Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Interaction Influence of Contact Time and pH on Cobalt Retention by Carbon Nanotubes Bearing Various Loads of TiO2 and Fe3O4

Author(s): Ismail Fasfous*, Amjad El-Sheikh, Anas Awwad, Yahya Al-Degs and Jamal Dawoud

Volume 18, Issue 4, 2022

Published on: 30 December, 2021

Page: [483 - 494] Pages: 12

DOI: 10.2174/1573411017666211021145844

Price: $65

Abstract

Background: Nanomaterials have facilitated remarkable advances in the remediation of many environmental problems. A few studies have tackled the removal of Co (II) from aqueous solutions using nanomaterials. Herein, we studied the retention kinetics of cobalt species on carbon nanotubes (CNTs) bearing different amounts of TiO2 and Fe3O4 nanomaterials individually.

Methods: CNTs and their TiO2/Fe3O4-modified nanomaterials were well characterized. Cobalt retention by these adsorbents was investigated considering different influencing factors such as Co (II) content, solution pH, and time. The kinetic data were fitted with pseudo-first-order, pseudosecond- order rate models, and intra-particle diffusion models for better elucidation of the mechanism of Co retention.

Results: XRD evidenced the formation of TiO2 and Fe3O4. High loads of both oxides were needed for higher and faster Co retention by CNTs. Co retention capacity increased with increasing the solution pH. The pseudo-second-order model presented the kinetics of Co retention at 30 oC, and 48% of available capacity was attained within the first hour of interaction by CNT-TiO2 and with a moderate S/L ratio of 0.5 g/L. Co retention was increased with the amount of oxide to reach a maximum value of 16. 40 mg/g (90.2% TiO2) and 13.60 mg/g (48.2% Fe3O4). The Jovanović equilibrium model predicted the maximum retention values as the nearest to the experimental ones.

Conclusion: The potential of CNT-Fe3O4/TiO2 nanomaterials has been successfully demonstrated for the removal of cobalt, which makes them highly attractive and cost-effective adsorbents for wastewater treatment. The reported retention and removal rate values were relatively better than those seen in the literature. Loading different active oxides by CNTs is an interesting research area as selective adsorbents can be fabricated with affordable experimental costs.

Keywords: Adsorption, kinetics, titanium dioxide, magnetite, nanomaterials, cobalt retention.

Graphical Abstract
[1]
Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. A review of potentially low-cost sorbents for heavy metals. Water Res., 1999, 33(11), 2469-2479.
[http://dx.doi.org/10.1016/S0043-1354(98)00475-8]
[2]
Navarro, R.R.; Wada, S.; Tatsumi, K. Heavy metal precipitation by polycation-polyanion complex of PEI and its phosphonomethylated derivative. J. Hazard. Mater., 2005, 123(1-3), 203-209.
[http://dx.doi.org/10.1016/j.jhazmat.2005.03.048] [PMID: 15925445]
[3]
Kraus, A.; Jainae, K.; Unob, F.; Sukpirom, N. Synthesis of MPTS-modified cobalt ferrite nanoparticles and their adsorption properties in relation to Au(III). J. Colloid Interface Sci., 2009, 338(2), 359-365.
[http://dx.doi.org/10.1016/j.jcis.2009.06.045] [PMID: 19647836]
[4]
Zamboulis, D.; Peleka, F.; Lazaridis, N.; Matis, K. Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J. Chem. Technol. Biotechnol., 2011, 86, 335-344.
[http://dx.doi.org/10.1002/jctb.2552]
[5]
Krishnan, K.A.; Anirudhan, T.S. Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon. Chem. Eng. J., 2008, 137(2), 257-264.
[http://dx.doi.org/10.1016/j.cej.2007.04.029]
[6]
Abbas, M.; Kaddour, S.; Trari, M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng. Chem., 2014, 20(3), 745-751.
[http://dx.doi.org/10.1016/j.jiec.2013.06.030]
[7]
Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater., 2003, 97(1-3), 219-243.
[http://dx.doi.org/10.1016/S0304-3894(02)00263-7] [PMID: 12573840]
[8]
Pyrzyńska, K.; Bystrzejewski, M. Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2010, 362(1), 102-109.
[http://dx.doi.org/10.1016/j.colsurfa.2010.03.047]
[9]
Stafiej, A.; Pyrzynska, K. Adsorption of heavy metal ions with carbon nanotubes. Separ. Purif. Tech., 2007, 58(1), 49-52.
[http://dx.doi.org/10.1016/j.seppur.2007.07.008]
[10]
Ali, I. New generation adsorbents for water treatment. Chem. Rev., 2012, 112(10), 5073-5091.
[http://dx.doi.org/10.1021/cr300133d] [PMID: 22731247]
[11]
Mauter, M.S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 2008, 42(16), 5843-5859.
[http://dx.doi.org/10.1021/es8006904] [PMID: 18767635]
[12]
Krishnamurthy, G.; Agarwal, S. Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene. Chem. Pap., 2013, 67(11), 1396-1403.
[http://dx.doi.org/10.2478/s11696-013-0397-6]
[13]
Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J. Water Process Eng., 2020, 33101038
[http://dx.doi.org/10.1016/j.jwpe.2019.101038]
[14]
Kumar, R.; Khan, M.A.; Haq, N. Application of carbon nanotubes in heavy metals remediation. Crit. Rev. Environ. Sci. Technol., 2014, 44(9), 1000-1035.
[http://dx.doi.org/10.1080/10643389.2012.741314]
[15]
Gupta, V.K.; Agarwal, S.; Saleh, T.A. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater., 2011, 185(1), 17-23.
[http://dx.doi.org/10.1016/j.jhazmat.2010.08.053] [PMID: 20888691]
[16]
Rao, G.P.; Lu, C.; Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separ. Purif. Tech., 2007, 58(1), 224-231.
[http://dx.doi.org/10.1016/j.seppur.2006.12.006]
[17]
Kosa, S.A.; Al-Zhrani, G.; Abdel Salam, M. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem. Eng. J., 2012, 181-182, 159-168.
[http://dx.doi.org/10.1016/j.cej.2011.11.044]
[18]
Zhao, X.; Jia, Q.; Song, N.; Zhou, W.; Li, Y. Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: Kinetics, thermodynamics, and isotherms. J. Chem. Eng. Data, 2010, 55(10), 4428-4433.
[http://dx.doi.org/10.1021/je100586r]
[19]
Asmaly, H.A.; Abussaud, B. Ihsanullah, Saleh TA, Gupta VK, Atieh MA. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol. J. Saudi Chem. Soc., 2015, 19(5), 511-520.
[http://dx.doi.org/10.1016/j.jscs.2015.06.002]
[20]
Wang, Q.; Li, J.; Chen, C.; Ren, X.; Hu, J.; Wang, X. Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chem. Eng. J., 2011, 174(1), 126-133.
[http://dx.doi.org/10.1016/j.cej.2011.08.059]
[21]
Wang, S.; Zhou, S. Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO(2) under UV and visible-light irradiation. J. Hazard. Mater., 2011, 185(1), 77-85.
[http://dx.doi.org/10.1016/j.jhazmat.2010.08.125] [PMID: 20934250]
[22]
Dehghani, M.H.; Yetilmezsoy, K.; Salari, M.; Heidarinejad, Z.; Yousefi, M.; Sillanp, M. Adsorptive removal of cobalt(II) from aqueous solutions using multi-walled carbon nanotubes and Î3-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq., 2019, 299112154
[http://dx.doi.org/10.1016/j.molliq.2019.112154]
[23]
Tavallali, H.; Malekzadeh, H.; Karimi, M.A.; Payehghadr, M.; Deilamy-Rad, G.; Tabandeh, M. Chemically modified multiwalled carbon nanotubes as efficient and selective sorbent for separation and preconcentration of trace amount of Co(II), Cd(II), Pb(II), and Pd(II). Arab. J. Chem., 2019, 12(7), 1487-1495.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.034]
[24]
Eskandarpour, M.; Jamshidi, P.; Moghaddam, M.R.; Ghasmei, J.B.; Shemirani, F. Developing a highly selective method for preconcentration and determination of cobalt in water and nut samples using 1-(2-pyridylazo)-2-naphthol and UV-visible spectroscopy. J. Sci. Food Agric., 2020, 100(5), 2272-2279.
[http://dx.doi.org/10.1002/jsfa.10257] [PMID: 31930504]
[25]
Fasfous, I.; El-Sheikh, A.; Awwad, A.; Al-Degs, Y.; Fayyoumi, E.; Dawoud, J. Factorial investigation of cobalt retention by Ti and Fe oxides-modified carbon nanotubes: Multivariate against univariate analysis. Front Chem., 2021, 9(442)690420
[http://dx.doi.org/10.3389/fchem.2021.690420] [PMID: 34222198]
[26]
Montes de Oca-Palma, R. Solache-RÃos M, Jiménez-Reyes M, GarcÃa-Sánchez JJ, Almazán-Sánchez PT. Adsorption of cobalt by using inorganic components of sediment samples from water bodies. Int. J. Sediment Res., 2021, 36(4), 524-531.
[http://dx.doi.org/10.1016/j.ijsrc.2020.11.003]
[27]
Lee, P-L.; Chiu, Y-K.; Sun, Y-C.; Ling, Y-C. Synthesis of a hybrid material consisting of magnetic iron-oxide nanoparticles and carbon nanotubes as a gas adsorbent. Carbon, 2010, 48(5), 1397-1404.
[http://dx.doi.org/10.1016/j.carbon.2009.12.030]
[28]
Gao, B.; Chen, G.Z.; Li, Puma G. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity. Appl. Catal. B, 2009, 89(3-4), 503-509.
[http://dx.doi.org/10.1016/j.apcatb.2009.01.009]
[29]
El-Sheikh, A.H. Effect of chemical treatment of multi-walled carbon nanotubes with various oxidizing agents on its preconcentration performance of some metals. Jordan J. Chem., 2008, 3(3), 12.
[30]
Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 1999, 37(8), 1215-1221.
[http://dx.doi.org/10.1016/S0008-6223(98)00317-0]
[31]
Faria, P.C.C.; Orfão, J.J.M.; Pereira, M.F.R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res., 2004, 38(8), 2043-2052.
[http://dx.doi.org/10.1016/j.watres.2004.01.034] [PMID: 15087185]
[32]
Lagergren, S. Zur Theorie der Sogenannten Adsorption Gelöster Stoffe. K. Sven. Vetensk. Akad. Handl., 1898, 24(4), 39.
[33]
Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J., 1998, 70(2), 115-124.
[http://dx.doi.org/10.1016/S0923-0467(98)00076-1]
[34]
Walter, J.; Weber, J.C.M. Kinetics of adsorption on carbon from solution J Sanit Eng Div. Proc. Am. Soc. Civ. Eng., 1963, 89(2), 30.
[35]
Wu, F-C.; Tseng, R-L.; Juang, R-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J., 2009, 153(1), 1-8.
[http://dx.doi.org/10.1016/j.cej.2009.04.042]
[36]
Allen, S.J.; McKay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci., 2004, 280(2), 322-333.
[http://dx.doi.org/10.1016/j.jcis.2004.08.078] [PMID: 15533404]
[37]
Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and plantinum. J. Am. Chem. Soc., 1918, 40(9), 1361-1403.
[http://dx.doi.org/10.1021/ja02242a004]
[38]
Freundlich, H. Über die adsorption in lö sungen (Adsorption in solution). Z. Phys. Chem., 1906, 75, 87.
[39]
El Qada, E.N.; Allen, S.J.; Walker, G.M. Adsorption of basic dyes from aqueous solution onto activated carbons. Chem. Eng. J., 2008, 135(3), 174-184.
[http://dx.doi.org/10.1016/j.cej.2007.02.023]
[40]
Jovanović, D.S. Physical adsorption of gases. Colloid Polym. Sci., 1969, 235(1), 1203-1213.
[41]
Rudzinkski, W.; Wojciechowski, B.W. On the Jovanovic model of adsorption. Colloid Polym. Sci., 1977, 255(11), 1086-1097.
[http://dx.doi.org/10.1007/BF01549895]
[42]
Brereton, R.G. Applied Chemometrics for Scientists; John Wiley & Sons Ltd: England, 2007.
[http://dx.doi.org/10.1002/9780470057780]
[43]
Zhang, P.; Mo, Z.; Han, L.; Wang, Y.; Zhao, G.; Zhang, C. Magnetic recyclable TiO2/multi-walled carbon nanotube nanocomposite: Synthesis, characterization and enhanced photocatalytic activity. J. Mol. Catal. Chem., 2015, 402, 17-22.
[http://dx.doi.org/10.1016/j.molcata.2015.03.005]
[44]
Oliveira, L.C.A.; Rios, R.V.R.A.; Fabris, J.D.; Garg, V.; Sapag, K.; Lago, R.M. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon, 2002, 40(12), 2177-2183.
[http://dx.doi.org/10.1016/S0008-6223(02)00076-3]
[45]
Myglovets, M.; Poddubnaya, O.I.; Sevastyanova, O.; Lindström, M.E.; Gawdzik, B.; Sobiesiak, M. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon, 2014, 80(Suppl. C), 771-783.
[http://dx.doi.org/10.1016/j.carbon.2014.09.032]
[46]
Do, D.D. Adsorption Analysis: Equilibria and Kinetics; Yang, R.T., Ed.; Imperial College Press: London, 1998.
[http://dx.doi.org/10.1142/p111]
[47]
McKay, G.; Otterburn, M.S.; Sweeney, A.G. The removal of colour from effluent using various adsorbents-III. Silica: Rate processes. Water Res., 1980, 14(1), 15-20.
[http://dx.doi.org/10.1016/0043-1354(80)90037-8]
[48]
McKay, G. The adsorption of dyestuffs from aqueous solutions using activated carbon. iii. intraparticle diffusion processes. J. Chem. Technol. Biotechnol., 1983, 33(4), 196-204.
[http://dx.doi.org/10.1002/jctb.504330406]
[49]
Chen, H.; Li, J.; Shao, D.; Ren, X.; Wang, X. Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution. Chem. Eng. J., 2012, 210, 475-481.
[http://dx.doi.org/10.1016/j.cej.2012.08.082]
[50]
Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci., 1974, 47(3), 755-765.
[http://dx.doi.org/10.1016/0021-9797(74)90252-5]
[51]
Liu, Z.; Chen, L.; Zhang, Z.; Li, Y.; Dong, Y.; Sun, Y. Synthesis of multi-walled carbon nanotube–hydroxyapatite composites and its application in the sorption of Co(II) from aqueous solutions. J. Mol. Liq., 2013, 179, 46-53.
[http://dx.doi.org/10.1016/j.molliq.2012.12.011]
[52]
Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Colloids Surf. A Physicochem. Eng. Asp., 2016, 490(Suppl. C), 74-83..
[http://dx.doi.org/10.1016/j.colsurfa.2015.11.038]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy