Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Quantitative Estimate of the Resonance Effects in Some Unsaturated, Monocyclic, and Aromatic Hydrocarbons Based on the Renewed Optical Exaltations

Author(s): Boris A. Zaitsev*

Volume 26, Issue 1, 2022

Published on: 24 December, 2021

Page: [42 - 59] Pages: 18

DOI: 10.2174/1385272825666211126143032

Price: $65

Abstract

The present review discusses a new viewpoint on refractometry as the oldest experimental physical method, whose scientific potential in the estimation of structural effects in organic chemistry has been missed so far. The author demonstrates that upon certain adjustment and redesign of refractometry, this potential can be tapped and successfully used to determine a type of π-electron interaction, delocalization degree of π-electrons in organic compounds, and to perform quantitative estimates of resonance effects in unsaturated, (polycyclic) aromatic, and other polyconjugated systems (e.g., fullerenes). The method for accurate separation of molar refraction into additive and constitutive components was suggested; the method is based on the specially developed additive scheme. It was revealed that the negative deviations from additivity for cycloalkanes depend linearly on the number of carbon atoms in the ring. Excellent linear correlations between renewed optical exaltations, the number of π-electrons in a conjugated system, and experimentally found resonance energy (determined from hydrogenation heat values) were demonstrated. Angular coefficients of the correlation series (ρ-constants) are considered as a criterion of classification, which characterizes the degree of mobility of π-electrons in the conjugated system of a given type. It is emphasized that the development of methods for precise measurement of the constitutive components of molar refraction may become a useful additional source of information about resonance and other effects in organic and polymer chemistry.

Keywords: Molar refraction, unsaturated and aromatic hydrocarbons, polycyclic aromatic hydrocarbons, resonance energy, quantitative estimation, benzene.

Graphical Abstract
[1]
Berlin, A.A.; Geiderikh, M.A.; Davydov, B.E.; Kargin, V.A.; Karpacheva, G.P.; Krentsel, B.A.; Khutareva, G.V. Chemistry of Polyconjugated Systems.In: in Russian;Khimiya: Moscow, ; , 1972.
[2]
Mulliken, R.S. Conjugation and hyperconjugation: A survey with emphasis on isovalent hyperconjugation. Tetrahedron, 1959, 5, 253-274.
[http://dx.doi.org/10.1016/0040-4020(59)80110-1]
[3]
Baird, N.C. Dewar resonance energy. J. Chem. Educ., 1971, 48, 509-514.
[http://dx.doi.org/10.1021/ed048p509]
[4]
Herndon, W.C.; Ellzey, M.L. Resonance theory. V. Resonance energies of benzenoid and nonbenzenoid systems. J. Am. Chem. Soc., 1974, 96, 6631-6642.
[http://dx.doi.org/10.1021/ja00828a015]
[5]
Slayden, S.W.; Liebman, J.F. The energetics of aromatic hydrocarbons: An experimental thermochemical perspective. Chem. Rev., 2001, 101(5), 1541-1566.
[http://dx.doi.org/10.1021/cr990324+] [PMID: 11710232]
[6]
Schaad, L.J.; Hess, B.A., Jr Dewar resonance energy. Chem. Rev., 2001, 101(5), 1465-1476.
[http://dx.doi.org/10.1021/cr9903609] [PMID: 11710229]
[7]
Cyrański, M.K. Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev., 2005, 105(10), 3773-3811.
[http://dx.doi.org/10.1021/cr0300845] [PMID: 16218567]
[8]
Randić, M. Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev., 2003, 103(9), 3449-3605.
[http://dx.doi.org/10.1021/cr9903656] [PMID: 12964878]
[9]
Ashenhurst, J. Conjugation and Resonance in Organic Chemistry.Available from:, https://www.masterorganicchemistry.com/2017/01/24/conjugation-and-resonance/
[10]
Solà., M. Forty years of Clar's aromatic π-sextet rule. Front. Chem., 2013, 1(art. 22), 1-8.,
[http://dx.doi.org/10.3389/fchem.2013.00022]
[11]
Costa, J.C.S.; Campos, R.M.; Lima, L.M.S.S.; da Silva, M.A.V.R.; Santos, L.M.N.B.F. On the aromatic stabilization of fused polycyclic aromatic hydrocarbons. J. Phys. Chem. A, 2021, 125(17), 3696-3709.
[http://dx.doi.org/10.1021/acs.jpca.1c01978] [PMID: 33890788]
[12]
Bolognesi, A.; Bajo, G.; Catellani, M.; Geng, Z. Effect of structure on the properties of polyconjugated systems.Physica Scripta, 1993, 1993(T49A), 253-255.,
[http://dx.doi.org/10.1088/0031-8949/1993/T49A/043]
[13]
Aumaitre, C.; Morin, J-F. Polycyclic aromatic hydrocarbons as potential building blocks for organic solar cells. Chem. Rec., 2019, 19(6), 1142-1154.
[http://dx.doi.org/10.1002/tcr.201900016] [PMID: 31106986]
[14]
Anguera, G.; Sánchez-García, D. Conjugated polymers: Synthesis and applications in optoelectronics. Afinidad, 2014, 71(568), 1-80. Available from:, https://raco.cat/index.php/afinidad/article/view/287616[June 12, 2021]
[15]
Mitchell, R.H.; Pengzu, S.V.; Thomas, Zh.; Dingle, W. An experimental NMR method to estimate resonance energies of 4N+2 π-electron systems relative to that of benzene. Tetrahedron Lett., 1990, 31(37), 5281-5284.
[http://dx.doi.org/10.1016/S0040-4039(00)98050-X]
[16]
Zaitsev, B.A. Estimate of hyperconjugation strength in alkylaromatics and unsaturated hydrocarbons derived from refractometric data. Curr. Org. Chem., 2019, 23(23), 2598-2613.
[http://dx.doi.org/10.2174/1385272823666191108100747]
[17]
Joffe, B.V. Refractometric methods of chemistry.Chemistry: Leningrad branch,, 1974.
[18]
Joffe, B.V. Refractometric methods of chemistry. Chemistry: Leningrad branch,, 1983.
[19]
Batsanov, S.S. Structural Refractometry; Vyschaya Shkola: Moscow, 1976.
[20]
Berthelot, M.M. Remarques sur quelques propriétés physiques des corps conjugués. Ann. Chim. Phys., 1856, 48(3), 322-342.
[21]
Schrauf, A. Sur la determination des equivalents de refraction des corps simples. Pogg. Liebigs Ann. Chem., 1865, 126, 177-184.
[22]
Landolt, H. Ueber die Molecularrefraction flüssiger organischer Verbindungen. Liebigs Ann. Chem., 1882, 213(1), 75-112.
[http://dx.doi.org/10.1002/jlac.18822130105]
[23]
Eisenlohr, F. Eine neuberechnung der atomrefraktionen II. Z. Phys. Chem., 1912, 79(1), 129-146.
[http://dx.doi.org/10.1515/zpch-1912-7908]
[24]
Auwers, K.; Eisenlohr, F. Spektrochemische untersuchungen. J. Prakt. Chem., 1910, 82(1), 65-180.
[http://dx.doi.org/10.1002/prac.19100820107]
[25]
Eisenlohr, F. Die Spectrochemie der organischer verbindungen; Stuttgart, 1912.
[26]
Auwers, K. Über die Bedeutung der spezifischen exaltation der molrefraktion und moldispersion. Z. Phys. Chem., 1933, A164, 44-47.
[http://dx.doi.org/10.1515/zpch-1933-16405]
[27]
van Krevelen, D.W.; Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier, 2009.
[http://dx.doi.org/10.1016/B978-0-08-054819-7.00001-7]
[28]
Vogel, A. Physical properties and chemical constitution. part xxiii. miscellaneous compounds. investigation of so-called coordinate or dative link in esters of oxy-acids and in nitro-paraffins by molecular refractivity determinations. atomic, structural, and group parachors and refractivities. J. Chem. Soc., 1948, 1984, 1833-1855.
[http://dx.doi.org/10.1039/jr9480001833]
[29]
Vogel, A.; Cresswell, W.; Jeffery, G.; Leicester, J. Physical properties and chemical constitution. Part XXIV. Aliphatic aldoximes, ketoximes, and ketoxime O-alkyl ethers, NN-dialkylhydrazines, aliphatic ketazines, mono- anddi-alkylaminopropionitriles, alkoxypropionitriles, dialkyl azodiformates, and dialkyl carbonates. Bond parachors, bond refractions, and bondrefraction coefficients. J. Chem. Soc., 1952, 514-549..
[http://dx.doi.org/10.1039/jr9520000514]
[30]
Brühl, J.W. XII.-The optical influence of contiguity of unsaturated groups. J. Chem. Soc., 1907, 91, 115-122.
[http://dx.doi.org/10.1039/CT9079100115]
[31]
Brühl, J.W. Die optischen Wirkungen an einander stoßender (konjugierter) ungesättigter Atomgruppen. II. Berichte, 1907, 40, 878, 1153. J. Chem. Soc., 1907, 91, 115.
[32]
Kremann, R.; Pestemer, M. Relationship between physical properties and chemical constitution; Verlag von T. Steinkopff: Dresden, Leipzig, 1937.
[33]
Lowry, T.M.; Allsopp, C.B. Refractive dispersion of organic compounds. ix. optical exaltation in unsaturated hydrocarbons containing conjugated double bonds. Proc. R. Soc. Lond. A, 1937, 163, 356-365.
[http://dx.doi.org/10.1098/rspa.1937.0231]
[34]
Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev., 1971, 71(6), 525-616.
[http://dx.doi.org/10.1021/cr60274a001]
[35]
Wildman, S.A.; Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci., 1999, 39, 868-873.
[http://dx.doi.org/10.1021/ci990307l]
[36]
Reinhard, M.; Drefahl, A. Handbook for estimating physicochemical properties of organic compoundsA Wiley-Intersci; Chichester, New York, 1999.
[37]
Padrón, J.A.; Carrasco, R.; Pellón, R.F. Molecular descriptor based on a molar refractivity partition using Randic-type graph-theoretical invariant. J. Pharm. Pharm. Sci., 2002, 5(3), 258-266.
[PMID: 12553894]
[38]
Ghose, A.K.; Crippen, G.M. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships i. partition coefficients as a measure of hydrophobicity. J. Comput. Chem., 1986, 7, 565-577.
[http://dx.doi.org/10.1002/jcc.540070419]
[39]
Ghose, A.K.; Crippen, G.M. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci., 1987, 27(1), 21-35.
[http://dx.doi.org/10.1021/ci00053a005] [PMID: 3558506]
[40]
Ghose, A.; Pritchett, A.; Crippen, G.M. Atomic physicochemical parameters for three dimensional structure-directed quantitative structure-activity relationships. iii. modeling hydrophobic interactions. J. Comput. Chem., 1988, 9, 80-90.
[http://dx.doi.org/10.1002/jcc.540090111]
[41]
Ghose, A.K.; Viswanadhan, V.; Wendoloski, J.J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J. Phys. Chem. B, 1998, 102, 3762-3772.
[http://dx.doi.org/10.1021/jp980230o]
[42]
Khan, J.; Farooqui, M.; Quadri, S.H. Verification of the molar refraction as an additive and constitutive property of binary liquid mixtures of water-ethanol and benzeneethanol. Rasayan J. Chem., 2011, 4(4), 944-946.
[43]
Yang, C-J.; Jenekhe, S.A. Group contribution to molar refraction and refractive index of conjugated polymers. Chem. Mater., 1995, 7(7), 1276-1285.
[http://dx.doi.org/10.1021/cm00055a002]
[44]
Katritzky, A.R.; Sild, S.; Karelson, M. General quantitative structure-property relationship treatment of the refractive index of organic compounds. J. Chem. Inf. Comput. Sci., 1998, 38, 840-844.
[http://dx.doi.org/10.1021/ci980028i]
[45]
Gharagheizi, F.; Ilani-Kashkouli, P.; Kamari, A.; Mohammadi, A.H.; Ramjugernath, D. Group contribution model for the prediction of refractive indices of organic compounds. J. Chem. Eng. Data, 2014, 59, 1930-1943.
[http://dx.doi.org/10.1021/je5000633]
[46]
Cao, Ch-Zh.; Gao, S. Bond orbital-connection matrix method to predict refractive indices of alkanes. Chin. J. Chem. Phys., 2007, 20, 149-154.
[http://dx.doi.org/10.1360/cjcp2007.20(2).149.6]
[47]
Dutt, N.V.K.; Prasad, D.H.L. Refraction and extension to mixtures. Phys. Chem. Liquids, 1996, 33(3), 171-179.
[http://dx.doi.org/10.1080/00319109608039818]
[48]
Masaaki, S.; Hiroki, Y.; Toshimitsu, M.; Susumu, Y.; Yuzo, S. A method of estimating the refractive index of hydrocarbons in coal derived liquids by a group contribution method. J-STAGE., 1992, 35(6), 466-473.
[49]
Viswanadhan, V.N.; Ghose, A.K.; Revankar, G.R.; Robins, R.K. An estimation of the atomic contribution to octanol-water partition coefficient and molar refractivity from fundamental atomic and structural properties: its uses in computer aided drug design. Math. Comput. Model., 1990, 14, 505-510.
[http://dx.doi.org/10.1016/0895-7177(90)90234-E]
[50]
Sawale, R.T.; Kalyankar, T.M.; George, R.; Deosarkar, S.D. Molar Refraction and Polarizability of Antiemetic drug 4-amino-5-chloro-N-(2-(diethylamino)ethyl)-2 methoxybenzamide hydrochloride monohydrate in {Aqueous-Sodium or Lithium Chloride} Solutions at 30 °C. J. Appl. Pharm. Sci., 2016, 6(03), 120-124.
[http://dx.doi.org/10.7324/JAPS.2016.60321]
[51]
CMR Manual - daylight chemical information systems. CMR3 Reference Manual. Avaialble from: , https://daylight.com
[52]
Rossini, F.D.; Pitzer, K.S.; Arnett, R.L.; Braun, R.M.; Pimentel, G.C. Selected values of physical and thermodynamic properties of hydrocarbons and related compounds. American Petroleum Institute, Research Project 44; Pittsburgh Carnegie Press: Pittsburgh, 1953.
[53]
Dreisbach, R.R. Physical properties of chemical compounds. Advances in Chemistry.1955-1961;
[54]
Bryce-Smith, D.; Turner, E.E. Alkali organometal compounds. Part I. The reaction of benzylsodium with alkyl halides. J. Chem. Soc., 1950, 1975-1979.
[http://dx.doi.org/10.1039/jr9500001975]
[55]
Anonymous, R. Am. Pet. Inst. Res. Proj. 45, Tech. Rep. 13, Ohio State Univ.,, 1954.
[56]
Kaarsemaker, S.; Coops, J. Thermal quantities of cycloparaffins: Part III. Results of measurements. Recl. Trav. Chim. Pays Bas, 1952, 71, 261-276.
[http://dx.doi.org/10.1002/recl.19520710307]
[57]
Tanaka, R.; Takenaka, M.; Murakami, S. Excess volumes for mixtures of benzene with some cycloalkanes at 293.15, 298.15, and 303.15 K. J. Chem. Eng. Data, 1984, 29(1), 69-72.
[http://dx.doi.org/10.1021/je00035a023]
[58]
CRC Handbook of Chemistry and Physics. Lide, D.R., Ed.; Lide, D.R. (ed.); CRC Press: Boca-Raton, FL, 2005..
[59]
CRC Handbook of Chemistry and Physics. 97th ed.; W.M. Haynes, D.R. Lide, T.J. Bruno (eds.); CRC Press. 2017 by Taylor & Francis Group, LLC. 2016-2017..
[60]
Komppa, G. Cycloundecane C11H22 . Ann. Acad. Sci. Fenn., 1930, Ser. A, 30, 15-18.
[61]
Ferris, S.W. Handbook of Hydrocarbons; Academic Press, 2018. ISBN: 9781483272856.
[62]
Yaws, C.L. The Yaws handbook of thermodynamic properties for hydrocarbons and chemicals; Tex. Gulf Pub.: Houston, 2006.
[63]
[64]
Francis, A.W. Refractive indices of liquefied gases. J. Chem. Eng. Data, 1960, 5(4), 534-539.
[http://dx.doi.org/10.1021/je60008a034]
[65]
Wohlfarth, Ch.; Wohlfahrt, B. Pure organic liquidsLandolt-Börnstein - Group IV Physical Chemistry; Springer Materials, 1996, 18B.,
[http://dx.doi.org/10.1007/10639283_1]
[67]
Ferris, S.W. Handbook of Hydrocarbons; Academic Press Inc.: New York, 1955.
[http://dx.doi.org/10.1002/ange.19560681415]
[68]
Kuss, E. Hochdruckuntersuchungen. III. Die Viskosität von Komprimierten Flüssigkeiten. Z. Angew. Phys., 1955, 7, 372-378.
[69]
Brown, I.; Lane, J.E. Optical refraction (refractive index). Pure Appl. Chem., 1974, 40, 463-472.
[70]
Dictionary of Organic Compounds. Vol.3-4, Heilbron I. (Ed). Oxford University Press; 4th ed.; 1965..
[71]
Zaitsev, B.A. Molecular refraction and structural effects. VI. Quantitative Evaluation of the degree of Conjugation in Unsaturated Aliphatic and Multinuclear Aromatic Hydrocarbons on the Basis of Refraction Exaltations. Reactsionnaya sposobnosnt’ organicheskich soedinenij “Organic reactivity” -. Reactivity of Organic Compounds, 1970, 4(26), 1016-1037.
[72]
Auwers, K.V.; Kraul, R. Über Spektrochemie und Struktur mehrkerniger aromatischer Kohlenwasserstoffe. Justus Liebigs Annalen der Chemie, 1925, 443(1), 181-191..
[http://dx.doi.org/10.1002/jlac.19254430108]
[73]
Smith, C.P.; Dornte, R.W. Electric moment and molecular structure. III. Double and triple bonds and polarity in aromatic hydrocarbons. J. Am. Chem. Soc., 1931, 53, 1296-1304.
[http://dx.doi.org/10.1021/ja01355a017]
[74]
Everard, K.B.; Kumar, L.; Sutton, L.E. Polarisation in conjugated systems. Part I. The refractions and electric dipole moments of some derivatives of benzene, styrene, diphenyl, stilbene, and 1: 4-diphenylbutadiene. J. Chem. Soc., 1951, 2807-2815.
[http://dx.doi.org/10.1039/jr9510002807]
[75]
Le Fevre, R.J.W.; Orr, B.J.; Ritchie, G.L.D. Molecular polarisability. The anisotropic polarisability of the CC bond. J. Chem. Soc. B, 1966, 281-284.
[http://dx.doi.org/10.1039/J29660000281]
[76]
Auwers, K.V.; Bergman, F. Über struktur und spektrochemisches verhalten einiger triphenylmethan- und acetylen-derivate. Liebigs Ann. Chem., 1929, 476(1), 272-279.
[http://dx.doi.org/10.1002/jlac.19294760114]
[77]
Smedley, J. XXXVI.-The refractive power of diphenylhexatriene and allied hydrocarbons. J. Chem. Soc., 1908, 93, 372-384.
[http://dx.doi.org/10.1039/CT9089300372]
[78]
Schuyer, J.; Blom, L.; von Krevelen, D.W. The molar refraction of condensed aromatic compounds. Trans. Faraday Soc., 1953, 49, 1391-1401.
[http://dx.doi.org/10.1039/tf9534901391]
[79]
Krollpfeiffer, F. Spektrochemische Untersuchungen an mehrkernigen aromatischen Verbindungen in Lösungen. Liebigs Ann. Chem., 1923, 430(1), 161-229.
[http://dx.doi.org/10.1002/jlac.19234300106]
[80]
Le Fèvre, R.J.W.; Sundaram, A.; Pierens, R.K. Molecular polarisability: the anisotropy of the carbon–oxygen link. J. Chem. Soc., 1963, 479-488.
[http://dx.doi.org/10.1039/JR9630000479]
[81]
Davis, H.G.; Gottlib, S. Density and refractive index of multi-ring aromatic compounds in the liquid state. Fuel, 1963, 42, 37-54.
[82]
Pitt, D.A.; Petro, A.J.; Smith, C.P. The dipole moment and dielectric relaxation time of acepleiadylene. J. Am. Chem. Soc., 1957, 79, 5633-5634.
[http://dx.doi.org/10.1021/ja01578a015]
[83]
Bergman, E.D.; Fischer, E.; Pullman, B. Les moments dipolaires de quelques hydrocarbures polycycliques. J. Chim. Phys., 1951, 48, 356-358.
[http://dx.doi.org/10.1051/jcp/1951480356]
[84]
Zaitsev, B.A. .Molecular refraction and structural effects. I. On problem of additivity of molecular refraction of organic substances. Reactivity of Organic Compounds; Tartu State University: Tartu, 1969, 6(2(20)), pp. 398-413;
[85]
Exner, O. Additive physical properties. I. General relationships and problem of statistical nature. Collect. Czech. Chem. Commun., 1966, 31, 3222-3251.
[http://dx.doi.org/10.1135/cccc19663222]
[86]
American Petroleum Institute, Research Project 58A. Annu. Rep., . 1963.
[87]
Zaitsev, B.A. Molecular refraction and structural effects. II. Increments of molecular refractions of double and triple bonds free from non-additive contributions. Org. Reactivity, 1969, 6(2 (20)), 414-439.
[88]
Zaitsev, B.A.; Uzbekova, A.Kh. III Phenyl group refraction constant free from non-additive contributions. Org. Reactivity, 1969, 6(4 (22)), 1023-1033.
[89]
Zaitsev, B.A., IV Additive values of refraction constants of nitrogen and amino group. Org. Reactivity, 1969, 6(4 (22)), 1034-1044.
[90]
Zaitsev, B.A.V. Additive value of refraction constant of carbonyl group. Org. Reactivity, 1969, 6(4 (22)), 1045-1055.
[91]
Zaitsev, B.A. New additive scheme for calculating the molecular refraction and dispersion for different wavelengths. Russ. Chem. Bull., 1976, 25, 1003-1009.
[http://dx.doi.org/10.1007/BF00921980]
[92]
Salvatella, L. The alkyl group is a -I + R substituent. Educ. Quím., 2017, 28(4), 232-237.
[http://dx.doi.org/10.1016/j.eq.2017.06.004]
[93]
Prosen, J.; Rossini, F.D. Heats of formation, hydrogenation, and combustion of the monoolefin hydrocarbons through the hexenes, and of the higher l-alkenes, in the gaseous state at 25°C. J. Res. Natl. Bur. Stand., 1946, 36, 269-275.
[http://dx.doi.org/10.6028/jres.036.012]
[94]
Zaitsev, B.A. Synthesis, Free-Radical Copolymerization, and Quantitative Structure-Reactivity- Property Relationships Investigation of Styrene and α- Methylstyrene Derivatives, Ph.D. Thesis. The Institute of Macromolecular Compounds of the Academy of Sciences of USSR. Leningrad., 1968.
[95]
Zaitsev, B.A. Determination of the conformations of certain aromatic ketones by a refractometric method. Russ. Chem. Bull., 1974, 23(4), 747-753.
[http://dx.doi.org/10.1007/BF00923493]
[96]
Zaitsev, B.A. Refractometric Study of the Effectiveness of the Conjugation and Conformations of Poly(phenylacetylenes).Karbotsepnye Polimeri; Nauka: Moscow, 1977, pp. 139-144. (in Russian)
[97]
Zaitsev, B.A. Refractometric study of the effect of conjugation and conformations of polytolanes. Polymer Sci. USSR, 1975, 17(12), 3171-3177.
[http://dx.doi.org/10.1016/0032-3950(75)90349-4]
[98]
Zaitsev, B.A. Determination of the conformations of conjugated systems of the diphenyl type by a refractometric method. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1974, 23(12), 2629-2635.
[http://dx.doi.org/10.1007/BF00923694]
[99]
Zaitsev, B.A. Determination of conformations of some o-alkylnitrobenzenes based on refraction exaltation. Russ. Chem. Bull., 1975, 24(10), 2208-2210.
[http://dx.doi.org/10.1007/BF00929759]
[100]
Zaitsev, B.A. Molecular refraction and effects of structure. Communication 8. Additivity of the exaltations of the refraction of organic molecules with interrupted conjugation between parts. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1972, 21(11), 2339-2344.
[http://dx.doi.org/10.1007/BF00850065]
[101]
Berry, A.J. From Classical to Modern Chemistry: Some Historical Sketches; Cambridge University Press, 1954, pp. 91-92.
[102]
van Krevelen, D.W.; Blom, L.H.; Chermin, A.G. Optical exaltation in aromatic compounds. Nature, 1953, 171, 1075-1076.
[http://dx.doi.org/10.1038/1711075b0]
[103]
Vollhardt, K.P.C.; Schore, N.E. Organic Chemistry Structure and Function, 5th ed; W.H. Freeman: New York, 2005.
[104]
McMurry, J.E.; Simanek, E.E. Fundamentals of Organic Chemistry, 6th ed; Brooks Cole, 2006.
[105]
Khadikar, P.V.; Diudea, M.V.; Singh, J.; John, P.E.; Shrivastva, A.; Singh, S.; Karmarkar, S.; Lakhwani, M.; Thakur, P. Use of PI index in computer-aided designing of bioactive compounds. Curr. Bioact. Compd., 2006, 2(1), 19-56.
[http://dx.doi.org/10.2174/1573407210602010019]
[106]
Khadikar, P.V.; Karmarkar, S.; Agrawal, V.K. A novel PI index and its applications to QSPR/QSAR studies. J. Chem. Inf. Comput. Sci., 2001, 41(4), 934-949.
[http://dx.doi.org/10.1021/ci0003092] [PMID: 11500110]
[107]
Ouellette, R.J.; Rawn, J.D. Principles of Organic Chemistry; Elsevier Inc.: Amsterdam, Netherlands, 2015.
[108]
Jensen, F.R.; Bushweller, H.C. Conformational preferences and interconversion barriers in cyclohexene and derivatives. J. Am. Chem. Soc., 1969, 91(21), 5774-5782.
[http://dx.doi.org/10.1021/ja01049a013]
[109]
Vereshchagin, A.N. Conformations of six-membered carbon rings with planar groups. Russ. Chem. Rev., 1983, 52(11), 1081-1095.
[http://dx.doi.org/10.1070/RC1983v052n11ABEH002918]
[110]
Ivanova, T.M.; Kugatova-Shemyakina, G.P. The application of nuclear magnetic resonance in the study of the conformational equilibria of cyclic compounds. Russ. Chem. Rev., 1970, 39(6), 1095-1129.
[http://dx.doi.org/10.1070/RC1970v039n06ABEH002003]
[111]
Johnson, F. Allylic strain in six-membered rings. Chem. Rev., 1968, 68(4), 375-413.
[http://dx.doi.org/10.1021/cr60254a001]
[112]
Chiang, J.F.; Bauer, S.H. Molecular structure of cyclohexene. J. Am. Chem. Soc., 1969, 91, 1898-1901.
[http://dx.doi.org/10.1021/ja01036a004]
[113]
Scharpen, L-R.H.; Wollrab, J.E.; Ames, D.P. Microwave spectrum, structure, and dipole moment of cyclohexene. J. Chem. Phys., 1968, 49, 2368-2372.
[http://dx.doi.org/10.1063/1.1670409]
[114]
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.J. Heats of organic reactions. iv. hydrogenation of some dienes and of benzene. J. Am. Chem. Soc., 1936, 58(1), 146-153.
[http://dx.doi.org/10.1021/ja01292a043]
[115]
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.V.E.; Roth, W.R.; Schroeder, G. Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes. J. Am. Chem. Soc., 1973, 95(26), 8605-8610.
[http://dx.doi.org/10.1021/ja00807a017]
[116]
Turner, R.B.; Meador, W.R.; Doering, W.E.; Knox, L.H.; Mayer, J.R.; Wiley, D.W. Heats of Hydrogenation. III. Hydrogenation of cycloöctatetraene and of some seven-membered non-benzenoid aromatic compounds. J. Am. Chem. Soc., 1957, 79(15), 4127-4133.
[http://dx.doi.org/10.1021/ja01572a041]
[117]
Clar, E. The Aromatic Sextet; John Wiley and Sons: London, 1972.
[118]
Chen, Sh.; Chen, D.; Lu, M.; Zhang, X.; Li, H.; Zhang, X.; Yang, X.; Li, X.; Tu, Y.; Li, Y.C. Incorporating pendent fullerenes with high refractive index backbones: a conjunction effect method for high refractive index polymers. Macromolecules, 2015, 48, 8480-8488.[M]..
[http://dx.doi.org/10.1021/acs.macromol.5b01791]
[119]
Cataldo, F.; Iglesias-Groth, S.; Hafez, Y. On the molar extinction coefficients of the electronic absorption spectra of C60 and C70 fullerene radical cation. Eur. Chem. Bull., 2013, 2(12), 1013-1018.
[120]
Saraswati, T.E.; Setiawan, U.H.; Ihsan, M.R.; Isnaeni, I.; Herbani, Y. The study of the optical properties of c60 fullerene in different organic solvents. Open Chem., 2019, 17(1), 1198-1212.
[http://dx.doi.org/10.1515/chem-2019-0117]
[121]
Nagahara, T.; Ganzer, L.; Camargo, F.V.A.; Huang, Y.; Xu, F.; Mai, Y.; Cerullo, G.; Feng, X. Two-dimensional electronic spectroscopy of graphene nanoribbons in organic solution.EPJ Web of Conferences 205, 2019.,
[http://dx.doi.org/10.1051/epjconf /2019205050]
[122]
Yablonskaya, O.; Buravleva, E.; Novikov, K.; Voeikov, V. Peculiarities of the physicochemical properties of hydrated c60 fullerene solutions in a wide range of dilutions. Front. Phys., 2021, 9, 1-17.
[http://dx.doi.org/10.3389/fphy.2021.627265]
[123]
Bühl, M.; Hirsch, A. Spherical aromaticity of fullerenes. Chem. Rev., 2001, 101(5), 1153-1183.
[http://dx.doi.org/10.1021/cr990332q] [PMID: 11710216]
[124]
Dewar, M.J.S. The determination of resonance energies from thermal data. Trans. Faraday Soc., 1946, 42, 767-775.
[http://dx.doi.org/10.1039/tf9464200767]
[125]
Kolesnichenko, V.L. Resonance energy of an arene hydrocarbon from heat of combustion measurements. J. Chem. Educ., 2015, 92(12), 2170-2172.
[http://dx.doi.org/10.1021/acs.jchemed.5b00632] [PMID: 26997668]
[126]
Chapter 7 Learning Goals - Oregon State University. Available from:, http://sites.science.oregonstate.edu/~gablek/CH334/Chapter7/ene_stability.htm
[127]
Flitcroft, T.; Skinner, H.A.; Whiting, M.C. Heats of hydrogenation. Part 1. Dodeca-3:9 and -5:7 diynes. Trans. Faraday Soc., 1957, 53, 784-790..
[http://dx.doi.org/10.1039/TF9575300784]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy