological evaluation of multi substituted quinoline-thiazolidinone mannich bases. J. Chem. Pharm. Res., 2012, 4(6), 2928-2936.
[81]
Deswal, S.; Tittal, R.K.; Vikas, D.G.; Lal, K.; Kumar, A. 5-Fluoro-1H-indole-2,3-dione-triazoles-Synthesis, biological activity, molecular docking, and DFT study. J. Mol. Struct., 2020, 1208, e127982.
[http://dx.doi.org/10.1016/j.molstruc.2020.127982]
[82]
Sampath, S.; Vadivelu, M.; Ravindran, R.; Perumal, P.T.; Velkannan, V.; Karthikeyan, K. Synthesis of 1,2,3-triazole tethered 3-hydroxy-2-oxindoles: promising corrosion inhibitors for steel in acidic medium and their anti-microbial evaluation. ChemistrySelect, 2020, 5(7), 2130-2134.
[http://dx.doi.org/10.1002/slct.201904320]
[83]
Bogdanov, A.V.; Kulik, N.V.; Mironov, V.F.; Sapunova, A.S.; Voloshina, A.D. Effect of structure of 1-substituted isatins on direction of their reactions with some acetohydrazide ammonium derivatives. Russ. J. Gen. Chem., 2020, 90(9), 1591-1600.
[http://dx.doi.org/10.1134/S1070363220090029]
[84]
Sakly, R.; Edziri, H.; Askri, M.; Knorr, M.; Louven, K.; Strohmann, C.; Mastouri, M. Synthesis of new spirooxindole-fused isoxazoline/triazole and isoxazoline/isoxazole derivatives from three-component 1,3-dipolar cycloaddition. J. Heterocycl. Chem., 2017, 54, 3554-3564.
[http://dx.doi.org/10.1002/jhet.2981]
[85]
Ain, Q.; Pandey, S.K.; Pandey, O.P.; Sengupta, S.K. Synthesis, structural characterization and biological studies of neodymium(III) and samarium(III) complexes with mercaptotriazole Schiff bases. Appl. Organomet. Chem., 2016, 30(2), 102-108.
[http://dx.doi.org/10.1002/aoc.3405]
[86]
Arief, M.M.H.; Aly, A.A.; Khalil, A.A.; Mohamed, H.I. Utility of 4-(isatin-3-ylideneamino)benzohydrazide in the synthesis of bioactive N-heterocyclic compounds. J. Chem. Pharm. Res., 2014, 6(2), 327-335.
[87]
Murthy, Y.L.N.; Govindh, B.; Diwakar, B.S.; Nagalakshmi, K.; Rao, K.V.R. Synthesis and bioevaluation of Schiff and Mannich bases of isatin derivatives with 4-amino-5-benzyl-2,4-dihydro-3H-1,2,4-triazole-3-thione. Med. Chem. Res., 2012, 21(10), 3104-3110.
[http://dx.doi.org/10.1007/s00044-011-9838-3]
[88]
de Oliveira Carneiro Brum, J.; França, T.C.C.; LaPlante, S.R.; Villar, J.D.F. Synthesis and biological activity of hydrazones and derivatives: a review. Mini Rev. Med. Chem., 2020, 20(5), 342-368.
[http://dx.doi.org/10.2174/1389557519666191014142448] [PMID: 31612828]
[89]
Sharma, P.C.; Sharma, D.; Sharma, A.; Saini, N.; Goyal, R.; Ola, M.; Chawla, R.; Thakur, V.K. Hydrazone comprising compounds as promising anti-infective agents: chemistry and structure-property relationship. Mater. Today Chem., 2020, 18, e100349.
[http://dx.doi.org/10.1016/j.mtchem.2020.100349]
[90]
Shakya, B.; Yadav, P.N. Thiosemicarbazones as potent anticancer agents and their modes of action. Mini Rev. Med. Chem., 2020, 20(8), 638-661.
[http://dx.doi.org/10.2174/1389557519666191029130310] [PMID: 31660812]
[91]
Moharana, A.K.; Dash, R.N.; Subudhi, B.B. Thiosemicarbazides: updates on antivirals strategy. Mini Rev. Med. Chem., 2020, 20(20), 2135-2152.
[http://dx.doi.org/10.2174/1389557520666200818212408] [PMID: 32811412]
[92]
de Siqueira, L.R.P.; de Moraes Gomes, P.A.T.; de Lima Ferreira, L.P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Multi-target compounds acting in cancer progression: focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem., 2019, 170, 237-260.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.024] [PMID: 30904782]
[93]
Prajapati, N.P.; Patel, H.D. Novel thiosemicarbazone derivatives and their metal complexes: recent development. Synth. Commun., 2019, 49(21), 2767-2804.
[http://dx.doi.org/10.1080/00397911.2019.1649432]
[94]
Bogdanov, A.V.; Kadomtseva, M.E.; Bukharov, S.V.; Mironov, V.F. Effect of the cationic moiety on the antimicrobial activity of sterically hindered isatin 3-hydrazone derivatives. Russ. J. Org. Chem., 2020, 56(3), 555-558.
[http://dx.doi.org/10.1134/S107042802003032X]
[95]
Bogdanov, A.V.; Zaripova, I.F.; Voloshina, A.D.; Strobykina, A.S.; Kulik, N.V.; Bukharov, S.V.; Voronina, J.K.; Khamatgalimov, A.R.; Mironov, V.F. Synthesis and antimicrobial activity evaluation of some novel water-soluble isatin-3-acylhydrazones. Monatsh. Chem., 2018, 149, 111-117.
[http://dx.doi.org/10.1007/s00706-017-2049-y]
[96]
Bogdanov, A.V.; Zaripova, I.F.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Bukharov, S.V.; Voronina, J.K.; Vandyukov, A.E.; Mironov, V.F. Synthesis and biological evaluation of new isatin-based QACs with high antimicrobial potency. ChemistrySelect, 2019, 4, 6162-6266.
[http://dx.doi.org/10.1002/slct.201901708]
[97]
Yang, Y.S.; Su, M.M.; Xu, J.F.; Liu, Q.X.; Bai, L.F.; Hu, X.W.; Zhu, H.L. Discovery of novel oxoindolin derivatives as atypical dual inhibitors for DNA Gyrase and FabH. Bioorg. Chem., 2019, 93, 103309.
[http://dx.doi.org/10.1016/j.bioorg.2019.103309] [PMID: 31585266]
[98]
Lian, Z.M.; Sun, J.; Zhu, H.L. Design, synthesis and antibacterial activity of isatin derivatives as FtsZ inhibitors. J. Mol. Struct., 2016, 1117, 8-16.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.036]
[99]
Al-Salem, H.S.; Abuelizz, H.A.; Issa, I.S.; Mahmoud, A.Z.; AlHoshani, A.; Arifuzzaman, M.; Rahman, A.F.M.M. Synthesis of novel potent biologically active N-benzylisatin-aryl hydrazones in comparison with lung cancer drug ‘Gefitinib’. Appl. Sci. (Basel), 2020, 10, e3669.
[http://dx.doi.org/10.3390/app10113669]
[100]
Kumar, T.K.; Sreenivasulu, R. Synthesis, characterization and antimicrobial activity of novel N-(benzoxazol-2-yl)-2-(2-oxoindolin-3-ylidine) hydrazine carbothioamides. Int. J. Pharm. Sci. Res., 2020, 11(6), 2776-2785.
[101]
Devi, N.S.; Srinivas, B.; Sarangapani, M. Synthesis and screening N-(2,4′-dioxo-1,2-dihydro-3′H-sprio[indole-3,2′-[1,3]thiazolidin]-3′-yl)-3-hydroxybenzamides for anti-bacterial activity. Int. J. Pharm. Sci. Res., 2019, 10(8), 3850-3855.
[102]
Pashirova, T.N.; Bogdanov, A.V.; Zaripova, I.F.; Burilova, E.A.; Vandyukov, A.E.; Sapunova, A.S.; Vandyukova, I.I.; Voloshina, A.D.; Mironov, V.F.; Zakharova, L.Y. Tunable amphiphilic π-systems based on isatin derivatives containing a quaternary ammonium moiety: the role of alkyl chain length in biological activity. J. Mol. Liq., 2019, 290, e111220.
[http://dx.doi.org/10.1016/j.molliq.2019.111220]
[103]
Bogdanov, A.V.; Zaripova, I.F.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Voronina, J.K.; Mironov, V.F. Synthesis and antimicrobial study of novel 1-benzylated water-soluble isatin-3-hydrazones. Chem. Biodivers., 2018, 15(6), e1800088.
[http://dx.doi.org/10.1002/cbdv.201800088] [PMID: 29687663]
[104]
Jabbar, S.S. Synthesis, characterization and antibacterial activity of carbamate derivatives of isatin. Orient. J. Chem., 2018, 34(4), 2026-2030.
[http://dx.doi.org/10.13005/ojc/3404041]
[105]
Bogdanov, A.V.; Zaripova, I.F.; Voloshina, A.D.; Strobykina, A.S.; Kulik, N.V.; Bukharov, S.V.; Mironov, V.F. Isatin derivatives containing sterically hindered phenolic fragment and water-soluble acyl hydrazones on their basis: synthesis and antimicrobial activity. Russ. J. Gen. Chem., 2018, 88(1), 57-67.
[http://dx.doi.org/10.1134/S1070363218010097]
[106]
Chirra, S.; Jupally, V.R. Study of antibacterial, analgesic and anticonvulsant activity of novel isatin derivatives. Asian J. Pharm. Clin. Res., 2016, 9(5), 65-68.
[http://dx.doi.org/10.22159/ajpcr.2016.v9i5.11725]
[107]
Jain, P.; Singh, V. Pharmacological activity of newly synthesized and characterized N,O-donor tetraaza macrocyclic metal complexes. Asian J. Pharm., 2016, 10(4), S612-S622.
[108]
Rawat, P.; Verma, S.M. Synthesis and pharmacological evaluation of 6-hydroxy-2,5,7,8-tetramethyl-N'-(2-oxoindolin-3-ylidene)chroman-2-carbohydrazide derivatives as antimicrobial agents. Int. J. Pharm. Sci. Res., 2016, 8(3), 149-154.
[109]
Marhoon, Z.A.; Abdel-Megeed, A.; Sholkamy, E.N.; Siddiqui, M.R.H.; El-Faham, A. Synthesis of phenylcarbamic acid and 2-[2-oxo-3-(4-substituted phenylimino)-indolin-1-yl]acetohydrazide derivatives as promising antifungal agents. Asian J. Chem., 2014, 26(22), 7665-7672.
[http://dx.doi.org/10.14233/ajchem.2014.17566]
[110]
Kanchana, S.N.; Burra, V.; Nath, L.K.R. Novel synthesis and anti-microbial activity study of innovative Mannich bases containing 2-phenoxy-1,3,2-dioxa phospholanes and indole systems. Orient. J. Chem., 2014, 30(3), 1349-1360.
[http://dx.doi.org/10.13005/ojc/300354]
[111]
Vasanthi, R.; Rajendraprasad, Y.; Srinivas, B. Synthesis, characterization, antibacterial and antifungal activities of isatin derivatives. Int. J. Chemtech Res., 2013, 5(6), 3015-3022.
[112]
Sallam, S.A.; Ibrahim, E.S.I.; Anwar, M.I. Synthesis, complexation and biological activity of new isatin Schiff bases. J. Chil. Chem. Soc., 2012, 57, 1482-1491.
[http://dx.doi.org/10.4067/S0717-97072012000400030]
[113]
Singh, V.P.; Singh, S.; Singh, D.P. Synthesis, characterization and biocidal activity of some transition metal(II) complexes with isatin salicylaldehyde acyldihydrazones. J. Enzyme Inhib. Med. Chem., 2012, 27(3), 319-329.
[http://dx.doi.org/10.3109/14756366.2011.588228] [PMID: 21679052]
[114]
Zhang, X.M.; Guo, H.; Li, Z.S.; Song, F.H.; Wang, W.M.; Dai, H.Q.; Zhang, L.X.; Wang, J.G. Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species. Eur. J. Med. Chem., 2015, 101, 419-430.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.047] [PMID: 26185006]
[115]
Hassan, M.; Ghaffari, R.; Sardari, S.; Farahani, Y.F.; Mohebbi, S. Discovery of novel isatin-based thiosemicarbazones: synthesis, antibacterial, antifungal, and antimycobacterial screening. Res. Pharm. Sci., 2020, 15(3), 281-290.
[http://dx.doi.org/10.4103/1735-5362.288435] [PMID: 33088328]
[116]
Sachdeva, H.; Dwivedi, D.; Singh, H.L.; Sharma, K.P. Aqua mediated one pot facile synthesis of novel thioxo-1,2,4-triazin-5(2H)-one and [1,2,4]triazino[5,6-b]indole derivatives and their biological activities. J. Chil. Chem. Soc., 2012, 57, 1348-1354.
[http://dx.doi.org/10.4067/S0717-97072012000400004]
[117]
Lingala, S.; Samudrala, K.; Nerella, R. Synthesis and evaluation of new ethyl N-[(Z)-(2-oxo-5-sulfamoylIndolin-3-ylidene)amino] carbamate derivatives for their antimicrobial and anti-inflammatory activity. J. Appl. Pharm. Sci., 2013, 3(12), 93-98.
[118]
Ermut, G.; Karali, N.; Cetin, I.; Topcul, M.; Birteksoez, S. Synthesis and chemotherapeutic activities of 5-chloro-1H-indole-2,3-dione 3-thiosemicarbazones. Marmara Pharm. J., 2013, 17(2), 147-154.
[http://dx.doi.org/10.12991/201317383]
[119]
Girija, S.; AshokBabu, K.; Prathyusha, K. Comparative study and synthesis of some 5-fluoro isatin Schiff bases and evaluation of their pharmacological actions. Int. J. Pharm. Tech. Res., 2013, 5(3), 1404-1409.
[120]
Varma, C.P.; Kumar, K.S.; Aravindakshan, K.K. Synthesis and biochemical studies of transition metal complexes of isatin N(4)-methy(phenyl) thiosemicarbazone. Int. Res. J. Pharm., 2017, 8(10), 109-116.
[http://dx.doi.org/10.7897/2230-8407.0810191]
[121]
Mishara, K.N.; Sengupta, S.K.; Pandey, O.P.; Goswami, S. Synthesis, physicoanalytical characterization and biological activity of isatin thiosemicarbazones derivatives of dichloro bis(cyclopentadienyl) hafnium(IV) (Cp2HfCl2). Res. J. Pharm. Biol. Chem. Sci., 2017, 8(3), 1779-1785.
[122]
El-Sawaf, A.K.; El-Essawy, F.; Nassar, A.A.; El-Samanody, E.S.A. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand. J. Mol. Struct., 2018, 1157, 381-394.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.075]
[123]
Gabr, M.; El-Gohary, N.S.; El-Bendary, E.R.; Ni, N.; Shaaban, M.I.; El-Kerdawy, M.M. Microwave-assisted synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of a new series of isatin-β-thiocarbohydrazone. Synth. Commun., 2018, 48(22), 2899-2911.
[http://dx.doi.org/10.1080/00397911.2018.1520889]
[124]
Ramadan, E.S.; Rasheed, H.A.; El Ashry, E.S.H. Synthesis and antimicrobial screening of novel 1,3-dioxolanes linked to N-5 of 5H-1,2,4-triazino[5,6-b]indole-3-thiol. J. Serb. Chem. Soc., 2019, 84(1), 1-10.
[http://dx.doi.org/10.2298/JSC171127067R]
[125]
Ganim, M.A.; Baloglu, M.C.; Aygun, A.; Altunoglu, Y.C.; Sayiner, H.S.; Kandemirli, F.; Sen, F. Analysis of DNA protection, interaction and antimicrobial activity of isatin derivatives. Int. J. Biol. Macromol., 2019, 122, 1271-1278.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.084] [PMID: 30227206]
[126]
Munikumari, G.; Konakanchi, R. Nishtala, Ramesh, G.; Kotha, L.R.; Chandrasekhar, K.B.; Ramachandraiah, C. Palladium(II) complexes of 5-substituted isatin thiosemicarbazones: synthesis, spectroscopic characterization, biological evaluation and in silico docking studies. Synth. Commun., 2019, 49(1), 146-158.
[http://dx.doi.org/10.1080/00397911.2018.1546400]
[127]
Kim, S.H.; Semenya, D.; Castagnolo, D. Antimicrobial drugs bearing guanidine moieties: a review. Eur. J. Med. Chem., 2021, 216, 113293.
[http://dx.doi.org/10.1016/j.ejmech.2021.113293] [PMID: 33640673]
[128]
Liu, J.; Li, X.W.; Guo, Y.W. Recent advances in the isolation, synthesis and biological activity of marine guanidine alkaloids. Mar. Drugs, 2017, 15(10), e324.
[http://dx.doi.org/10.3390/md15100324] [PMID: 29064383]
[129]
Wang, Y.; Cheong, W.L.; Liang, Z.; So, L.Y.; Chan, K.F.; So, P.K.; Chen, Y.W.; Wong, W.L.; Wong, K.Y. Hydrophobic substituents on isatin derivatives enhance their inhibition against bacterial peptidoglycan glycosyltransferase activity. Bioorg. Chem., 2020, 97, 103710.
[http://dx.doi.org/10.1016/j.bioorg.2020.103710] [PMID: 32146179]
[130]
Wang, Y.; Liang, Z.; Zheng, Y.; Leung, A.S.L.; Yan, S.C.; So, P.K.; Wong, W.L.; Wong, K.Y. Rational structural modification of the isatin scaffold to develop new and potent antimicrobial agents targeting bacterial peptidoglycan glycosyltransferase. RSC Adv., 2021, 11, 18122-18130.
[http://dx.doi.org/10.1039/D1RA02119B]
[131]
Wang, Y.; Chan, F.Y.; Sun, N.; Lui, H.K.; So, P.K.; Yan, S.C.; Chan, K.F.; Chiou, J.; Chen, S.; Abagyan, R.; Leung, Y.C.; Wong, K.Y. Structure-based design, synthesis, and biological evaluation of isatin derivatives as potential glycosyltransferase inhibitors. Chem. Biol. Drug Des., 2014, 84(6), 685-696.
[http://dx.doi.org/10.1111/cbdd.12361] [PMID: 24890564]
[132]
Debnath, B.; Ganguly, S. Synthesis of some novel (2-oxo-3-(arylimino) indolin-1-yl)-N-aryl acetamides and evaluation as antimicrobial agents. Toxicol. Environ. Chem., 2015, 97(6), 741-753.
[http://dx.doi.org/10.1080/02772248.2015.1061524]
[133]
Debnath, B.; Ganguly, S. Synthesis, biological evaluation, in silico docking and virtual ADME studies of novel isatin analogs as promising antimicrobial agents. Antiinfect. Agents, 2015, 13, 139-153.
[http://dx.doi.org/10.2174/2211352513666150714180118]
[134]
Raman, N.; Sobha, S.; Mitu, L. Synthesis, structure elucidation, DNA interaction, biological evaluation, and molecular docking of an isatin-derived tyramine bidentate Schiff base and its metal complexes. Monatsh. Chem., 2012, 143, 1019-1030.
[http://dx.doi.org/10.1007/s00706-011-0699-8]
[135]
Murali, K.; Avinash, R.; Kirthiga, R.; Franzblau, S. Synthesis, antibacterial, and antitubercular studies of some novel isatin derivatives. Med. Chem. Res., 2012, 21, 4435-4440.
[http://dx.doi.org/10.1007/s00044-012-9971-7]
[136]
Ignat, I.; Oprea, O.; Stanica, N.; Kriza, A. Synthesis, characterization and thermal behaviour of complexes of Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) with Schiff base derived from 1H-indole-2,3-dione and o-aminobenzylic alcohol. Rev. Chim. (Bucharest), 2012, 63(10), 1001-1007.
[137]
Rao, R.; Reddy, K.R.; Mahendra, K.N. Synthesis, characterization, antibacterial, antifungal and anthelmintic activities of a new 5-nitroisatin Schiff base and its metal complexes. Izv. Him., 2014, 46(1), 11-17.
[138]
Hussain, A.Z.; Meeran, M.N. Synthesis, characterization and antimicrobial activity of some isatin based Schiff base compounds. Res. J. Pharm. Biol. Chem. Sci., 2015, 6(1), 1598-1601.
[139]
Goyat, G.; Garg, S.; Verma, K.K. Investigations on some isatin-p-toluidine Schiff base complexes of tellurium (IV). Res. J. Pharm. Biol. Chem. Sci., 2016, 7(2), 869-877.
[140]
Bhatnagar, R.; Pandey, J.; Panhekar, D. Design, synthesis, characterization and biological activities of recent isatin derivatives with proven pharmacophoric moiety. Asian J. Chem., 2020, 32(11), 2731-2738.
[http://dx.doi.org/10.14233/ajchem.2020.22823]
[141]
Chemchem, M.; Menacer, R.; Merabet, N.; Bouridane, H.; Yahiaoui, S.; Moussaoui, S.; Belkhiri, L. Green synthesis, antibacterial evaluation and QSAR analysis of some isatin Schiff bases. J. Mol. Struct., 2020, 1208, e127853.
[http://dx.doi.org/10.1016/j.molstruc.2020.127853]
[142]
Kishbaugh, T.L.S. Pyridines and imidazopyridines with medicinal significance. Curr. Top. Med. Chem., 2016, 16(28), 3274-3302.
[http://dx.doi.org/10.2174/1568026616666160506145141] [PMID: 27150370]
[143]
Dansena, H.; Chandrakar, D.H.K. Pharmacological potentials of pyrimidine derivative: A review. Asian J. Pharm. Clin. Res., 2015, 8(4), 171-177.
[144]
Kumar, N.S.; Pradeep, T.; Jani, G.; Silpa, D.; Kumar, B.V. Design, synthesis, and antimicrobial screening of novel pyridyl-2-amidrazone incorporated isatin mannich bases. J. Adv. Pharm. Technol. Res., 2012, 3(1), 57-61.
[PMID: 22470895]
[145]
Elsayed, Z.M.; Eldehna, W.M.; Abdel-Aziz, M.M.; El Hassab, M.A.; Elkaeed, E.B.; Al-Warhi, T.; Abdel-Aziz, H.A.; Abou-Seri, S.M.; Mohammed, E.R. Development of novel isatin-nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing-bacteria. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 384-393.
[http://dx.doi.org/10.1080/14756366.2020.1868450] [PMID: 33406941]
[146]
Bogdanov, A.V.; Zaripova, I.F.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Tsivunina, I.V.; Dobrynin, A.B.; Mironov, V.F. Isatin derivatives bearing a fluorine atom. Part 1: Synthesis, hemotoxicity and antimicrobial activity evaluation of fluoro-benzylated water-soluble pyridinium isatin-3-acylhydrazones. J. Fluor. Chem., 2019, 227, e109345.
[http://dx.doi.org/10.1016/j.jfluchem.2019.109345]
[147]
Rabia, M.K.; Mohamad, A.D.M.; Ismail, N.M.; Mahmoud, A.A. Synthesis, characterization, DNA interaction, thermal and in vitro biological activity investigation of some Ni(II)-isatin bishydrazone complexes. J. Iran. Chem. Soc., 2014, 11, 1147-1163.
[http://dx.doi.org/10.1007/s13738-013-0383-5]
[148]
Rabia, M.K.; Mohamad, A.D.M.; Ismail, N.M.; Mahmoud, A.A. Synthesis, characterization, anti-fungi and anti-bacterial activity of new [(2-pyridyl)-3-isatin]-bishydrazone. Russ. J. Gen. Chem., 2013, 83(12), 2406-2412.
[http://dx.doi.org/10.1134/S1070363213120360]
[149]
Meenakshi, K.; Gopal, N.; Sarangapani, M. Synthesis, characterization and antimicrobial activity of some novel Schiff and Mannich bases of isatin. Int. J. Pharm. Pharm. Sci., 2014, 6(6), 318-322.
[150]
Hassan, M.I.; Hassane, M.A. Synthesis, characterization and in vitro antibacterial evaluation of new oxindoles and spiro-oxindoles derivatives. Egypt. J. Chem., 2019, 62, 103-113.
[http://dx.doi.org/10.21608/ejchem.2019.14725.1907]
[151]
Abdulhadi, S.I. Synthesis of new derivatives of cephalexin with isatin and glycine Schiff bases. J. Glob. Pharma Technol., 2019, 11(9), 736-740.
[152]
Rainoldi, G.; Lesma, G.; Picozzi, C.; Presti, L.L.; Silvani, A. One step access to oxindole-based β-lactams through Ugi four-center three-component reaction. RSC Adv., 2018, 8, 34903-34910.
[http://dx.doi.org/10.1039/C8RA08165D]
[153]
Madhu, G.; Jayaveera, K.N.; Nath, L.K.R.; Kumar, B.S.; Reddy, P.N. Synthesis and structure activity relationship of new antibacterial active multi substituted quinoline-azetidinone Mannich bases. Pharma Chem., 2012, 4(3), 1033-1040.
[154]
Farag, A.A. Synthesis and antimicrobial activity of 5-(morpholino-sulfonyl)isatin derivatives incorporating a thiazole moiety. Drug Res. (Stuttg.), 2015, 65(7), 373-379.
[PMID: 25116255]
[155]
Shakir, T.H.; Al-Mudhafar, M.M.J. Synthesis and preliminary antimicrobial evaluation of Schiff bases of N-benzyl isatin derivatives. Sys. Rev. Pharm., 2020, 11(12), 1950-1955.
[156]
Kamoon, R.A.; Al-Mudhafar, M.M.J.; Omar, T.N. Synthesis, characterization and antimicrobial evaluation of new azo compounds derived from sulfonamides and isatin Schiff base. Int. J. Drug Deliv. Tech., 2020, 10(1), 150-155.
[http://dx.doi.org/10.25258/ijddt.10.1.26]
[157]
Thanh, N.D.; Giang, N.T.K.; Quyen, T.H.; Huong, D.T.; Toan, V.N. Synthesis and evaluation of in vivo antioxidant, in vitro antibacterial, MRSA and antifungal activity of novel substituted isatin N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazones. Eur. J. Med. Chem., 2016, 123, 532-543.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.074] [PMID: 27517802]
[158]
Omer, A.M.; Ammar, Y.A.; Mohamed, G.A.; Abd Elbaky, Y.M.; Tamer, T.M. Preparation of isatin/chitosan Schiff base as novel antibacterial biomaterials. Egypt. J. Chem., 2019, 62, 123-131.
[http://dx.doi.org/10.21608/ejchem.2019.7766.1614]
[159]
Mangasuli, S.N. Synthesis of novel isatin-dithiocarbamate hybrids: An approach to microwave and potent antimicrobial agents. Chem. Data Collcetions, 2020, 29, e100515.
[http://dx.doi.org/10.1016/j.cdc.2020.100515]
[160]
Akhaja, T.N.; Raval, J.P. New carbodithioate derivatives: synthesis, characterization, and in vitro antibacterial, antifungal, antitubercular, and antimalarial activity. Med. Chem. Res., 2013, 22, 4700-4704.
[http://dx.doi.org/10.1007/s00044-013-0472-0]
[161]
Murthy, Y.L.N.; Mani, P.; Mahesh, P.; Chaguruswamy, K. Synthesis, Characterization and bioevaluation of (Z)-4-substituted phenyl-2-((2-oxoindolin-3-ylidene)aminocyclopent-1-ene carbodithioate) derivatives from 2-aminocyclopent-1-ene carbodithioic acid. Asian J. Chem., 2014, 26(14), 4255-4258.
[http://dx.doi.org/10.14233/ajchem.2014.16090]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy