Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Neuroinflammation in Huntington’s Disease: A Starring Role for Astrocyte and Microglia

Author(s): Julieta Saba, Federico López Couselo, Julieta Bruno, Lila Carniglia, Daniela Durand, Mercedes Lasaga and Carla Caruso*

Volume 20, Issue 6, 2022

Published on: 30 March, 2022

Page: [1116 - 1143] Pages: 28

DOI: 10.2174/1570159X19666211201094608

Price: $65

Abstract

Huntington’s disease (HD) is a neurodegenerative genetic disorder caused by a CAG repeat expansion in the huntingtin gene. HD causes motor, cognitive, and behavioral dysfunction. Since no existing treatment affects the course of this disease, new treatments are needed. Inflammation is frequently observed in HD patients before symptom onset. Neuroinflammation, characterized by the presence of reactive microglia, astrocytes and inflammatory factors within the brain, is also detected early. However, in comparison to other neurodegenerative diseases, the role of neuroinflammation in HD is much less known. Work has been dedicated to altered microglial and astrocytic functions in the context of HD, but less attention has been given to glial participation in neuroinflammation. This review describes evidence of inflammation in HD patients and animal models. It also discusses recent knowledge on neuroinflammation in HD, highlighting astrocyte and microglia involvement in the disease and considering anti-inflammatory therapeutic approaches.

Keywords: Huntington’s disease, mutant huntingtin, neuroinflammation, astrocytes, microglia, neurodegeneration.

Graphical Abstract
[1]
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[2]
Sharp, A.H.; Loev, S.J.; Schilling, G.; Li, S.H.; Li, X.J.; Bao, J.; Wagster, M.V.; Kotzuk, J.A.; Steiner, J.P.; Lo, A. Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron, 1995, 14(5), 1065-1074.
[http://dx.doi.org/10.1016/0896-6273(95)90345-3] [PMID: 7748554]
[3]
Saudou, F.; Humbert, S. The Biology of Huntingtin. Neuron, 2016, 89(5), 910-926.
[http://dx.doi.org/10.1016/j.neuron.2016.02.003] [PMID: 26938440]
[4]
Ross, C.A.; Tabrizi, S.J. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol., 2011, 10(1), 83-98.
[http://dx.doi.org/10.1016/S1474-4422(10)70245-3] [PMID: 21163446]
[5]
Gauthier, L.R.; Charrin, B.C.; Borrell-Pagès, M.; Dompierre, J.P.; Rangone, H.; Cordelières, F.P.; De Mey, J.; MacDonald, M.E.; Lessmann, V.; Humbert, S.; Saudou, F. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 2004, 118(1), 127-138.
[http://dx.doi.org/10.1016/j.cell.2004.06.018] [PMID: 15242649]
[6]
Zuccato, C.; Marullo, M.; Conforti, P.; MacDonald, M.E.; Tartari, M.; Cattaneo, E. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol., 2008, 18(2), 225-238.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00111.x] [PMID: 18093249]
[7]
Fan, M.M.; Raymond, L.A. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog. Neurobiol., 2007, 81(5-6), 272-293.
[http://dx.doi.org/10.1016/j.pneurobio.2006.11.003] [PMID: 17188796]
[8]
Hodges, A.; Strand, A.D.; Aragaki, A.K.; Kuhn, A.; Sengstag, T.; Hughes, G.; Elliston, L.A.; Hartog, C.; Goldstein, D.R.; Thu, D.; Hollingsworth, Z.R.; Collin, F.; Synek, B.; Holmans, P.A.; Young, A.B.; Wexler, N.S.; Delorenzi, M.; Kooperberg, C.; Augood, S.J.; Faull, R.L.; Olson, J.M.; Jones, L.; Luthi-Carter, R. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum. Mol. Genet., 2006, 15(6), 965-977.
[http://dx.doi.org/10.1093/hmg/ddl013] [PMID: 16467349]
[9]
Steffan, J.S.; Kazantsev, A.; Spasic-Boskovic, O.; Greenwald, M.; Zhu, Y.Z.; Gohler, H.; Wanker, E.E.; Bates, G.P.; Housman, D.E.; Thompson, L.M. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6763-6768.
[http://dx.doi.org/10.1073/pnas.100110097] [PMID: 10823891]
[10]
Soares, T.R.; Reis, S.D.; Pinho, B.R.; Duchen, M.R.; Oliveira, J.M.A. Targeting the proteostasis network in Huntington’s disease. Ageing Res. Rev., 2019, 49, 92-103.
[http://dx.doi.org/10.1016/j.arr.2018.11.006] [PMID: 30502498]
[11]
Zheng, J.; Winderickx, J.; Franssens, V.; Liu, B. A Mitochondria-Associated Oxidative Stress Perspective on Huntington’s Disease. Front. Mol. Neurosci., 2018, 11, 329.
[http://dx.doi.org/10.3389/fnmol.2018.00329] [PMID: 30283298]
[12]
Creus-Muncunill, J.; Ehrlich, M.E. Cell-Autonomous and non-cell-autonomous pathogenic mechanisms in huntington’s disease: Insights from in vitro and in vivo models. Neurotherapeutics, 2019, 16(4), 957-978.
[http://dx.doi.org/10.1007/s13311-019-00782-9] [PMID: 31529216]
[13]
Chaganti, S.S.; McCusker, E.A.; Loy, C.T. What do we know about Late Onset Huntington’s Disease? J. Huntingtons Dis., 2017, 6(2), 95-103.
[http://dx.doi.org/10.3233/JHD-170247] [PMID: 28671137]
[14]
Roos, R.A. Huntington’s disease: a clinical review. Orphanet J. Rare Dis., 2010, 5, 40.
[http://dx.doi.org/10.1186/1750-1172-5-40] [PMID: 21171977]
[15]
Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; Wild, E.J.; Tabrizi, S.J. Huntington disease. Nat. Rev. Dis. Primers, 2015, 1, 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[16]
Scahill, R.I.; Zeun, P.; Osborne-Crowley, K.; Johnson, E.B.; Gregory, S.; Parker, C.; Lowe, J.; Nair, A.; O’Callaghan, C.; Langley, C.; Papoutsi, M.; McColgan, P.; Estevez-Fraga, C.; Fayer, K.; Wellington, H.; Rodrigues, F.B.; Byrne, L.M.; Heselgrave, A.; Hyare, H.; Sampaio, C.; Zetterberg, H.; Zhang, H.; Wild, E.J.; Rees, G.; Robbins, T.W.; Sahakian, B.J.; Langbehn, D.; Tabrizi, S.J. Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington’s disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurol., 2020, 19(6), 502-512.
[http://dx.doi.org/10.1016/S1474-4422(20)30143-5] [PMID: 32470422]
[17]
Johnson, E.B.; Ziegler, G.; Penny, W.; Rees, G.; Tabrizi, S.J.; Scahill, R.I.; Gregory, S. dynamics of cortical degeneration over a decade in Huntington’s disease. Biol. Psychiatry, 2021, 89(8), 807-816.
[http://dx.doi.org/10.1016/j.biopsych.2020.11.009] [PMID: 33500176]
[18]
DiFiglia, M.; Sapp, E.; Chase, K.O.; Davies, S.W.; Bates, G.P.; Vonsattel, J.P.; Aronin, N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 1997, 277(5334), 1990-1993.
[http://dx.doi.org/10.1126/science.277.5334.1990] [PMID: 9302293]
[19]
Gómez-Tortosa, E.; MacDonald, M.E.; Friend, J.C.; Taylor, S.A.; Weiler, L.J.; Cupples, L.A.; Srinidhi, J.; Gusella, J.F.; Bird, E.D.; Vonsattel, J.P.; Myers, R.H. Quantitative neuropathological changes in presymptomatic Huntington’s disease. Ann. Neurol., 2001, 49(1), 29-34.
[http://dx.doi.org/10.1002/1531-8249(200101)49:1<29:AID-ANA7>3.0.CO;2-B] [PMID: 11198293]
[20]
Vonsattel, J.P.; Keller, C.; Del Pilar Amaya, M. Neuropathology of Huntington’s disease. Handb. Clin. Neurol., 2008, 89, 599-618.
[http://dx.doi.org/10.1016/S0072-9752(07)01256-0] [PMID: 18631782]
[21]
Sotrel, A.; Paskevich, P.A.; Kiely, D.K.; Bird, E.D.; Williams, R.S.; Myers, R.H. Morphometric analysis of the prefrontal cortex in Huntington’s disease. Neurology, 1991, 41(7), 1117-1123.
[http://dx.doi.org/10.1212/WNL.41.7.1117] [PMID: 1829794]
[22]
Thu, D.C.; Oorschot, D.E.; Tippett, L.J.; Nana, A.L.; Hogg, V.M.; Synek, B.J.; Luthi-Carter, R.; Waldvogel, H.J.; Faull, R.L. Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain, 2010, 133(Pt 4), 1094-1110.
[http://dx.doi.org/10.1093/brain/awq047] [PMID: 20375136]
[23]
Mehrabi, N.F.; Waldvogel, H.J.; Tippett, L.J.; Hogg, V.M.; Synek, B.J.; Faull, R.L. Symptom heterogeneity in Huntington’s disease correlates with neuronal degeneration in the cerebral cortex. Neurobiol. Dis., 2016, 96, 67-74.
[http://dx.doi.org/10.1016/j.nbd.2016.08.015] [PMID: 27569581]
[24]
Faideau, M.; Kim, J.; Cormier, K.; Gilmore, R.; Welch, M.; Auregan, G.; Dufour, N.; Guillermier, M.; Brouillet, E.; Hantraye, P.; Déglon, N.; Ferrante, R.J.; Bonvento, G. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum. Mol. Genet., 2010, 19(15), 3053-3067.
[http://dx.doi.org/10.1093/hmg/ddq212] [PMID: 20494921]
[25]
Sapp, E.; Kegel, K.B.; Aronin, N.; Hashikawa, T.; Uchiyama, Y.; Tohyama, K.; Bhide, P.G.; Vonsattel, J.P.; DiFiglia, M. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol., 2001, 60(2), 161-172.
[http://dx.doi.org/10.1093/jnen/60.2.161] [PMID: 11273004]
[26]
Nichols, M.R.; St-Pierre, M.K.; Wendeln, A.C.; Makoni, N.J.; Gouwens, L.K.; Garrad, E.C.; Sohrabi, M.; Neher, J.J.; Tremblay, M.E.; Combs, C.K. Inflammatory mechanisms in neurodegeneration. J. Neurochem., 2019, 149(5), 562-581.
[http://dx.doi.org/10.1111/jnc.14674] [PMID: 30702751]
[27]
Marogianni, C.; Sokratous, M.; Dardiotis, E.; Hadjigeorgiou, G.M.; Bogdanos, D.; Xiromerisiou, G. Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson’s Disease. Int. J. Mol. Sci., 2020, 21(22)E8421
[http://dx.doi.org/10.3390/ijms21228421] [PMID: 33182554]
[28]
Silvestroni, A.; Faull, R.L.; Strand, A.D.; Möller, T. Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport, 2009, 20(12), 1098-1103.
[http://dx.doi.org/10.1097/WNR.0b013e32832e34ee] [PMID: 19590393]
[29]
Papadopoulos, V.; Baraldi, M.; Guilarte, T.R.; Knudsen, T.B.; Lacapère, J.J.; Lindemann, P.; Norenberg, M.D.; Nutt, D.; Weizman, A.; Zhang, M.R.; Gavish, M. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci., 2006, 27(8), 402-409.
[http://dx.doi.org/10.1016/j.tips.2006.06.005] [PMID: 16822554]
[30]
Pavese, N.; Gerhard, A.; Tai, Y.F.; Ho, A.K.; Turkheimer, F.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology, 2006, 66(11), 1638-1643.
[http://dx.doi.org/10.1212/01.wnl.0000222734.56412.17] [PMID: 16769933]
[31]
Tai, Y.F.; Pavese, N.; Gerhard, A.; Tabrizi, S.J.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain, 2007, 130(Pt 7), 1759-1766.
[http://dx.doi.org/10.1093/brain/awm044] [PMID: 17400599]
[32]
Rocha, N.P.; Charron, O.; Latham, L.B.; Colpo, G.D.; Zanotti-Fregonara, P.; Yu, M.; Freeman, L.; Furr Stimming, E.; Teixeira, A.L. Microglia activation in basal ganglia is a late event in huntington disease pathophysiology. Neurol. Neuroimmunol. Neuroinflamm., 2021, 8(3)e984
[http://dx.doi.org/10.1212/NXI.0000000000000984] [PMID: 33795375]
[33]
Björkqvist, M.; Wild, E.J.; Thiele, J.; Silvestroni, A.; Andre, R.; Lahiri, N.; Raibon, E.; Lee, R.V.; Benn, C.L.; Soulet, D.; Magnusson, A.; Woodman, B.; Landles, C.; Pouladi, M.A.; Hayden, M.R.; Khalili-Shirazi, A.; Lowdell, M.W.; Brundin, P.; Bates, G.P.; Leavitt, B.R.; Möller, T.; Tabrizi, S.J. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J. Exp. Med., 2008, 205(8), 1869-1877.
[http://dx.doi.org/10.1084/jem.20080178] [PMID: 18625748]
[34]
Crotti, A.; Benner, C.; Kerman, B.E.; Gosselin, D.; Lagier-Tourenne, C.; Zuccato, C.; Cattaneo, E.; Gage, F.H.; Cleveland, D.W.; Glass, C.K. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat. Neurosci., 2014, 17(4), 513-521.
[http://dx.doi.org/10.1038/nn.3668] [PMID: 24584051]
[35]
Singhrao, S.K.; Neal, J.W.; Morgan, B.P.; Gasque, P. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp. Neurol., 1999, 159(2), 362-376.
[http://dx.doi.org/10.1006/exnr.1999.7170] [PMID: 10506508]
[36]
Kim, A.; García-García, E.; Straccia, M.; Comella-Bolla, A.; Miguez, A.; Masana, M.; Alberch, J.; Canals, J.M.; Rodríguez, M.J. Reduced fractalkine levels lead to striatal synaptic plasticity deficits in Huntington’s disease. Front. Cell. Neurosci., 2020, 14, 163.
[http://dx.doi.org/10.3389/fncel.2020.00163] [PMID: 32625064]
[37]
Vuono, R.; Kouli, A.; Legault, E.M.; Chagnon, L.; Allinson, K.S.; La Spada, A.; Biunno, I.; Barker, R.A.; Drouin-Ouellet, J. Association between toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2) genetic variants and clinical progression of Huntington’s disease. Mov. Disord., 2020, 35(3), 401-408.
[http://dx.doi.org/10.1002/mds.27911] [PMID: 31724242]
[38]
Battaglia, G.; Cannella, M.; Riozzi, B.; Orobello, S.; Maat-Schieman, M.L.; Aronica, E.; Busceti, C.L.; Ciarmiello, A.; Alberti, S.; Amico, E.; Sassone, J.; Sipione, S.; Bruno, V.; Frati, L.; Nicoletti, F.; Squitieri, F. Early defect of transforming growth factor β1 formation in Huntington’s disease. J. Cell. Mol. Med., 2011, 15(3), 555-571.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01011.x] [PMID: 20082658]
[39]
Di Pardo, A.; Alberti, S.; Maglione, V.; Amico, E.; Cortes, E.P.; Elifani, F.; Battaglia, G.; Busceti, C.L.; Nicoletti, F.; Vonsattel, J.P.; Squitieri, F. Changes of peripheral TGF-β1 depend on monocytes-derived macrophages in Huntington disease. Mol. Brain, 2013, 6, 55.
[http://dx.doi.org/10.1186/1756-6606-6-55] [PMID: 24330808]
[40]
Laprairie, R.B.; Warford, J.R.; Hutchings, S.; Robertson, G.S.; Kelly, M.E.; Denovan-Wright, E.M. The cytokine and endocannabinoid systems are co-regulated by NF-κB p65/RelA in cell culture and transgenic mouse models of Huntington’s disease and in striatal tissue from Huntington’s disease patients. J. Neuroimmunol., 2014, 267(1-2), 61-72.
[http://dx.doi.org/10.1016/j.jneuroim.2013.12.008] [PMID: 24360910]
[41]
Chou, S.Y.; Weng, J.Y.; Lai, H.L.; Liao, F.; Sun, S.H.; Tu, P.H.; Dickson, D.W.; Chern, Y. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J. Neurosci., 2008, 28(13), 3277-3290.
[http://dx.doi.org/10.1523/JNEUROSCI.0116-08.2008] [PMID: 18367595]
[42]
Ona, V.O.; Li, M.; Vonsattel, J.P.; Andrews, L.J.; Khan, S.Q.; Chung, W.M.; Frey, A.S.; Menon, A.S.; Li, X.J.; Stieg, P.E.; Yuan, J.; Penney, J.B.; Young, A.B.; Cha, J.H.; Friedlander, R.M. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature, 1999, 399(6733), 263-267.
[http://dx.doi.org/10.1038/20446] [PMID: 10353249]
[43]
Rodrigues, F.B.; Byrne, L.M.; McColgan, P.; Robertson, N.; Tabrizi, S.J.; Zetterberg, H.; Wild, E.J. Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS One, 2016, 11(9)e0163479
[http://dx.doi.org/10.1371/journal.pone.0163479] [PMID: 27657730]
[44]
Dalrymple, A.; Wild, E.J.; Joubert, R.; Sathasivam, K.; Björkqvist, M.; Petersén, A.; Jackson, G.S.; Isaacs, J.D.; Kristiansen, M.; Bates, G.P.; Leavitt, B.R.; Keir, G.; Ward, M.; Tabrizi, S.J. Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J. Proteome Res., 2007, 6(7), 2833-2840.
[http://dx.doi.org/10.1021/pr0700753] [PMID: 17552550]
[45]
Fang, Q.; Strand, A.; Law, W.; Faca, V.M.; Fitzgibbon, M.P.; Hamel, N.; Houle, B.; Liu, X.; May, D.H.; Poschmann, G.; Roy, L.; Stühler, K.; Ying, W.; Zhang, J.; Zheng, Z.; Bergeron, J.J.; Hanash, S.; He, F.; Leavitt, B.R.; Meyer, H.E.; Qian, X.; McIntosh, M.W. Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol. Cell. Proteomics, 2009, 8(3), 451-466.
[http://dx.doi.org/10.1074/mcp.M800231-MCP200] [PMID: 18984577]
[46]
Niemelä, V.; Burman, J.; Blennow, K.; Zetterberg, H.; Larsson, A.; Sundblom, J. Cerebrospinal fluid sCD27 levels indicate active T cell-mediated inflammation in premanifest Huntington’s disease. PLoS One, 2018, 13(2)e0193492
[http://dx.doi.org/10.1371/journal.pone.0193492] [PMID: 29474427]
[47]
Connolly, C.; Magnusson-Lind, A.; Lu, G.; Wagner, P.K.; Southwell, A.L.; Hayden, M.R.; Björkqvist, M.; Leavitt, B.R. Enhanced immune response to MMP3 stimulation in microglia expressing mutant huntingtin. Neuroscience, 2016, 325, 74-88.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.031] [PMID: 27033979]
[48]
von Essen, M.R.; Hellem, M.N.N.; Vinther-Jensen, T.; Ammitzbøll, C.; Hansen, R.H.; Hjermind, L.E.; Nielsen, T.T.; Nielsen, J.E.; Sellebjerg, F. Early intrathecal T helper 17.1 cell activity in huntington disease. Ann. Neurol., 2020, 87(2), 246-255.
[http://dx.doi.org/10.1002/ana.25647] [PMID: 31725947]
[49]
O’Regan, G.C.; Farag, S.H.; Casey, C.S.; Wood-Kaczmar, A.; Pocock, J.M.; Tabrizi, S.J.; Andre, R. Human Huntington’s disease pluripotent stem cell-derived microglia develop normally but are abnormally hyper-reactive and release elevated levels of reactive oxygen species. J. Neuroinflammation, 2021, 18(1), 94.
[http://dx.doi.org/10.1186/s12974-021-02147-6] [PMID: 33874957]
[50]
Leblhuber, F.; Walli, J.; Jellinger, K.; Tilz, G.P.; Widner, B.; Laccone, F.; Fuchs, D. Activated immune system in patients with Huntington’s disease. Clin. Chem. Lab. Med., 1998, 36(10), 747-750.
[http://dx.doi.org/10.1515/CCLM.1998.132] [PMID: 9853799]
[51]
Chang, K.H.; Wu, Y.R.; Chen, Y.C.; Chen, C.M. Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav. Immun., 2015, 44, 121-127.
[http://dx.doi.org/10.1016/j.bbi.2014.09.011] [PMID: 25266150]
[52]
Wild, E.; Magnusson, A.; Lahiri, N.; Krus, U.; Orth, M.; Tabrizi, S.J.; Björkqvist, M. Abnormal peripheral chemokine profile in Huntington’s disease. PLoS Curr., 2011, 3RRN1231
[http://dx.doi.org/10.1371/currents.RRN1231] [PMID: 21826115]
[53]
Silajdžić, E.; Rezeli, M.; Végvári, Á.; Lahiri, N.; Andre, R.; Magnusson-Lind, A.; Nambron, R.; Kalliolia, E.; Marko-Varga, G.; Warner, T.T.; Laurell, T.; Tabrizi, S.J.; Björkqvist, M. A critical evaluation of inflammatory markers in Huntington’s Disease plasma. J. Huntingtons Dis., 2013, 2(1), 125-134.
[http://dx.doi.org/10.3233/JHD-130049] [PMID: 25063434]
[54]
Politis, M.; Lahiri, N.; Niccolini, F.; Su, P.; Wu, K.; Giannetti, P.; Scahill, R.I.; Turkheimer, F.E.; Tabrizi, S.J.; Piccini, P. Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington’s disease gene carriers. Neurobiol. Dis., 2015, 83, 115-121.
[http://dx.doi.org/10.1016/j.nbd.2015.08.011] [PMID: 26297319]
[55]
Wang, R.; Ross, C.A.; Cai, H.; Cong, W.N.; Daimon, C.M.; Carlson, O.D.; Egan, J.M.; Siddiqui, S.; Maudsley, S.; Martin, B. Metabolic and hormonal signatures in pre-manifest and manifest Huntington’s disease patients. Front. Physiol., 2014, 5, 231.
[http://dx.doi.org/10.3389/fphys.2014.00231] [PMID: 25002850]
[56]
Träger, U.; Andre, R.; Lahiri, N.; Magnusson-Lind, A.; Weiss, A.; Grueninger, S.; McKinnon, C.; Sirinathsinghji, E.; Kahlon, S.; Pfister, E.L.; Moser, R.; Hummerich, H.; Antoniou, M.; Bates, G.P.; Luthi-Carter, R.; Lowdell, M.W.; Björkqvist, M.; Ostroff, G.R.; Aronin, N.; Tabrizi, S.J. HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFκB pathway dysregulation. Brain, 2014, 137(Pt 3), 819-833.
[http://dx.doi.org/10.1093/brain/awt355] [PMID: 24459107]
[57]
Yeo, I.J.; Lee, C.K.; Han, S.B.; Yun, J.; Hong, J.T. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol. Ther., 2019, 203107394
[http://dx.doi.org/10.1016/j.pharmthera.2019.107394] [PMID: 31356910]
[58]
Elmonem, M.A.; van den Heuvel, L.P.; Levtchenko, E.N. Immunomodulatory effects of chitotriosidase enzyme. Enzyme Res., 2016, 20162682680
[http://dx.doi.org/10.1155/2016/2682680] [PMID: 26881065]
[59]
Bonneh-Barkay, D.; Bissel, S.J.; Kofler, J.; Starkey, A.; Wang, G.; Wiley, C.A. Astrocyte and macrophage regulation of YKL-40 expression and cellular response in neuroinflammation. Brain Pathol., 2012, 22(4), 530-546.
[http://dx.doi.org/10.1111/j.1750-3639.2011.00550.x] [PMID: 22074331]
[60]
Moon, H.J.; Herring, S.K.; Zhao, L. Clusterin: a multifaceted protein in the brain. Neural Regen. Res., 2021, 16(7), 1438-1439.
[http://dx.doi.org/10.4103/1673-5374.301013] [PMID: 33318444]
[61]
Kaur, G.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Kumar, A.; Arora, S.; Bungau, S. RETRACTED ARTICLE: Role of TLR2 and TLR4 signaling in Parkinson’s disease: an insight into associated therapeutic potential. J. Mol. Neurosci., 2021, 71(11), 2429.
[http://dx.doi.org/10.1007/s12031-021-01811-z] [PMID: 33687621]
[62]
Hammond, T.R.; Marsh, S.E.; Stevens, B. Immune signaling in neurodegeneration. Immunity, 2019, 50(4), 955-974.
[http://dx.doi.org/10.1016/j.immuni.2019.03.016] [PMID: 30995509]
[63]
Pittaluga, A. CCL5-Glutamate cross-talk in astrocyte-neuron communication in multiple sclerosis. Front. Immunol., 2017, 8, 1079.
[http://dx.doi.org/10.3389/fimmu.2017.01079] [PMID: 28928746]
[64]
Miller, J.P.; Holcomb, J.; Al-Ramahi, I.; de Haro, M.; Gafni, J.; Zhang, N.; Kim, E.; Sanhueza, M.; Torcassi, C.; Kwak, S.; Botas, J.; Hughes, R.E.; Ellerby, L.M. Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron, 2010, 67(2), 199-212.
[http://dx.doi.org/10.1016/j.neuron.2010.06.021] [PMID: 20670829]
[65]
Kim, Y.S.; Kim, S.S.; Cho, J.J.; Choi, D.H.; Hwang, O.; Shin, D.H.; Chun, H.S.; Beal, M.F.; Joh, T.H. Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J. Neurosci., 2005, 25(14), 3701-3711.
[http://dx.doi.org/10.1523/JNEUROSCI.4346-04.2005] [PMID: 15814801]
[66]
Weiss, A.; Träger, U.; Wild, E.J.; Grueninger, S.; Farmer, R.; Landles, C.; Scahill, R.I.; Lahiri, N.; Haider, S.; Macdonald, D.; Frost, C.; Bates, G.P.; Bilbe, G.; Kuhn, R.; Andre, R.; Tabrizi, S.J. Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J. Clin. Invest., 2012, 122(10), 3731-3736.
[http://dx.doi.org/10.1172/JCI64565] [PMID: 22996692]
[67]
Miller, J.R.; Träger, U.; Andre, R.; Tabrizi, S.J. Mutant huntingtin does not affect the intrinsic phenotype of human huntington’s disease T lymphocytes. PLoS One, 2015, 10(11)e0141793
[http://dx.doi.org/10.1371/journal.pone.0141793] [PMID: 26529236]
[68]
Pierozan, P.; Gonçalves Fernandes, C.; Ferreira, F.; Pessoa-Pureur, R. Acute intrastriatal injection of quinolinic acid provokes long-lasting misregulation of the cytoskeleton in the striatum, cerebral cortex and hippocampus of young rats. Brain Res., 2014, 1577, 1-10.
[http://dx.doi.org/10.1016/j.brainres.2014.06.024] [PMID: 24976581]
[69]
Amaral, A.U.; Seminotti, B.; da Silva, J.C.; de Oliveira, F.H.; Ribeiro, R.T.; Vargas, C.R.; Leipnitz, G.; Santamaría, A.; Souza, D.O.; Wajner, M. Induction of neuroinflammatory response and histopathological alterations caused by quinolinic acid administration in the striatum of glutaryl-CoA dehydrogenase deficient mice. Neurotox. Res., 2018, 33(3), 593-606.
[http://dx.doi.org/10.1007/s12640-017-9848-0] [PMID: 29235064]
[70]
Emerich, D.F.; Thanos, C.G.; Goddard, M.; Skinner, S.J.; Geany, M.S.; Bell, W.J.; Bintz, B.; Schneider, P.; Chu, Y.; Babu, R.S.; Borlongan, C.V.; Boekelheide, K.; Hall, S.; Bryant, B.; Kordower, J.H. Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. Neurobiol. Dis., 2006, 23(2), 471-480.
[http://dx.doi.org/10.1016/j.nbd.2006.04.014] [PMID: 16777422]
[71]
Beal, M.F.; Ferrante, R.J.; Swartz, K.J.; Kowall, N.W. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J. Neurosci., 1991, 11(6), 1649-1659.
[http://dx.doi.org/10.1523/JNEUROSCI.11-06-01649.1991] [PMID: 1710657]
[72]
Björklund, H.; Olson, L.; Dahl, D.; Schwarcz, R. Short- and long-term consequences of intracranial injections of the excitotoxin, quinolinic acid, as evidenced by GFA immunohistochemistry of astrocytes. Brain Res., 1986, 371(2), 267-277.
[http://dx.doi.org/10.1016/0006-8993(86)90362-8] [PMID: 2938667]
[73]
Emerich, D.F.; Cain, C.K.; Greco, C.; Saydoff, J.A.; Hu, Z.Y.; Liu, H.; Lindner, M.D. Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington’s disease. Cell Transplant., 1997, 6(3), 249-266.
[http://dx.doi.org/10.1177/096368979700600308] [PMID: 9171158]
[74]
Ludolph, A.C.; He, F.; Spencer, P.S.; Hammerstad, J.; Sabri, M. 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci., 1991, 18(4), 492-498.
[http://dx.doi.org/10.1017/S0317167100032212] [PMID: 1782616]
[75]
Brouillet, E.; Jacquard, C.; Bizat, N.; Blum, D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J. Neurochem., 2005, 95(6), 1521-1540.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03515.x] [PMID: 16300642]
[76]
Borlongan, C.V.; Nishino, H.; Sanberg, P.R. Systemic, but not intraparenchymal, administration of 3-nitropropionic acid mimics the neuropathology of Huntington’s disease: a speculative explanation. Neurosci. Res., 1997, 28(3), 185-189.
[http://dx.doi.org/10.1016/S0168-0102(97)00045-X] [PMID: 9237266]
[77]
Borlongan, C.V.; Koutouzis, T.K.; Freeman, T.B.; Hauser, R.A.; Cahill, D.W.; Sanberg, P.R. Hyperactivity and hypoactivity in a rat model of Huntington’s disease: the systemic 3-nitropropionic acid model. Brain Res. Brain Res. Protoc., 1997, 1(3), 253-257.
[http://dx.doi.org/10.1016/S1385-299X(96)00037-2] [PMID: 9385062]
[78]
Túnez, I.; Tasset, I.; Pérez-De La Cruz, V.; Santamaría, A. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules, 2010, 15(2), 878-916.
[http://dx.doi.org/10.3390/molecules15020878] [PMID: 20335954]
[79]
Zhong, F.; Liang, S.; Zhong, Z. Emerging role of mitochondrial DNA as a major driver of inflammation and disease progression. Trends Immunol., 2019, 40(12), 1120-1133.
[http://dx.doi.org/10.1016/j.it.2019.10.008] [PMID: 31744765]
[80]
Pang, Z.; Geddes, J.W. Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J. Neurosci., 1997, 17(9), 3064-3073.
[http://dx.doi.org/10.1523/JNEUROSCI.17-09-03064.1997] [PMID: 9096141]
[81]
Saba, J.; Turati, J.; Ramírez, D.; Carniglia, L.; Durand, D.; Lasaga, M.; Caruso, C. Astrocyte truncated tropomyosin receptor kinase B mediates brain-derived neurotrophic factor anti-apoptotic effect leading to neuroprotection. J. Neurochem., 2018, 146(6), 686-702.
[http://dx.doi.org/10.1111/jnc.14476] [PMID: 29851427]
[82]
Saba, J.; Carniglia, L.; Ramírez, D.; Turati, J.; Imsen, M.; Durand, D.; Lasaga, M.; Caruso, C. Melanocortin 4 receptor activation protects striatal neurons and glial cells from 3-nitropropionic acid toxicity. Mol. Cell. Neurosci., 2019, 94, 41-51.
[http://dx.doi.org/10.1016/j.mcn.2018.12.002] [PMID: 30529228]
[83]
Saba, J.; López Couselo, F.; Turati, J.; Carniglia, L.; Durand, D.; de Laurentiis, A.; Lasaga, M.; Caruso, C. Astrocytes from cortex and striatum show differential responses to mitochondrial toxin and BDNF: implications for protection of striatal neurons expressing mutant huntingtin. J. Neuroinflammation, 2020, 17(1), 290.
[http://dx.doi.org/10.1186/s12974-020-01965-4] [PMID: 33023623]
[84]
Mangiarini, L.; Sathasivam, K.; Seller, M.; Cozens, B.; Harper, A.; Hetherington, C.; Lawton, M.; Trottier, Y.; Lehrach, H.; Davies, S.W.; Bates, G.P. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 1996, 87(3), 493-506.
[http://dx.doi.org/10.1016/S0092-8674(00)81369-0] [PMID: 8898202]
[85]
Stack, E.C.; Kubilus, J.K.; Smith, K.; Cormier, K.; Del Signore, S.J.; Guelin, E.; Ryu, H.; Hersch, S.M.; Ferrante, R.J. Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington’s disease transgenic mice. J. Comp. Neurol., 2005, 490(4), 354-370.
[http://dx.doi.org/10.1002/cne.20680] [PMID: 16127709]
[86]
Davies, S.W.; Turmaine, M.; Cozens, B.A.; DiFiglia, M.; Sharp, A.H.; Ross, C.A.; Scherzinger, E.; Wanker, E.E.; Mangiarini, L.; Bates, G.P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 1997, 90(3), 537-548.
[http://dx.doi.org/10.1016/S0092-8674(00)80513-9] [PMID: 9267033]
[87]
Vonsattel, J.P. Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol., 2008, 115(1), 55-69.
[http://dx.doi.org/10.1007/s00401-007-0306-6] [PMID: 17978822]
[88]
Schilling, G.; Becher, M.W.; Sharp, A.H.; Jinnah, H.A.; Duan, K.; Kotzuk, J.A.; Slunt, H.H.; Ratovitski, T.; Cooper, J.K.; Jenkins, N.A.; Copeland, N.G.; Price, D.L.; Ross, C.A.; Borchelt, D.R. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet., 1999, 8(3), 397-407.
[http://dx.doi.org/10.1093/hmg/8.3.397] [PMID: 9949199]
[89]
McBride, J.L.; Ramaswamy, S.; Gasmi, M.; Bartus, R.T.; Herzog, C.D.; Brandon, E.P.; Zhou, L.; Pitzer, M.R.; Berry-Kravis, E.M.; Kordower, J.H. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA, 2006, 103(24), 9345-9350.
[http://dx.doi.org/10.1073/pnas.0508875103] [PMID: 16751280]
[90]
Lee, C.Y.; Cantle, J.P.; Yang, X.W. Genetic manipulations of mutant huntingtin in mice: new insights into Huntington’s disease pathogenesis. FEBS J., 2013, 280(18), 4382-4394.
[http://dx.doi.org/10.1111/febs.12418] [PMID: 23829302]
[91]
Slow, E.J.; van Raamsdonk, J.; Rogers, D.; Coleman, S.H.; Graham, R.K.; Deng, Y.; Oh, R.; Bissada, N.; Hossain, S.M.; Yang, Y.Z.; Li, X.J.; Simpson, E.M.; Gutekunst, C.A.; Leavitt, B.R.; Hayden, M.R. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet., 2003, 12(13), 1555-1567.
[http://dx.doi.org/10.1093/hmg/ddg169] [PMID: 12812983]
[92]
Hodgson, J.G.; Agopyan, N.; Gutekunst, C.A.; Leavitt, B.R.; LePiane, F.; Singaraja, R.; Smith, D.J.; Bissada, N.; McCutcheon, K.; Nasir, J.; Jamot, L.; Li, X.J.; Stevens, M.E.; Rosemond, E.; Roder, J.C.; Phillips, A.G.; Rubin, E.M.; Hersch, S.M.; Hayden, M.R. A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 1999, 23(1), 181-192.
[http://dx.doi.org/10.1016/S0896-6273(00)80764-3] [PMID: 10402204]
[93]
Gray, M.; Shirasaki, D.I.; Cepeda, C.; André, V.M.; Wilburn, B.; Lu, X.H.; Tao, J.; Yamazaki, I.; Li, S.H.; Sun, Y.E.; Li, X.J.; Levine, M.S.; Yang, X.W. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J. Neurosci., 2008, 28(24), 6182-6195.
[http://dx.doi.org/10.1523/JNEUROSCI.0857-08.2008] [PMID: 18550760]
[94]
Menalled, L.; El-Khodor, B.F.; Patry, M.; Suárez-Fariñas, M.; Orenstein, S.J.; Zahasky, B.; Leahy, C.; Wheeler, V.; Yang, X.W.; MacDonald, M.; Morton, A.J.; Bates, G.; Leeds, J.; Park, L.; Howland, D.; Signer, E.; Tobin, A.; Brunner, D. Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol. Dis., 2009, 35(3), 319-336.
[http://dx.doi.org/10.1016/j.nbd.2009.05.007] [PMID: 19464370]
[95]
Wegrzynowicz, M.; Bichell, T.J.; Soares, B.D.; Loth, M.K.; McGlothan, J.S.; Mori, S.; Alikhan, F.S.; Hua, K.; Coughlin, J.M.; Holt, H.K.; Jetter, C.S.; Pomper, M.G.; Osmand, A.P.; Guilarte, T.R.; Bowman, A.B. Novel BAC mouse model of Huntington’s disease with 225 CAG repeats exhibits an early widespread and stable degenerative phenotype. J. Huntingtons Dis., 2015, 4(1), 17-36.
[http://dx.doi.org/10.3233/JHD-140116] [PMID: 26333255]
[96]
Reddy, P.H.; Williams, M.; Charles, V.; Garrett, L.; Pike-Buchanan, L.; Whetsell, W.O., Jr; Miller, G.; Tagle, D.A. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat. Genet., 1998, 20(2), 198-202.
[http://dx.doi.org/10.1038/2510] [PMID: 9771716]
[97]
von Hörsten, S.; Schmitt, I.; Nguyen, H.P.; Holzmann, C.; Schmidt, T.; Walther, T.; Bader, M.; Pabst, R.; Kobbe, P.; Krotova, J.; Stiller, D.; Kask, A.; Vaarmann, A.; Rathke-Hartlieb, S.; Schulz, J.B.; Grasshoff, U.; Bauer, I.; Vieira-Saecker, A.M.; Paul, M.; Jones, L.; Lindenberg, K.S.; Landwehrmeyer, B.; Bauer, A.; Li, X.J.; Riess, O. Transgenic rat model of Huntington’s disease. Hum. Mol. Genet., 2003, 12(6), 617-624.
[http://dx.doi.org/10.1093/hmg/ddg075] [PMID: 12620967]
[98]
Yu-Taeger, L.; Petrasch-Parwez, E.; Osmand, A.P.; Redensek, A.; Metzger, S.; Clemens, L.E.; Park, L.; Howland, D.; Calaminus, C.; Gu, X.; Pichler, B.; Yang, X.W.; Riess, O.; Nguyen, H.P. A novel BACHD transgenic rat exhibits characteristic neuropathological features of Huntington disease. J. Neurosci., 2012, 32(44), 15426-15438.
[http://dx.doi.org/10.1523/JNEUROSCI.1148-12.2012] [PMID: 23115180]
[99]
Wheeler, V.C.; Gutekunst, C.A.; Vrbanac, V.; Lebel, L.A.; Schilling, G.; Hersch, S.; Friedlander, R.M.; Gusella, J.F.; Vonsattel, J.P.; Borchelt, D.R.; MacDonald, M.E. Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice. Hum. Mol. Genet., 2002, 11(6), 633-640.
[http://dx.doi.org/10.1093/hmg/11.6.633] [PMID: 11912178]
[100]
Menalled, L.B.; Sison, J.D.; Dragatsis, I.; Zeitlin, S.; Chesselet, M.F. Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J. Comp. Neurol., 2003, 465(1), 11-26.
[http://dx.doi.org/10.1002/cne.10776] [PMID: 12926013]
[101]
Lin, C.H.; Tallaksen-Greene, S.; Chien, W.M.; Cearley, J.A.; Jackson, W.S.; Crouse, A.B.; Ren, S.; Li, X.J.; Albin, R.L.; Detloff, P.J. Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum. Mol. Genet., 2001, 10(2), 137-144.
[http://dx.doi.org/10.1093/hmg/10.2.137] [PMID: 11152661]
[102]
Menalled, L.B.; Kudwa, A.E.; Miller, S.; Fitzpatrick, J.; Watson-Johnson, J.; Keating, N.; Ruiz, M.; Mushlin, R.; Alosio, W.; McConnell, K.; Connor, D.; Murphy, C.; Oakeshott, S.; Kwan, M.; Beltran, J.; Ghavami, A.; Brunner, D.; Park, L.C.; Ramboz, S.; Howland, D. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS One, 2012, 7(12)e49838
[http://dx.doi.org/10.1371/journal.pone.0049838] [PMID: 23284626]
[103]
Stricker-Shaver, J.; Novati, A.; Yu-Taeger, L.; Nguyen, H.P. Genetic rodent models of huntington disease. Adv. Exp. Med. Biol., 2018, 1049, 29-57.
[http://dx.doi.org/10.1007/978-3-319-71779-1_2] [PMID: 29427097]
[104]
Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; Allen, N.J.; Araque, A.; Barbeito, L.; Barzilai, A.; Bergles, D.E.; Bonvento, G.; Butt, A.M.; Chen, W.T.; Cohen-Salmon, M.; Cunningham, C.; Deneen, B.; De Strooper, B.; Díaz-Castro, B.; Farina, C.; Freeman, M.; Gallo, V.; Goldman, J.E.; Goldman, S.A.; Götz, M.; Gutiérrez, A.; Haydon, P.G.; Heiland, D.H.; Hol, E.M.; Holt, M.G.; Iino, M.; Kastanenka, K.V.; Kettenmann, H.; Khakh, B.S.; Koizumi, S.; Lee, C.J.; Liddelow, S.A.; MacVicar, B.A.; Magistretti, P.; Messing, A.; Mishra, A.; Molofsky, A.V.; Murai, K.K.; Norris, C.M.; Okada, S.; Oliet, S.H.R.; Oliveira, J.F.; Panatier, A.; Parpura, V.; Pekna, M.; Pekny, M.; Pellerin, L.; Perea, G.; Pérez-Nievas, B.G.; Pfrieger, F.W.; Poskanzer, K.E.; Quintana, F.J.; Ransohoff, R.M.; Riquelme-Perez, M.; Robel, S.; Rose, C.R.; Rothstein, J.D.; Rouach, N.; Rowitch, D.H.; Semyanov, A.; Sirko, S.; Sontheimer, H.; Swanson, R.A.; Vitorica, J.; Wanner, I.B.; Wood, L.B.; Wu, J.; Zheng, B.; Zimmer, E.R.; Zorec, R.; Sofroniew, M.V.; Verkhratsky, A. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci., 2021, 24(3), 312-325.
[http://dx.doi.org/10.1038/s41593-020-00783-4] [PMID: 33589835]
[105]
Cirillo, G.; Maggio, N.; Bianco, M.R.; Vollono, C.; Sellitti, S.; Papa, M. Discriminative behavioral assessment unveils remarkable reactive astrocytosis and early molecular correlates in basal ganglia of 3-nitropropionic acid subchronic treated rats. Neurochem. Int., 2010, 56(1), 152-160.
[http://dx.doi.org/10.1016/j.neuint.2009.09.013] [PMID: 19799953]
[106]
Mu, S.; Liu, B.; Ouyang, L.; Zhan, M.; Chen, S.; Wu, J.; Chen, J.; Wei, X.; Wang, W.; Zhang, J.; Lei, W. Characteristic changes of astrocyte and microglia in rat striatum induced by 3-NP and MCAO. Neurochem. Res., 2016, 41(4), 707-714.
[http://dx.doi.org/10.1007/s11064-015-1739-2] [PMID: 26586406]
[107]
Cirillo, G.; Cirillo, M.; Panetsos, F.; Virtuoso, A.; Papa, M. Selective vulnerability of basal ganglia: Insights into the mechanisms of bilateral striatal necrosis. J. Neuropathol. Exp. Neurol., 2019, 78(2), 123-129.
[http://dx.doi.org/10.1093/jnen/nly123] [PMID: 30605553]
[108]
Nishino, H.; Fujimoto, I.; Shimano, Y.; Hida, H.; Kumazaki, M.; Fukuda, A. 3-Nitropropionic acid produces striatum selective lesions accompanied by iNOS expression. J. Chem. Neuroanat., 1996, 10(3-4), 209-212.
[http://dx.doi.org/10.1016/0891-0618(96)00134-2] [PMID: 8811425]
[109]
Suganya, S.N.; Sumathi, T. Effect of rutin against a mitochondrial toxin, 3-nitropropionicacid induced biochemical, behavioral and histological alterations-a pilot study on Huntington’s disease model in rats. Metab. Brain Dis., 2017, 32(2), 471-481.
[http://dx.doi.org/10.1007/s11011-016-9929-4] [PMID: 27928694]
[110]
Valdeolivas, S.; Navarrete, C.; Cantarero, I.; Bellido, M.L.; Muñoz, E.; Sagredo, O. Neuroprotective properties of cannabigerol in Huntington’s disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics, 2015, 12(1), 185-199.
[http://dx.doi.org/10.1007/s13311-014-0304-z] [PMID: 25252936]
[111]
Ranju, V.; Sathiya, S.; Kalaivani, P.; Priya, R.J.; Saravana Babu, C. Memantine exerts functional recovery by improving BDNF and GDNF expression in 3-nitropropionic acid intoxicated mice. Neurosci. Lett., 2015, 586, 1-7.
[http://dx.doi.org/10.1016/j.neulet.2014.11.036] [PMID: 25475686]
[112]
Bayram-Weston, Z.; Jones, L.; Dunnett, S.B.; Brooks, S.P. Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington’s disease transgenic mice. Brain Res. Bull., 2012, 88(2-3), 104-112.
[http://dx.doi.org/10.1016/j.brainresbull.2011.07.009] [PMID: 21801812]
[113]
Yu, Z.X.; Li, S.H.; Evans, J.; Pillarisetti, A.; Li, H.; Li, X.J. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington’s disease. J. Neurosci., 2003, 23(6), 2193-2202.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-02193.2003] [PMID: 12657678]
[114]
Dutta, D.; Majumder, M.; Paidi, R.K.; Pahan, K. Alleviation of Huntington pathology in mice by oral administration of food additive glyceryl tribenzoate. Neurobiol. Dis., 2021, 153105318
[http://dx.doi.org/10.1016/j.nbd.2021.105318] [PMID: 33636386]
[115]
Bayram-Weston, Z.; Jones, L.; Dunnett, S.B.; Brooks, S.P. Light and electron microscopic characterization of the evolution of cellular pathology in YAC128 Huntington’s disease transgenic mice. Brain Res. Bull., 2012, 88(2-3), 137-147.
[http://dx.doi.org/10.1016/j.brainresbull.2011.05.005] [PMID: 21620935]
[116]
Ehrnhoefer, D.E.; Southwell, A.L.; Sivasubramanian, M.; Qiu, X.; Villanueva, E.B.; Xie, Y.; Waltl, S.; Anderson, L.; Fazeli, A.; Casal, L.; Felczak, B.; Tsang, M.; Hayden, M.R. HACE1 is essential for astrocyte mitochondrial function and influences Huntington disease phenotypes in vivo. Hum. Mol. Genet., 2018, 27(2), 239-253.
[http://dx.doi.org/10.1093/hmg/ddx394] [PMID: 29121340]
[117]
Mantovani, S.; Gordon, R.; Li, R.; Christie, D.C.; Kumar, V.; Woodruff, T.M. Motor deficits associated with Huntington’s disease occur in the absence of striatal degeneration in BACHD transgenic mice. Hum. Mol. Genet., 2016, 25(9), 1780-1791.
[http://dx.doi.org/10.1093/hmg/ddw050] [PMID: 26908618]
[118]
Heng, M.Y.; Duong, D.K.; Albin, R.L.; Tallaksen-Greene, S.J.; Hunter, J.M.; Lesort, M.J.; Osmand, A.; Paulson, H.L.; Detloff, P.J. Early autophagic response in a novel knock-in model of Huntington disease. Hum. Mol. Genet., 2010, 19(19), 3702-3720.
[http://dx.doi.org/10.1093/hmg/ddq285] [PMID: 20616151]
[119]
Vagner, T.; Dvorzhak, A.; Wójtowicz, A.M.; Harms, C.; Grantyn, R. Systemic application of AAV vectors targeting GFAP-expressing astrocytes in Z-Q175-KI Huntington’s disease mice. Mol. Cell. Neurosci., 2016, 77, 76-86.
[http://dx.doi.org/10.1016/j.mcn.2016.10.007] [PMID: 27989734]
[120]
Agostoni, E.; Michelazzi, S.; Maurutto, M.; Carnemolla, A.; Ciani, Y.; Vatta, P.; Roncaglia, P.; Zucchelli, S.; Leanza, G.; Mantovani, F.; Gustincich, S.; Santoro, C.; Piazza, S.; Del Sal, G.; Persichetti, F. Effects of Pin1 loss in hdh(Q111) knock-in mice. Front. Cell. Neurosci., 2016, 10, 110.
[http://dx.doi.org/10.3389/fncel.2016.00110] [PMID: 27199664]
[121]
Bayram-Weston, Z.; Torres, E.M.; Jones, L.; Dunnett, S.B.; Brooks, S.P. Light and electron microscopic characterization of the evolution of cellular pathology in the Hdh(CAG)150 Huntington’s disease knock-in mouse. Brain Res. Bull., 2012, 88(2-3), 189-198.
[http://dx.doi.org/10.1016/j.brainresbull.2011.03.014] [PMID: 21511013]
[122]
Diaz-Castro, B.; Gangwani, M.R.; Yu, X.; Coppola, G.; Khakh, B.S. Astrocyte molecular signatures in Huntington’s disease. Sci. Transl. Med., 2019, 11(514)eaaw8546
[http://dx.doi.org/10.1126/scitranslmed.aaw8546] [PMID: 31619545]
[123]
Lallani, S.B.; Villalba, R.M.; Chen, Y.; Smith, Y.; Chan, A.W.S. Striatal interneurons in transgenic nonhuman primate model of Huntington’s disease. Sci. Rep., 2019, 9(1), 3528.
[http://dx.doi.org/10.1038/s41598-019-40165-w] [PMID: 30837611]
[124]
Politis, M.; Pavese, N.; Tai, Y.F.; Kiferle, L.; Mason, S.L.; Brooks, D.J.; Tabrizi, S.J.; Barker, R.A.; Piccini, P. Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum. Brain Mapp., 2011, 32(2), 258-270.
[http://dx.doi.org/10.1002/hbm.21008] [PMID: 21229614]
[125]
Hsiao, H.Y.; Chiu, F.L.; Chen, C.M.; Wu, Y.R.; Chen, H.M.; Chen, Y.C.; Kuo, H.C.; Chern, Y. Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease. Hum. Mol. Genet., 2014, 23(16), 4328-4344.
[http://dx.doi.org/10.1093/hmg/ddu151] [PMID: 24698979]
[126]
Bouchard, J.; Truong, J.; Bouchard, K.; Dunkelberger, D.; Desrayaud, S.; Moussaoui, S.; Tabrizi, S.J.; Stella, N.; Muchowski, P.J. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J. Neurosci., 2012, 32(50), 18259-18268.
[http://dx.doi.org/10.1523/JNEUROSCI.4008-12.2012] [PMID: 23238740]
[127]
Simmons, D.A.; Casale, M.; Alcon, B.; Pham, N.; Narayan, N.; Lynch, G. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia, 2007, 55(10), 1074-1084.
[http://dx.doi.org/10.1002/glia.20526] [PMID: 17551926]
[128]
Jansen, A.H.; van Hal, M.; Op den Kelder, I.C.; Meier, R.T.; de Ruiter, A.A.; Schut, M.H.; Smith, D.L.; Grit, C.; Brouwer, N.; Kamphuis, W.; Boddeke, H.W.; den Dunnen, W.F.; van Roon, W.M.; Bates, G.P.; Hol, E.M.; Reits, E.A. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia, 2017, 65(1), 50-61.
[http://dx.doi.org/10.1002/glia.23050] [PMID: 27615381]
[129]
Franciosi, S.; Ryu, J.K.; Shim, Y.; Hill, A.; Connolly, C.; Hayden, M.R.; McLarnon, J.G.; Leavitt, B.R. Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol. Dis., 2012, 45(1), 438-449.
[http://dx.doi.org/10.1016/j.nbd.2011.09.003] [PMID: 21946335]
[130]
Kraft, A.D.; Kaltenbach, L.S.; Lo, D.C.; Harry, G.J. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol. Aging, 2012, 33(3), 621.e17-e633.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.02.015] [PMID: 21482444]
[131]
Savage, J.C.; St-Pierre, M.K.; Carrier, M.; El Hajj, H.; Novak, S.W.; Sanchez, M.G.; Cicchetti, F.; Tremblay, M.E. Microglial physiological properties and interactions with synapses are altered at presymptomatic stages in a mouse model of Huntington’s disease pathology. J. Neuroinflammation, 2020, 17(1), 98.
[http://dx.doi.org/10.1186/s12974-020-01782-9] [PMID: 32241286]
[132]
Gill, J.S.; Jamwal, S.; Kumar, P.; Deshmukh, R. Sertraline and venlafaxine improves motor performance and neurobehavioral deficit in quinolinic acid induced Huntington’s like symptoms in rats: Possible neurotransmitters modulation. Pharmacol. Rep., 2017, 69(2), 306-313.
[http://dx.doi.org/10.1016/j.pharep.2016.11.008] [PMID: 28178592]
[133]
Ferreira, F.S.; Schmitz, F.; Marques, E.P.; Siebert, C.; Wyse, A.T.S. Intrastriatal quinolinic acid administration impairs redox homeostasis and induces inflammatory changes: Prevention by kynurenic acid. Neurotox. Res., 2020, 38(1), 50-58.
[http://dx.doi.org/10.1007/s12640-020-00192-2] [PMID: 32219734]
[134]
Saliba, S.W.; Vieira, E.L.; Santos, R.P.; Candelario-Jalil, E.; Fiebich, B.L.; Vieira, L.B.; Teixeira, A.L.; de Oliveira, A.C. Neuroprotective effects of intrastriatal injection of rapamycin in a mouse model of excitotoxicity induced by quinolinic acid. J. Neuroinflammation, 2017, 14(1), 25.
[http://dx.doi.org/10.1186/s12974-017-0793-x] [PMID: 28143498]
[135]
Kaur, N.; Jamwal, S.; Deshmukh, R.; Gauttam, V.; Kumar, P. Beneficial effect of rice bran extract against 3-nitropropionic acid induced experimental Huntington’s disease in rats. Toxicol. Rep., 2015, 2, 1222-1232.
[http://dx.doi.org/10.1016/j.toxrep.2015.08.004] [PMID: 28962465]
[136]
Abdelfattah, M.S.; Badr, S.E.A.; Lotfy, S.A.; Attia, G.H.; Aref, A.M.; Abdel Moneim, A.E.; Kassab, R.B. Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotox. Res., 2020, 37(1), 77-92.
[http://dx.doi.org/10.1007/s12640-019-00086-y] [PMID: 31332714]
[137]
Jang, M.; Choi, J.H.; Chang, Y.; Lee, S.J.; Nah, S.Y.; Cho, I.H. Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington’s disease: Activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav. Immun., 2019, 80, 146-162.
[http://dx.doi.org/10.1016/j.bbi.2019.03.001] [PMID: 30853569]
[138]
El-Abhar, H.; Abd El Fattah, M.A.; Wadie, W.; El-Tanbouly, D.M. Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington’s disease. PLoS One, 2018, 13(9)e0203837
[http://dx.doi.org/10.1371/journal.pone.0203837] [PMID: 30260985]
[139]
Lopez-Sanchez, C.; Garcia-Martinez, V.; Poejo, J.; Garcia-Lopez, V.; Salazar, J.; Gutierrez-Merino, C. Early reactive A1 astrocytes induction by the neurotoxin 3-nitropropionic acid in rat brain. Int. J. Mol. Sci., 2020, 21(10)E3609
[http://dx.doi.org/10.3390/ijms21103609] [PMID: 32443829]
[140]
Hsiao, H.Y.; Chen, Y.C.; Chen, H.M.; Tu, P.H.; Chern, Y. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Hum. Mol. Genet., 2013, 22(9), 1826-1842.
[http://dx.doi.org/10.1093/hmg/ddt036] [PMID: 23372043]
[141]
Pido-Lopez, J.; Andre, R.; Benjamin, A.C.; Ali, N.; Farag, S.; Tabrizi, S.J.; Bates, G.P. In vivo neutralization of the protagonist role of macrophages during the chronic inflammatory stage of Huntington’s disease. Sci. Rep., 2018, 8(1), 11447.
[http://dx.doi.org/10.1038/s41598-018-29792-x] [PMID: 30061661]
[142]
Simmons, D.A.; Mills, B.D.; Butler Iii, R.R.; Kuan, J.; McHugh, T.L.M.; Akers, C.; Zhou, J.; Syriani, W.; Grouban, M.; Zeineh, M.; Longo, F.M. Neuroimaging, urinary, and plasma biomarkers of treatment response in Huntington’s disease: Preclinical evidence with the p75NTR ligand LM11A-31. Neurotherapeutics, 2021, 18(2), 1039-1063.
[http://dx.doi.org/10.1007/s13311-021-01023-8] [PMID: 33786806]
[143]
Pido-Lopez, J.; Tanudjojo, B.; Farag, S.; Bondulich, M.K.; Andre, R.; Tabrizi, S.J.; Bates, G.P. Inhibition of tumour necrosis factor alpha in the R6/2 mouse model of Huntington’s disease by etanercept treatment. Sci. Rep., 2019, 9(1), 7202.
[http://dx.doi.org/10.1038/s41598-019-43627-3] [PMID: 31076648]
[144]
Träger, U.; Andre, R.; Magnusson-Lind, A.; Miller, J.R.; Connolly, C.; Weiss, A.; Grueninger, S.; Silajdžić, E.; Smith, D.L.; Leavitt, B.R.; Bates, G.P.; Björkqvist, M.; Tabrizi, S.J. Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol. Dis., 2015, 73, 388-398.
[http://dx.doi.org/10.1016/j.nbd.2014.10.012] [PMID: 25447230]
[145]
Corey-Bloom, J.; Aikin, A.M.; Gutierrez, A.M.; Nadhem, J.S.; Howell, T.L.; Thomas, E.A. Beneficial effects of glatiramer acetate in Huntington’s disease mouse models: Evidence for BDNF-elevating and immunomodulatory mechanisms. Brain Res., 2017, 1673, 102-110.
[http://dx.doi.org/10.1016/j.brainres.2017.08.013] [PMID: 28823953]
[146]
Garcia-Miralles, M.; Hong, X.; Tan, L.J.; Caron, N.S.; Huang, Y.; To, X.V.; Lin, R.Y.; Franciosi, S.; Papapetropoulos, S.; Hayardeny, L.; Hayden, M.R.; Chuang, K.H.; Pouladi, M.A. Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease. Sci. Rep., 2016, 6, 31652.
[http://dx.doi.org/10.1038/srep31652] [PMID: 27528441]
[147]
Valadão, P.A.C.; Oliveira, B.D.S.; Joviano-Santos, J.V.; Vieira, E.L.M.; Rocha, N.P.; Teixeira, A.L.; Guatimosim, C.; de Miranda, A.S. Inflammatory changes in peripheral organs in the BACHD murine model of Huntington’s disease. Life Sci., 2019, 232116653
[http://dx.doi.org/10.1016/j.lfs.2019.116653] [PMID: 31302194]
[148]
Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev., 2018, 98(1), 239-389.
[http://dx.doi.org/10.1152/physrev.00042.2016] [PMID: 29351512]
[149]
Sofroniew, M.V. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol., 2020, 41(9), 758-770.
[http://dx.doi.org/10.1016/j.it.2020.07.004] [PMID: 32819810]
[150]
Khakh, B.S.; Beaumont, V.; Cachope, R.; Munoz-Sanjuan, I.; Goldman, S.A.; Grantyn, R. Unravelling and Exploiting Astrocyte Dysfunction in Huntington’s Disease. Trends Neurosci., 2017, 40(7), 422-437.
[http://dx.doi.org/10.1016/j.tins.2017.05.002] [PMID: 28578789]
[151]
Sofroniew, M.V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci., 2015, 16(5), 249-263.
[http://dx.doi.org/10.1038/nrn3898] [PMID: 25891508]
[152]
Shin, J.Y.; Fang, Z.H.; Yu, Z.X.; Wang, C.E.; Li, S.H.; Li, X.J. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol., 2005, 171(6), 1001-1012.
[http://dx.doi.org/10.1083/jcb.200508072] [PMID: 16365166]
[153]
Bradford, J.; Shin, J.Y.; Roberts, M.; Wang, C.E.; Li, X.J.; Li, S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl. Acad. Sci. USA, 2009, 106(52), 22480-22485.
[http://dx.doi.org/10.1073/pnas.0911503106] [PMID: 20018729]
[154]
Wood, T.E.; Barry, J.; Yang, Z.; Cepeda, C.; Levine, M.S.; Gray, M. Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum. Mol. Genet., 2019, 28(3), 487-500.
[PMID: 30312396]
[155]
Stanek, L.M.; Bu, J.; Shihabuddin, L.S. Astrocyte transduction is required for rescue of behavioral phenotypes in the YAC128 mouse model with AAV-RNAi mediated HTT lowering therapeutics. Neurobiol. Dis., 2019, 129, 29-37.
[http://dx.doi.org/10.1016/j.nbd.2019.04.015] [PMID: 31042572]
[156]
Jing, L.; Cheng, S.; Pan, Y.; Liu, Q.; Yang, W.; Li, S.; Li, X.J. Accumulation of endogenous mutant huntingtin in astrocytes exacerbates neuropathology of Huntington disease in mice. Mol. Neurobiol., 2021, 58(10), 5112-5126.
[http://dx.doi.org/10.1007/s12035-021-02451-5] [PMID: 34250577]
[157]
Benraiss, A.; Wang, S.; Herrlinger, S.; Li, X.; Chandler-Militello, D.; Mauceri, J.; Burm, H.B.; Toner, M.; Osipovitch, M.; Jim Xu, Q.; Ding, F.; Wang, F.; Kang, N.; Kang, J.; Curtin, P.C.; Brunner, D.; Windrem, M.S.; Munoz-Sanjuan, I.; Nedergaard, M.; Goldman, S.A. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat. Commun., 2016, 7, 11758.
[http://dx.doi.org/10.1038/ncomms11758] [PMID: 27273432]
[158]
Djukic, B.; Casper, K.B.; Philpot, B.D.; Chin, L.S.; McCarthy, K.D. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J. Neurosci., 2007, 27(42), 11354-11365.
[http://dx.doi.org/10.1523/JNEUROSCI.0723-07.2007] [PMID: 17942730]
[159]
Zhang, X.; Wan, J.Q.; Tong, X.P. Potassium channel dysfunction in neurons and astrocytes in Huntington’s disease. CNS Neurosci. Ther., 2018, 24(4), 311-318.
[http://dx.doi.org/10.1111/cns.12804] [PMID: 29377621]
[160]
Tong, X.; Ao, Y.; Faas, G.C.; Nwaobi, S.E.; Xu, J.; Haustein, M.D.; Anderson, M.A.; Mody, I.; Olsen, M.L.; Sofroniew, M.V.; Khakh, B.S. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci., 2014, 17(5), 694-703.
[http://dx.doi.org/10.1038/nn.3691] [PMID: 24686787]
[161]
Hassel, B.; Tessler, S.; Faull, R.L.; Emson, P.C. Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem. Res., 2008, 33(2), 232-237.
[http://dx.doi.org/10.1007/s11064-007-9463-1] [PMID: 17726644]
[162]
Estrada-Sánchez, A.M.; Rebec, G.V. Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington’s disease: interactions between neurons and astrocytes. Basal Ganglia, 2012, 2(2), 57-66.
[http://dx.doi.org/10.1016/j.baga.2012.04.029] [PMID: 22905336]
[163]
Chen, L.L.; Wu, J.C.; Wang, L.H.; Wang, J.; Qin, Z.H.; Difiglia, M.; Lin, F. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes. Acta Pharmacol. Sin., 2012, 33(3), 385-392.
[http://dx.doi.org/10.1038/aps.2011.162] [PMID: 22266730]
[164]
Lee, W.; Reyes, R.C.; Gottipati, M.K.; Lewis, K.; Lesort, M.; Parpura, V.; Gray, M. Enhanced Ca(2+)-dependent glutamate release from astrocytes of the BACHD Huntington’s disease mouse model. Neurobiol. Dis., 2013, 58, 192-199.
[http://dx.doi.org/10.1016/j.nbd.2013.06.002] [PMID: 23756199]
[165]
Miller, B.R.; Dorner, J.L.; Shou, M.; Sari, Y.; Barton, S.J.; Sengelaub, D.R.; Kennedy, R.T.; Rebec, G.V. Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience, 2008, 153(1), 329-337.
[http://dx.doi.org/10.1016/j.neuroscience.2008.02.004] [PMID: 18353560]
[166]
Korn, T.; Magnus, T.; Jung, S. Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factor-alpha. FASEB J., 2005, 19(13), 1878-1880.
[http://dx.doi.org/10.1096/fj.05-3748fje] [PMID: 16123171]
[167]
Tilleux, S.; Hermans, E. Down-regulation of astrocytic GLAST by microglia-related inflammation is abrogated in dibutyryl cAMP-differentiated cultures. J. Neurochem., 2008, 105(6), 2224-2236.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05305.x] [PMID: 18298666]
[168]
Wang, Z.; Pekarskaya, O.; Bencheikh, M.; Chao, W.; Gelbard, H.A.; Ghorpade, A.; Rothstein, J.D.; Volsky, D.J. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology, 2003, 312(1), 60-73.
[http://dx.doi.org/10.1016/S0042-6822(03)00181-8] [PMID: 12890621]
[169]
Prow, N.A.; Irani, D.N. The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J. Neurochem., 2008, 105(4), 1276-1286.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05230.x] [PMID: 18194440]
[170]
Colombo, E.; Pascente, R.; Triolo, D.; Bassani, C.; De Angelis, A.; Ruffini, F.; Ottoboni, L.; Comi, G.; Martino, G.; Farina, C. Laquinimod modulates human astrocyte function and dampens astrocyte-induced neurotoxicity during inflammation. Molecules, 2020, 25(22)E5403
[http://dx.doi.org/10.3390/molecules25225403] [PMID: 33218208]
[171]
Manyam, N.V.; Hare, T.A.; Katz, L.; Glaeser, B.S. Huntington’s disease. Cerebrospinal fluid GABA levels in at-risk individuals. Arch. Neurol., 1978, 35(11), 728-730.
[http://dx.doi.org/10.1001/archneur.1978.00500350032006] [PMID: 152621]
[172]
Hsu, Y.T.; Chang, Y.G.; Chern, Y. Insights into GABAAergic system alteration in Huntington’s disease. Open Biol., 2018, 8(12)180165
[http://dx.doi.org/10.1098/rsob.180165] [PMID: 30518638]
[173]
Cepeda, C.; Galvan, L.; Holley, S.M.; Rao, S.P.; André, V.M.; Botelho, E.P.; Chen, J.Y.; Watson, J.B.; Deisseroth, K.; Levine, M.S. Multiple sources of striatal inhibition are differentially affected in Huntington’s disease mouse models. J. Neurosci., 2013, 33(17), 7393-7406.
[http://dx.doi.org/10.1523/JNEUROSCI.2137-12.2013] [PMID: 23616545]
[174]
Rosas-Arellano, A.; Tejeda-Guzmán, C.; Lorca-Ponce, E.; Palma-Tirado, L.; Mantellero, C.A.; Rojas, P.; Missirlis, F.; Castro, M.A. Huntington’s disease leads to decrease of GABA-A tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiol. Dis., 2018, 110, 142-153.
[http://dx.doi.org/10.1016/j.nbd.2017.11.010] [PMID: 29196217]
[175]
Wójtowicz, A.M.; Dvorzhak, A.; Semtner, M.; Grantyn, R. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. Front. Neural Circuits, 2013, 7, 188.
[http://dx.doi.org/10.3389/fncir.2013.00188] [PMID: 24324407]
[176]
Hernandez-Rabaza, V.; Cabrera-Pastor, A.; Taoro-Gonzalez, L.; Gonzalez-Usano, A.; Agusti, A.; Balzano, T.; Llansola, M.; Felipo, V. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J. Neuroinflammation, 2016, 13(1), 83.
[http://dx.doi.org/10.1186/s12974-016-0549-z] [PMID: 27090509]
[177]
Browne, S.E.; Bowling, A.C.; MacGarvey, U.; Baik, M.J.; Berger, S.C.; Muqit, M.M.; Bird, E.D.; Beal, M.F. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann. Neurol., 1997, 41(5), 646-653.
[http://dx.doi.org/10.1002/ana.410410514] [PMID: 9153527]
[178]
Damiano, M.; Diguet, E.; Malgorn, C.; D’Aurelio, M.; Galvan, L.; Petit, F.; Benhaim, L.; Guillermier, M.; Houitte, D.; Dufour, N.; Hantraye, P.; Canals, J.M.; Alberch, J.; Delzescaux, T.; Déglon, N.; Beal, M.F.; Brouillet, E. A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum. Mol. Genet., 2013, 22(19), 3869-3882.
[http://dx.doi.org/10.1093/hmg/ddt242] [PMID: 23720495]
[179]
Dringen, R.; Gutterer, J.M.; Hirrlinger, J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur. J. Biochem., 2000, 267(16), 4912-4916.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01597.x] [PMID: 10931173]
[180]
Shih, A.Y.; Johnson, D.A.; Wong, G.; Kraft, A.D.; Jiang, L.; Erb, H.; Johnson, J.A.; Murphy, T.H. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J. Neurosci., 2003, 23(8), 3394-3406.
[http://dx.doi.org/10.1523/JNEUROSCI.23-08-03394.2003] [PMID: 12716947]
[181]
Ben Haim, L.; Carrillo-de Sauvage, M.A.; Ceyzériat, K.; Escartin, C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell. Neurosci., 2015, 9, 278.
[http://dx.doi.org/10.3389/fncel.2015.00278] [PMID: 26283915]
[182]
Boussicault, L.; Hérard, A.S.; Calingasan, N.; Petit, F.; Malgorn, C.; Merienne, N.; Jan, C.; Gaillard, M.C.; Lerchundi, R.; Barros, L.F.; Escartin, C.; Delzescaux, T.; Mariani, J.; Hantraye, P.; Beal, M.F.; Brouillet, E.; Véga, C.; Bonvento, G. Impaired brain energy metabolism in the BACHD mouse model of Huntington’s disease: critical role of astrocyte-neuron interactions. J. Cereb. Blood Flow Metab., 2014, 34(9), 1500-1510.
[http://dx.doi.org/10.1038/jcbfm.2014.110] [PMID: 24938402]
[183]
Oliveira, J.M.; Gonçalves, J. In situ mitochondrial Ca2+ buffering differences of intact neurons and astrocytes from cortex and striatum. J. Biol. Chem., 2009, 284(8), 5010-5020.
[http://dx.doi.org/10.1074/jbc.M807459200] [PMID: 19106091]
[184]
Misiak, M.; Singh, S.; Drewlo, S.; Beyer, C.; Arnold, S. Brain region-specific vulnerability of astrocytes in response to 3-nitropropionic acid is mediated by cytochrome c oxidase isoform expression. Cell Tissue Res., 2010, 341(1), 83-93.
[http://dx.doi.org/10.1007/s00441-010-0995-3] [PMID: 20602186]
[185]
Polyzos, A.A.; Lee, D.Y.; Datta, R.; Hauser, M.; Budworth, H.; Holt, A.; Mihalik, S.; Goldschmidt, P.; Frankel, K.; Trego, K.; Bennett, M.J.; Vockley, J.; Xu, K.; Gratton, E.; McMurray, C.T. Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in huntington mice. Cell Metab., 2019, 29(6), 1258-1273.e11.
[http://dx.doi.org/10.1016/j.cmet.2019.03.004] [PMID: 30930170]
[186]
Polyzos, A.; Holt, A.; Brown, C.; Cosme, C.; Wipf, P.; Gomez-Marin, A.; Castro, M.R.; Ayala-Peña, S.; McMurray, C.T. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum. Mol. Genet., 2016, 25(9), 1792-1802.
[http://dx.doi.org/10.1093/hmg/ddw051] [PMID: 26908614]
[187]
Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006, 127(1), 59-69.
[http://dx.doi.org/10.1016/j.cell.2006.09.015] [PMID: 17018277]
[188]
Jin, J.; Albertz, J.; Guo, Z.; Peng, Q.; Rudow, G.; Troncoso, J.C.; Ross, C.A.; Duan, W. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J. Neurochem., 2013, 125(3), 410-419.
[http://dx.doi.org/10.1111/jnc.12190] [PMID: 23373812]
[189]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[190]
Dattilo, S.; Mancuso, C.; Koverech, G.; Di Mauro, P.; Ontario, M.L.; Petralia, C.C.; Petralia, A.; Maiolino, L.; Serra, A.; Calabrese, E.J.; Calabrese, V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun. Ageing, 2015, 12, 20.
[http://dx.doi.org/10.1186/s12979-015-0046-8] [PMID: 26543490]
[191]
San Gil, R.; Ooi, L.; Yerbury, J.J.; Ecroyd, H. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol. Neurodegener., 2017, 12(1), 65.
[http://dx.doi.org/10.1186/s13024-017-0208-6] [PMID: 28923065]
[192]
Chafekar, S.M.; Duennwald, M.L. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS One, 2012, 7(5)e37929
[http://dx.doi.org/10.1371/journal.pone.0037929] [PMID: 22649566]
[193]
Hay, D.G.; Sathasivam, K.; Tobaben, S.; Stahl, B.; Marber, M.; Mestril, R.; Mahal, A.; Smith, D.L.; Woodman, B.; Bates, G.P. Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet., 2004, 13(13), 1389-1405.
[http://dx.doi.org/10.1093/hmg/ddh144] [PMID: 15115766]
[194]
Oliveira, A.O.; Osmand, A.; Outeiro, T.F.; Muchowski, P.J.; Finkbeiner, S. αB-Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington’s disease. Hum. Mol. Genet., 2016, 25(9), 1677-1689.
[http://dx.doi.org/10.1093/hmg/ddw028] [PMID: 26920069]
[195]
Calabrese, V.; Copani, A.; Testa, D.; Ravagna, A.; Spadaro, F.; Tendi, E.; Nicoletti, V.G.; Giuffrida Stella, A.M. Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J. Neurosci. Res., 2000, 60(5), 613-622.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000601)60:5<613:AID-JNR6>3.0.CO;2-8] [PMID: 10820432]
[196]
Esteras, N.; Dinkova-Kostova, A.T.; Abramov, A.Y. Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biol. Chem., 2016, 397(5), 383-400.
[http://dx.doi.org/10.1515/hsz-2015-0295] [PMID: 26812787]
[197]
Shih, A.Y.; Imbeault, S.; Barakauskas, V.; Erb, H.; Jiang, L.; Li, P.; Murphy, T.H. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J. Biol. Chem., 2005, 280(24), 22925-22936.
[http://dx.doi.org/10.1074/jbc.M414635200] [PMID: 15840590]
[198]
Calkins, M.J.; Vargas, M.R.; Johnson, D.A.; Johnson, J.A. Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition. Toxicol. Sci., 2010, 115(2), 557-568.
[http://dx.doi.org/10.1093/toxsci/kfq072] [PMID: 20211941]
[199]
Jin, Y.N.; Yu, Y.V.; Gundemir, S.; Jo, C.; Cui, M.; Tieu, K.; Johnson, G.V. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS One, 2013, 8(3)e57932
[http://dx.doi.org/10.1371/journal.pone.0057932] [PMID: 23469253]
[200]
Quinti, L.; Dayalan Naidu, S.; Träger, U.; Chen, X.; Kegel-Gleason, K.; Llères, D.; Connolly, C.; Chopra, V.; Low, C.; Moniot, S.; Sapp, E.; Tousley, A.R.; Vodicka, P.; Van Kanegan, M.J.; Kaltenbach, L.S.; Crawford, L.A.; Fuszard, M.; Higgins, M.; Miller, J.R.C.; Farmer, R.E.; Potluri, V.; Samajdar, S.; Meisel, L.; Zhang, N.; Snyder, A.; Stein, R.; Hersch, S.M.; Ellerby, L.M.; Weerapana, E.; Schwarzschild, M.A.; Steegborn, C.; Leavitt, B.R.; Degterev, A.; Tabrizi, S.J.; Lo, D.C.; DiFiglia, M.; Thompson, L.M.; Dinkova-Kostova, A.T.; Kazantsev, A.G. KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington’s disease patients. Proc. Natl. Acad. Sci. USA, 2017, 114(23), E4676-E4685.
[http://dx.doi.org/10.1073/pnas.1614943114] [PMID: 28533375]
[201]
Xie, Y.; Hayden, M.R.; Xu, B. BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J. Neurosci., 2010, 30(44), 14708-14718.
[http://dx.doi.org/10.1523/JNEUROSCI.1637-10.2010] [PMID: 21048129]
[202]
Gharami, K.; Xie, Y.; An, J.J.; Tonegawa, S.; Xu, B. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington’s disease phenotypes in mice. J. Neurochem., 2008, 105(2), 369-379.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05137.x] [PMID: 18086127]
[203]
Canals, J.M.; Pineda, J.R.; Torres-Peraza, J.F.; Bosch, M.; Martín-Ibañez, R.; Muñoz, M.T.; Mengod, G.; Ernfors, P.; Alberch, J. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J. Neurosci., 2004, 24(35), 7727-7739.
[http://dx.doi.org/10.1523/JNEUROSCI.1197-04.2004] [PMID: 15342740]
[204]
Wang, L.; Lin, F.; Wang, J.; Wu, J.; Han, R.; Zhu, L.; Difiglia, M.; Qin, Z. Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF. Brain Res., 2012, 1449, 69-82.
[http://dx.doi.org/10.1016/j.brainres.2012.01.077] [PMID: 22410294]
[205]
Hong, Y.; Zhao, T.; Li, X.J.; Li, S. Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDP. J. Neurosci., 2016, 36(34), 8790-8801.
[http://dx.doi.org/10.1523/JNEUROSCI.0168-16.2016] [PMID: 27559163]
[206]
Reick, C.; Ellrichmann, G.; Tsai, T.; Lee, D.H.; Wiese, S.; Gold, R.; Saft, C.; Linker, R.A. Expression of brain-derived neurotrophic factor in astrocytes - Beneficial effects of glatiramer acetate in the R6/2 and YAC128 mouse models of Huntington's disease. Exp. Neurol., 2016, 285(Pt A), 12-23.
[http://dx.doi.org/10.1016/j.expneurol.2016.08.012] [PMID: 27587303]
[207]
Giralt, A.; Carretón, O.; Lao-Peregrin, C.; Martín, E.D.; Alberch, J. Conditional BDNF release under pathological conditions improves Huntington’s disease pathology by delaying neuronal dysfunction. Mol. Neurodegener., 2011, 6(1), 71.
[http://dx.doi.org/10.1186/1750-1326-6-71] [PMID: 21985529]
[208]
Sodero, A.O. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J. Neurochem., 2021, 157(4), 899-918.
[http://dx.doi.org/10.1111/jnc.15228] [PMID: 33118626]
[209]
Leoni, V.; Caccia, C. 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie, 2013, 95(3), 595-612.
[http://dx.doi.org/10.1016/j.biochi.2012.09.025] [PMID: 23041502]
[210]
Leoni, V.; Mariotti, C.; Nanetti, L.; Salvatore, E.; Squitieri, F.; Bentivoglio, A.R.; Bandettini di Poggio, M.; Piacentini, S.; Monza, D.; Valenza, M.; Cattaneo, E.; Di Donato, S. Whole body cholesterol metabolism is impaired in Huntington’s disease. Neurosci. Lett., 2011, 494(3), 245-249.
[http://dx.doi.org/10.1016/j.neulet.2011.03.025] [PMID: 21406216]
[211]
Leoni, V.; Mariotti, C.; Tabrizi, S.J.; Valenza, M.; Wild, E.J.; Henley, S.M.; Hobbs, N.Z.; Mandelli, M.L.; Grisoli, M.; Björkhem, I.; Cattaneo, E.; Di Donato, S. Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain, 2008, 131(Pt 11), 2851-2859.
[http://dx.doi.org/10.1093/brain/awn212] [PMID: 18772220]
[212]
Valenza, M.; Leoni, V.; Karasinska, J.M.; Petricca, L.; Fan, J.; Carroll, J.; Pouladi, M.A.; Fossale, E.; Nguyen, H.P.; Riess, O.; MacDonald, M.; Wellington, C.; DiDonato, S.; Hayden, M.; Cattaneo, E. Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J. Neurosci., 2010, 30(32), 10844-10850.
[http://dx.doi.org/10.1523/JNEUROSCI.0917-10.2010] [PMID: 20702713]
[213]
Valenza, M.; Marullo, M.; Di Paolo, E.; Cesana, E.; Zuccato, C.; Biella, G.; Cattaneo, E. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington’s disease. Cell Death Differ., 2015, 22(4), 690-702.
[http://dx.doi.org/10.1038/cdd.2014.162] [PMID: 25301063]
[214]
del Toro, D.; Xifró, X.; Pol, A.; Humbert, S.; Saudou, F.; Canals, J.M.; Alberch, J. Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington’s disease. J. Neurochem., 2010, 115(1), 153-167.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06912.x] [PMID: 20663016]
[215]
Kacher, R.; Lamazière, A.; Heck, N.; Kappes, V.; Mounier, C.; Despres, G.; Dembitskaya, Y.; Perrin, E.; Christaller, W.; Sasidharan Nair, S.; Messent, V.; Cartier, N.; Vanhoutte, P.; Venance, L.; Saudou, F.; Néri, C.; Caboche, J.; Betuing, S. CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington’s disease. Brain, 2019, 142(8), 2432-2450.
[http://dx.doi.org/10.1093/brain/awz174] [PMID: 31286142]
[216]
González-Guevara, E.; Cárdenas, G.; Pérez-Severiano, F.; Martínez-Lazcano, J.C. Dysregulated brain cholesterol metabolism is linked to neuroinflammation in Huntington’s disease. Mov. Disord., 2020, 35(7), 1113-1127.
[http://dx.doi.org/10.1002/mds.28089] [PMID: 32410324]
[217]
Birolini, G.; Verlengia, G.; Talpo, F.; Maniezzi, C.; Zentilin, L.; Giacca, M.; Conforti, P.; Cordiglieri, C.; Caccia, C.; Leoni, V.; Taroni, F.; Biella, G.; Simonato, M.; Cattaneo, E.; Valenza, M. Singlenucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol. Commun., 2020, 8(1), 19.
[http://dx.doi.org/10.1186/s40478-020-0880-6] [PMID: 32070434]
[218]
Al-Dalahmah, O.; Sosunov, A.A.; Shaik, A.; Ofori, K.; Liu, Y.; Vonsattel, J.P.; Adorjan, I.; Menon, V.; Goldman, J.E. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol. Commun., 2020, 8(1), 19.
[http://dx.doi.org/10.1186/s40478-020-0880-6] [PMID: 32070434]
[219]
Yu, X.; Nagai, J.; Marti-Solano, M.; Soto, J.S.; Coppola, G.; Babu, M.M.; Khakh, B.S. Context-specific striatal astrocyte molecular responses are phenotypically exploitable. Neuron, 2020, 108(6), 1146-1162.e10.
[http://dx.doi.org/10.1016/j.neuron.2020.09.021] [PMID: 33086039]
[220]
Benraiss, A.; Mariani, J.N.; Osipovitch, M.; Cornwell, A.; Windrem, M.S.; Villanueva, C.B.; Chandler-Militello, D.; Goldman, S.A. Cell-intrinsic glial pathology is conserved across human and murine models of Huntington’s disease. Cell Rep., 2021, 36(1)109308
[http://dx.doi.org/10.1016/j.celrep.2021.109308] [PMID: 34233199]
[221]
Kierdorf, K.; Prinz, M. Microglia in steady state. J. Clin. Invest., 2017, 127(9), 3201-3209.
[http://dx.doi.org/10.1172/JCI90602] [PMID: 28714861]
[222]
Casano, A.M.; Peri, F. Microglia: multitasking specialists of the brain. Dev. Cell, 2015, 32(4), 469-477.
[http://dx.doi.org/10.1016/j.devcel.2015.01.018] [PMID: 25710533]
[223]
Crapser, J.D.; Ochaba, J.; Soni, N.; Reidling, J.C.; Thompson, L.M.; Green, K.N. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington’s disease. Brain, 2020, 143(1), 266-288.
[http://dx.doi.org/10.1093/brain/awz363] [PMID: 31848580]
[224]
Petkau, T.L.; Hill, A.; Connolly, C.; Lu, G.; Wagner, P.; Kosior, N.; Blanco, J.; Leavitt, B.R. Mutant huntingtin expression in microglia is neither required nor sufficient to cause the Huntington’s disease-like phenotype in BACHD mice. Hum. Mol. Genet., 2019, 28(10), 1661-1670.
[http://dx.doi.org/10.1093/hmg/ddz009] [PMID: 30624705]
[225]
Di Pardo, A.; Ciaglia, E.; Cattaneo, M.; Maciag, A.; Montella, F.; Lopardo, V.; Ferrario, A.; Villa, F.; Madonna, M.; Amico, E.; Carrizzo, A.; Damato, A.; Pepe, G.; Marracino, F.; Auricchio, A.; Vecchione, C.; Maglione, V.; Puca, A.A. The longevity-associated variant of BPIFB4 improves a CXCR4-mediated striatum-microglia crosstalk preventing disease progression in a mouse model of Huntington’s disease. Cell Death Dis., 2020, 11(7), 546.
[http://dx.doi.org/10.1038/s41419-020-02754-w] [PMID: 32683420]
[226]
Pawelec, P.; Ziemka-Nalecz, M.; Sypecka, J.; Zalewska, T. The impact of the CX3CL1/CX3CR1 axis in neurological disorders. Cells, 2020, 9(10)E2277
[http://dx.doi.org/10.3390/cells9102277] [PMID: 33065974]
[227]
Liu, F.T.; Rabinovich, G.A. Galectins as modulators of tumour progression. Nat. Rev. Cancer, 2005, 5(1), 29-41.
[http://dx.doi.org/10.1038/nrc1527] [PMID: 15630413]
[228]
Burguillos, M.A.; Svensson, M.; Schulte, T.; Boza-Serrano, A.; Garcia-Quintanilla, A.; Kavanagh, E.; Santiago, M.; Viceconte, N.; Oliva-Martin, M.J.; Osman, A.M.; Salomonsson, E.; Amar, L.; Persson, A.; Blomgren, K.; Achour, A.; Englund, E.; Leffler, H.; Venero, J.L.; Joseph, B.; Deierborg, T. Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep., 2015, 10(9), 1626-1638.
[http://dx.doi.org/10.1016/j.celrep.2015.02.012] [PMID: 25753426]
[229]
Siew, J.J.; Chen, H.M.; Chen, H.Y.; Chen, H.L.; Chen, C.M.; Soong, B.W.; Wu, Y.R.; Chang, C.P.; Chan, Y.C.; Lin, C.H.; Liu, F.T.; Chern, Y. Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease. Nat. Commun., 2019, 10(1), 3473.
[http://dx.doi.org/10.1038/s41467-019-11441-0] [PMID: 31375685]
[230]
Heyes, M.P.; Achim, C.L.; Wiley, C.A.; Major, E.O.; Saito, K.; Markey, S.P. Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem. J., 1996, 320(Pt 2), 595-597.
[http://dx.doi.org/10.1042/bj3200595] [PMID: 8973572]
[231]
Lu, Y.; Shao, M.; Wu, T. Kynurenine-3-monooxygenase: A new direction for the treatment in different diseases. Food Sci. Nutr., 2020, 8(2), 711-719.
[http://dx.doi.org/10.1002/fsn3.1418] [PMID: 32148781]
[232]
Zwilling, D.; Huang, S.Y.; Sathyasaikumar, K.V.; Notarangelo, F.M.; Guidetti, P.; Wu, H.Q.; Lee, J.; Truong, J.; Andrews-Zwilling, Y.; Hsieh, E.W.; Louie, J.Y.; Wu, T.; Scearce-Levie, K.; Patrick, C.; Adame, A.; Giorgini, F.; Moussaoui, S.; Laue, G.; Rassoulpour, A.; Flik, G.; Huang, Y.; Muchowski, J.M.; Masliah, E.; Schwarcz, R.; Muchowski, P.J. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 2011, 145(6), 863-874.
[http://dx.doi.org/10.1016/j.cell.2011.05.020] [PMID: 21640374]
[233]
Bondulich, M.K.; Fan, Y.; Song, Y.; Giorgini, F.; Bates, G.P. Ablation of kynurenine 3-monooxygenase rescues plasma inflammatory cytokine levels in the R6/2 mouse model of Huntington’s disease. Sci. Rep., 2021, 11(1), 5484.
[http://dx.doi.org/10.1038/s41598-021-84858-7] [PMID: 33750843]
[234]
Rodrigues, F.B.; Byrne, L.M.; Lowe, A.J.; Tortelli, R.; Heins, M.; Flik, G.; Johnson, E.B.; De Vita, E.; Scahill, R.I.; Giorgini, F.; Wild, E.J. Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington’s disease. J. Neurochem., 2021, 158(2), 539-553.
[http://dx.doi.org/10.1111/jnc.15360] [PMID: 33797782]
[235]
Ferger, A.I.; Campanelli, L.; Reimer, V.; Muth, K.N.; Merdian, I.; Ludolph, A.C.; Witting, A. Effects of mitochondrial dysfunction on the immunological properties of microglia. J. Neuroinflammation, 2010, 7, 45.
[http://dx.doi.org/10.1186/1742-2094-7-45] [PMID: 20701773]
[236]
Ryu, J.K.; Nagai, A.; Kim, J.; Lee, M.C.; McLarnon, J.G.; Kim, S.U. Microglial activation and cell death induced by the mitochondrial toxin 3-nitropropionic acid: in vitro and in vivo studies. Neurobiol. Dis., 2003, 12(2), 121-132.
[http://dx.doi.org/10.1016/S0969-9961(03)00002-0] [PMID: 12667467]
[237]
Jin, X.; Riew, T.R.; Kim, H.L.; Choi, J.H.; Lee, M.Y. Morphological characterization of NG2 glia and their association with neuroglial cells in the 3-nitropropionic acid-lesioned striatum of rat. Sci. Rep., 2018, 8(1), 5942.
[http://dx.doi.org/10.1038/s41598-018-24385-0] [PMID: 29654253]
[238]
Oberheim, N.A.; Takano, T.; Han, X.; He, W.; Lin, J.H.; Wang, F.; Xu, Q.; Wyatt, J.D.; Pilcher, W.; Ojemann, J.G.; Ransom, B.R.; Goldman, S.A.; Nedergaard, M. Uniquely hominid features of adult human astrocytes. J. Neurosci., 2009, 29(10), 3276-3287.
[http://dx.doi.org/10.1523/JNEUROSCI.4707-08.2009] [PMID: 19279265]
[239]
Monk, R.; Connor, B. Cell reprogramming to model Huntington’s disease: A comprehensive review. Cells, 2021, 10(7), 1565.
[http://dx.doi.org/10.3390/cells10071565] [PMID: 34206228]
[240]
Juopperi, T.A.; Kim, W.R.; Chiang, C.H.; Yu, H.; Margolis, R.L.; Ross, C.A.; Ming, G.L.; Song, H. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol. Brain, 2012, 5, 17.
[http://dx.doi.org/10.1186/1756-6606-5-17] [PMID: 22613578]
[241]
Nagata, E.; Sawa, A.; Ross, C.A.; Snyder, S.H. Autophagosome-like vacuole formation in Huntington’s disease lymphoblasts. Neuroreport, 2004, 15(8), 1325-1328.
[http://dx.doi.org/10.1097/01.wnr.0000127073.66692.8f] [PMID: 15167559]
[242]
Martinez-Vicente, M.; Talloczy, Z.; Wong, E.; Tang, G.; Koga, H.; Kaushik, S.; de Vries, R.; Arias, E.; Harris, S.; Sulzer, D.; Cuervo, A.M. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat. Neurosci., 2010, 13(5), 567-576.
[http://dx.doi.org/10.1038/nn.2528] [PMID: 20383138]
[243]
Garcia, V.J.; Rushton, D.J.; Tom, C.M.; Allen, N.D.; Kemp, P.J.; Svendsen, C.N.; Mattis, V.B. Huntington’s disease patient-derived astrocytes display electrophysiological impairments and reduced neuronal support. Front. Neurosci., 2019, 13, 669.
[http://dx.doi.org/10.3389/fnins.2019.00669] [PMID: 31316341]
[244]
Park, H.J.; Jeon, J.; Choi, J.; Kim, J.Y.; Kim, H.S.; Huh, J.Y.; Goldman, S.A.; Song, J. Human iPSC-derived neural precursor cells differentiate into multiple cell types to delay disease progression following transplantation into YAC128 Huntington’s disease mouse model. Cell Prolif., 2021, 54(8)e13082
[http://dx.doi.org/10.1111/cpr.13082] [PMID: 34152047]
[245]
Mattson, M.P.; Camandola, S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest., 2001, 107(3), 247-254.
[http://dx.doi.org/10.1172/JCI11916] [PMID: 11160145]
[246]
Takano, H.; Gusella, J.F. The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neurosci., 2002, 3, 15.
[http://dx.doi.org/10.1186/1471-2202-3-15] [PMID: 12379151]
[247]
Marcora, E.; Kennedy, M.B. The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum. Mol. Genet., 2010, 19(22), 4373-4384.
[http://dx.doi.org/10.1093/hmg/ddq358] [PMID: 20739295]
[248]
Yu, Z.; Zhou, D.; Cheng, G.; Mattson, M.P. Neuroprotective role for the p50 subunit of NF-kappaB in an experimental model of Huntington’s disease. J. Mol. Neurosci., 2000, 15(1), 31-44.
[http://dx.doi.org/10.1385/JMN:15:1:31] [PMID: 11211235]
[249]
Khoshnan, A.; Ko, J.; Watkin, E.E.; Paige, L.A.; Reinhart, P.H.; Patterson, P.H. Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J. Neurosci., 2004, 24(37), 7999-8008.
[http://dx.doi.org/10.1523/JNEUROSCI.2675-04.2004] [PMID: 15371500]
[250]
Dresselhaus, E.C.; Meffert, M.K. Cellular specificity of NF-κB function in the nervous system. Front. Immunol., 2019, 10, 1043.
[http://dx.doi.org/10.3389/fimmu.2019.01043] [PMID: 31143184]
[251]
Khoshnan, A.; Sabbaugh, A.; Calamini, B.; Marinero, S.A.; Dunn, D.E.; Yoo, J.H.; Ko, J.; Lo, D.C.; Patterson, P.H. IKKβ and mutant huntingtin interactions regulate the expression of IL-34: implications for microglial-mediated neurodegeneration in HD. Hum. Mol. Genet., 2017, 26(21), 4267-4277.
[http://dx.doi.org/10.1093/hmg/ddx315] [PMID: 28973132]
[252]
Griffioen, K.; Mattson, M.P.; Okun, E. Deficiency of Toll-like receptors 2, 3 or 4 extends life expectancy in Huntington’s disease mice. Heliyon, 2018, 4(1)e00508
[http://dx.doi.org/10.1016/j.heliyon.2018.e00508] [PMID: 29560427]
[253]
Pérez-Rodríguez, M.J.; Ibarra-Sánchez, A.; Román-Figueroa, A.; Pérez-Severiano, F.; González-Espinosa, C. Mutant Huntingtin affects toll-like receptor 4 intracellular trafficking and cytokine production in mast cells. J. Neuroinflammation, 2020, 17(1), 95.
[http://dx.doi.org/10.1186/s12974-020-01758-9] [PMID: 32220257]
[254]
Gonzalez-Reyes, R.E.; Rubiano, M.G. Astrocyte’s RAGE: More than just a question of mood. Cent. Nerv. Syst. Agents Med. Chem., 2018, 18(1), 39-48.
[http://dx.doi.org/10.2174/1871524916999160505105121] [PMID: 27149992]
[255]
Ma, L.; Nicholson, L.F. Expression of the receptor for advanced glycation end products in Huntington’s disease caudate nucleus. Brain Res., 2004, 1018(1), 10-17.
[http://dx.doi.org/10.1016/j.brainres.2004.05.052] [PMID: 15262199]
[256]
Kim, J.; Waldvogel, H.J.; Faull, R.L.; Curtis, M.A.; Nicholson, L.F. The RAGE receptor and its ligands are highly expressed in astrocytes in a grade-dependant manner in the striatum and subependymal layer in Huntington’s disease. J. Neurochem., 2015, 134(5), 927-942.
[http://dx.doi.org/10.1111/jnc.13178] [PMID: 26011179]
[257]
Anzilotti, S.; Giampà, C.; Laurenti, D.; Perrone, L.; Bernardi, G.; Melone, M.A.; Fusco, F.R. Immunohistochemical localization of receptor for advanced glycation end (RAGE) products in the R6/2 mouse model of Huntington’s disease. Brain Res. Bull., 2012, 87(2-3), 350-358.
[http://dx.doi.org/10.1016/j.brainresbull.2011.01.009] [PMID: 21272617]
[258]
Faraco, G.; Fossati, S.; Bianchi, M.E.; Patrone, M.; Pedrazzi, M.; Sparatore, B.; Moroni, F.; Chiarugi, A. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J. Neurochem., 2007, 103(2), 590-603.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04788.x] [PMID: 17666052]
[259]
Hayakawa, K.; Arai, K.; Lo, E.H. Role of ERK map kinase and CRM1 in IL-1beta-stimulated release of HMGB1 from cortical astrocytes. Glia, 2010, 58(8), 1007-1015.
[PMID: 20222144]
[260]
Min, H.J.; Ko, E.A.; Wu, J.; Kim, E.S.; Kwon, M.K.; Kwak, M.S.; Choi, J.E.; Lee, J.E.; Shin, J.S. Chaperone-like activity of high-mobility group box 1 protein and its role in reducing the formation of polyglutamine aggregates. J. Immunol., 2013, 190(4), 1797-1806.
[http://dx.doi.org/10.4049/jimmunol.1202472] [PMID: 23303669]
[261]
Qi, L.; Sun, X.; Li, F.E.; Zhu, B.S.; Braun, F.K.; Liu, Z.Q.; Tang, J.L.; Wu, C.; Xu, F.; Wang, H.H.; Velasquez, L.A.; Zhao, K.; Lei, F.R.; Zhang, J.G.; Shen, Y.T.; Zou, J.X.; Meng, H.M.; An, G.L.; Yang, L.; Zhang, X.D. HMGB1 Promotes mitochondrial dysfunction-triggered striatal neurodegeneration via autophagy and apoptosis activation. PLoS One, 2015, 10(11)e0142901
[http://dx.doi.org/10.1371/journal.pone.0142901] [PMID: 26565401]
[262]
Son, S.; Bowie, L.E.; Maiuri, T.; Hung, C.L.K.; Desmond, C.R.; Xia, J.; Truant, R. High-mobility group box 1 links sensing of reactive oxygen species by huntingtin to its nuclear entry. J. Biol. Chem., 2019, 294(6), 1915-1923.
[http://dx.doi.org/10.1074/jbc.RA117.001440] [PMID: 30538129]
[263]
Qi, M.L.; Tagawa, K.; Enokido, Y.; Yoshimura, N.; Wada, Y.; Watase, K.; Ishiura, S.; Kanazawa, I.; Botas, J.; Saitoe, M.; Wanker, E.E.; Okazawa, H. Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nat. Cell Biol., 2007, 9(4), 402-414.
[http://dx.doi.org/10.1038/ncb1553] [PMID: 17384639]
[264]
Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The role of interleukin-6 signaling in nervous tissue. Biochim. Biophys. Acta, 2016, 1863(6 Pt A), 1218-1227.
[http://dx.doi.org/10.1016/j.bbamcr.2016.03.018] [PMID: 27016501]
[265]
Wertz, M.H.; Pineda, S.S.; Lee, H.; Kulicke, R.; Kellis, M.; Heiman, M. Interleukin-6 deficiency exacerbates Huntington’s disease model phenotypes. Mol. Neurodegener., 2020, 15(1), 29.
[http://dx.doi.org/10.1186/s13024-020-00379-3] [PMID: 32448329]
[266]
Bensadoun, J.C.; de Almeida, L.P.; Dréano, M.; Aebischer, P.; Déglon, N. Neuroprotective effect of interleukin-6 and IL6/IL6R chimera in the quinolinic acid rat model of Huntington’s syndrome. Eur. J. Neurosci., 2001, 14(11), 1753-1761.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01802.x] [PMID: 11860469]
[267]
Gaidt, M.M.; Ebert, T.S.; Chauhan, D.; Schmidt, T.; Schmid-Burgk, J.L.; Rapino, F.; Robertson, A.A.; Cooper, M.A.; Graf, T.; Hornung, V. Human monocytes engage an alternative inflammasome pathway. Immunity, 2016, 44(4), 833-846.
[http://dx.doi.org/10.1016/j.immuni.2016.01.012] [PMID: 27037191]
[268]
Wang, C.E.; Li, S.; Li, X.J. Lack of interleukin-1 type 1 receptor enhances the accumulation of mutant huntingtin in the striatum and exacerbates the neurological phenotypes of Huntington’s disease mice. Mol. Brain, 2010, 3, 33.
[http://dx.doi.org/10.1186/1756-6606-3-33] [PMID: 21044321]
[269]
Martin, D.D.O.; Schmidt, M.E.; Nguyen, Y.T.; Lazic, N.; Hayden, M.R. Identification of a novel caspase cleavage site in huntingtin that regulates mutant huntingtin clearance. FASEB J., 2019, 33(3), 3190-3197.
[http://dx.doi.org/10.1096/fj.201701510RRR] [PMID: 30423259]
[270]
Clark, I.A.; Vissel, B. A neurologist’s guide to TNF biology and to the principles behind the therapeutic removal of excess TNF in disease. Neural Plast., 2015, 2015358263
[http://dx.doi.org/10.1155/2015/358263] [PMID: 26221543]
[271]
Olmos, G.; Lladó, J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm., 2014, 2014861231
[http://dx.doi.org/10.1155/2014/861231] [PMID: 24966471]
[272]
Alto, L.T.; Chen, X.; Ruhn, K.A.; Treviño, I.; Tansey, M.G. AAV-dominant negative tumor necrosis factor (DN-TNF) gene transfer to the striatum does not rescue medium spiny neurons in the YAC128 mouse model of Huntington’s disease. PLoS One, 2014, 9(5)e96544
[http://dx.doi.org/10.1371/journal.pone.0096544] [PMID: 24824433]
[273]
Majumder, S.; Sreedhara, S.R.; Banerjee, S.; Chatterjee, S. TNF α signaling beholds thalidomide saga: a review of mechanistic role of TNF-α signaling under thalidomide. Curr. Top. Med. Chem., 2012, 12(13), 1456-1467.
[http://dx.doi.org/10.2174/156802612801784443] [PMID: 22650377]
[274]
Tobinick, E. Rapid improvement of chronic stroke deficits after perispinal etanercept: three consecutive cases. CNS Drugs, 2011, 25(2), 145-155.
[http://dx.doi.org/10.2165/11588400-000000000-00000] [PMID: 21254790]
[275]
Ralph, S.J.; Weissenberger, A.; Bonev, V.; King, L.D.; Bonham, M.D.; Ferguson, S.; Smith, A.D.; Goodman-Jones, A.A.; Espinet, A.J. Phase I/II parallel double-blind randomized controlled clinical trial of perispinal etanercept for chronic stroke: improved mobility and pain alleviation. Expert Opin. Investig. Drugs, 2020, 29(3), 311-326.
[http://dx.doi.org/10.1080/13543784.2020.1709822] [PMID: 31899977]
[276]
Tabrizi, S.J.; Flower, M.D.; Ross, C.A.; Wild, E.J. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol., 2020, 16(10), 529-546.
[http://dx.doi.org/10.1038/s41582-020-0389-4] [PMID: 32796930]
[277]
Valdeolivas, S.; Sagredo, O.; Delgado, M.; Pozo, M.A.; Fernández-Ruiz, J. Effects of a sativex-like combination of phytocannabinoids on disease progression in R6/2 mice, an experimental model of Huntington’s disease. Int. J. Mol. Sci., 2017, 18(4)E684
[http://dx.doi.org/10.3390/ijms18040684] [PMID: 28333097]
[278]
López-Sendón Moreno, J.L.; García Caldentey, J.; Trigo Cubillo, P.; Ruiz Romero, C.; García Ribas, G.; Alonso Arias, M.A.; García de Yébenes, M.J.; Tolón, R.M.; Galve-Roperh, I.; Sagredo, O.; Valdeolivas, S.; Resel, E.; Ortega-Gutierrez, S.; García-Bermejo, M.L.; Fernández Ruiz, J.; Guzmán, M.; García de Yébenes Prous, J. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J. Neurol., 2016, 263(7), 1390-1400.
[http://dx.doi.org/10.1007/s00415-016-8145-9] [PMID: 27159993]
[279]
Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: far beyond an antibiotic. Br. J. Pharmacol., 2013, 169(2), 337-352.
[http://dx.doi.org/10.1111/bph.12139] [PMID: 23441623]
[280]
A futility study of minocycline in Huntington’s disease. Mov. Disord., 2010, 25(13), 2219-2224.
[http://dx.doi.org/10.1002/mds.23236] [PMID: 20721920]
[281]
Brück, W.; Pförtner, R.; Pham, T.; Zhang, J.; Hayardeny, L.; Piryatinsky, V.; Hanisch, U.K.; Regen, T.; van Rossum, D.; Brakelmann, L.; Hagemeier, K.; Kuhlmann, T.; Stadelmann, C.; John, G.R.; Kramann, N.; Wegner, C. Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol., 2012, 124(3), 411-424.
[http://dx.doi.org/10.1007/s00401-012-1009-1] [PMID: 22766690]
[282]
Thöne, J.; Ellrichmann, G.; Seubert, S.; Peruga, I.; Lee, D.H.; Conrad, R.; Hayardeny, L.; Comi, G.; Wiese, S.; Linker, R.A.; Gold, R. Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am. J. Pathol., 2012, 180(1), 267-274.
[http://dx.doi.org/10.1016/j.ajpath.2011.09.037] [PMID: 22152994]
[283]
Dobson, L.; Träger, U.; Farmer, R.; Hayardeny, L.; Loupe, P.; Hayden, M.R.; Tabrizi, S.J. Laquinimod dampens hyperactive cytokine production in Huntington’s disease patient myeloid cells. J. Neurochem., 2016, 137(5), 782-794.
[http://dx.doi.org/10.1111/jnc.13553] [PMID: 26823290]
[284]
Ellrichmann, G.; Blusch, A.; Fatoba, O.; Brunner, J.; Reick, C.; Hayardeny, L.; Hayden, M.; Sehr, D.; Winklhofer, K.F.; Saft, C.; Gold, R. Laquinimod treatment in the R6/2 mouse model. Sci. Rep., 2017, 7(1), 4947.
[http://dx.doi.org/10.1038/s41598-017-04990-1] [PMID: 28694434]
[285]
Giraudon, P.; Vincent, P.; Vuaillat, C.; Verlaeten, O.; Cartier, L.; Marie-Cardine, A.; Mutin, M.; Bensussan, A.; Belin, M.F.; Boumsell, L. Semaphorin CD100 from activated T lymphocytes induces process extension collapse in oligodendrocytes and death of immature neural cells. J. Immunol., 2004, 172(2), 1246-1255.
[http://dx.doi.org/10.4049/jimmunol.172.2.1246] [PMID: 14707103]
[286]
Yamaguchi, W.; Tamai, R.; Kageura, M.; Furuyama, T.; Inagaki, S. Sema4D as an inhibitory regulator in oligodendrocyte development. Mol. Cell. Neurosci., 2012, 49(3), 290-299.
[http://dx.doi.org/10.1016/j.mcn.2011.12.004] [PMID: 22198439]
[287]
Carulli, D.; de Winter, F.; Verhaagen, J. Semaphorins in adult nervous system plasticity and disease. Front. Synaptic Neurosci., 2021, 13672891
[http://dx.doi.org/10.3389/fnsyn.2021.672891] [PMID: 34045951]
[288]
Southwell, A.L.; Franciosi, S.; Villanueva, E.B.; Xie, Y.; Winter, L.A.; Veeraraghavan, J.; Jonason, A.; Felczak, B.; Zhang, W.; Kovalik, V.; Waltl, S.; Hall, G.; Pouladi, M.A.; Smith, E.S.; Bowers, W.J.; Zauderer, M.; Hayden, M.R. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol. Dis., 2015, 76, 46-56.
[http://dx.doi.org/10.1016/j.nbd.2015.01.002] [PMID: 25662335]
[289]
2021. Vaccinex. Available from: https://www.vaccinex.com/pipeline/
[290]
Kwon, D. Failure of genetic therapies for Huntington’s devastates community. Nature, 2021, 593(7858), 180.
[http://dx.doi.org/10.1038/d41586-021-01177-7] [PMID: 33963316]
[291]
Fatoba, O.; Ohtake, Y.; Itokazu, T.; Yamashita, T. Immunotherapies in Huntington’s disease and α-Synucleinopathies. Front. Immunol., 2020, 11, 337.
[http://dx.doi.org/10.3389/fimmu.2020.00337] [PMID: 32161599]
[292]
Calabrese, E.J.; Bhatia, T.N.; Calabrese, V.; Dhawan, G.; Giordano, J.; Hanekamp, Y.N.; Kapoor, R.; Kozumbo, W.J.; Leak, R.K. Cytotoxicity models of Huntington’s disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacol. Res., 2019, 150104371
[http://dx.doi.org/10.1016/j.phrs.2019.104371] [PMID: 31415915]
[293]
Burrus, C.J.; McKinstry, S.U.; Kim, N.; Ozlu, M.I.; Santoki, A.V.; Fang, F.Y.; Ma, A.; Karadeniz, Y.B.; Worthington, A.K.; Dragatsis, I.; Zeitlin, S.; Yin, H.H.; Eroglu, C. Striatal projection neurons require huntingtin for synaptic connectivity and survival. Cell Rep., 2020, 30(3), 642-657.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.12.069] [PMID: 31968243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy