Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Research Article

Role of P34S, G169R, R296C, and S486T Substitutions in Ligand Access and Catalysis for Cytochrome P450 2D6 Allelic Variants CYP2D6*14A and CYP2D6*14B

Author(s): Amelia Nathania Dong, Nafees Ahemad, Yan Pan, Uma Devi Palanisamy, Beow Chin Yiap and Chin Eng Ong*

Volume 15, Issue 1, 2022

Published on: 26 April, 2022

Page: [51 - 63] Pages: 13

DOI: 10.2174/1872312815666220113125232

Price: $65

Abstract

Background: Genetic polymorphism of cytochrome P450 (CYP) contributes to variability in drug metabolism, clearance, and response. This study aimed to investigate the functional and molecular basis for altered ligand binding and catalysis in CYP2D6*14A and CYP2D6*14B, two unique alleles common in the Asian population.

Methods: CYP proteins expressed in Escherichia coli were studied using the substrate 3-cyano-7- ethoxycoumarin (CEC) and inhibitor probes (quinidine, fluoxetine, paroxetine, terbinafine) in the enzyme assay. Computer modelling was additionally used to create three-dimensional structures of the CYP2D6*14 variants.

Results: Kinetics data indicated significantly reduced intrinsic clearance in CYP2D6*14 variants, suggesting that P34S, G169R, R296C, and S486T substitutions worked cooperatively to alter the conformation of the active site that negatively impacted the deethylase activity of CYP2D6. For the inhibition studies, IC50 values decreased in quinidine, paroxetine, and terbinafine but increased in fluoxetine, suggesting a varied ligand-specific susceptibility to inhibition. Molecular docking further demonstrated the role of P34S and R296C in altering access channel dimensions, thereby affecting ligand access and binding and subsequently resulting in varied inhibition potencies.

Conclusion: In summary, the differential selectivity of CYP2D6*14 variants for the ligands (substrate and inhibitor) was governed by the alteration of the active site and access channel architecture induced by the natural mutations found in the alleles.

Keywords: Cytochrome P450, CYP2D6*14, enzyme assay, molecular docking, polymorphism, site-directed mutagenesis.

Graphical Abstract
[1]
Guengerich, F.P. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicol. Res., 2020, 37(1), 1-23.
[http://dx.doi.org/10.1007/s43188-020-00056-z] [PMID: 32837681]
[2]
Di Nardo, G.; Gilardi, G. Natural compounds as pharmaceuticals: The key role of cytochromes P450 reactivity. Trends Biochem. Sci., 2020, 45(6), 511-525.
[http://dx.doi.org/10.1016/j.tibs.2020.03.004] [PMID: 32413326]
[3]
Sychev, D.A.; Ashraf, G.M.; Svistunov, A.A.; Maksimov, M.L.; Tarasov, V.V.; Chubarev, V.N.; Otdelenov, V.A.; Denisenko, N.P.; Barreto, G.E.; Aliev, G. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des. Devel. Ther., 2018, 12, 1147-1156.
[http://dx.doi.org/10.2147/DDDT.S149069] [PMID: 29780235]
[4]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[5]
Gaedigk, A.; Whirl-Carrillo, M.; Pratt, V.M.; Miller, N.A.; Klein, T.E. PharmVar and the landscape of pharmacogenetic resources. Clin. Pharmacol. Ther., 2020, 107(1), 43-46.
[http://dx.doi.org/10.1002/cpt.1654] [PMID: 31758698]
[6]
Ji, L.; Pan, S.; Marti-Jaun, J.; Hänseler, E.; Rentsch, K.; Hersberger, M. Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *14B allele in mainland Chinese. Clin. Chem., 2002, 48(7), 983-988.
[http://dx.doi.org/10.1093/clinchem/48.7.983] [PMID: 12089164]
[7]
Wang, S.L.; Huang, J.D.; Lai, M.D.; Liu, B.H.; Lai, M.L. Molecular basis of genetic variation in debrisoquin hydroxylation in Chinese subjects: polymorphism in RFLP and DNA sequence of CYP2D6. Clin. Pharmacol. Ther., 1993, 53(4), 410-418.
[http://dx.doi.org/10.1038/clpt.1993.44] [PMID: 8097442]
[8]
Wang, S.L.; Lai, M.D.; Huang, J.D. G169R mutation diminishes the metabolic activity of CYP2D6 in Chinese. Drug Metab. Dispos., 1999, 27(3), 385-388.
[PMID: 10064570]
[9]
Kubota, T.; Yamaura, Y.; Ohkawa, N.; Hara, H.; Chiba, K. Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O-demethylation in different CYP2D6 genotypes. Br. J. Clin. Pharmacol., 2000, 50(1), 31-34.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00209.x] [PMID: 10886115]
[10]
Cai, W.M.; Chen, B.; Zhang, W.X. Frequency of CYP2D6*10 and *14 alleles and their influence on the metabolic activity of CYP2D6 in a healthy Chinese population. Clin. Pharmacol. Ther., 2007, 81(1), 95-98.
[http://dx.doi.org/10.1038/sj.clpt.6100015] [PMID: 17186005]
[11]
Al-Dosari, M.S.; Al-Jenoobi, F.I.; Alkharfy, K.M.; Alghamdi, A.M.; Bagulb, K.M.; Parvez, M.K.; Al-Mohizea, A.M.; Al-Muhsen, S.; Halwani, R. High prevalence of CYP2D6*41 (G2988A) allele in Saudi Arabians. Environ. Toxicol. Pharmacol., 2013, 36(3), 1063-1067.
[http://dx.doi.org/10.1016/j.etap.2013.09.008] [PMID: 24121619]
[12]
Sakuyama, K.; Sasaki, T.; Ujiie, S.; Obata, K.; Mizugaki, M.; Ishikawa, M.; Hiratsuka, M. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57). Drug Metab. Dispos., 2008, 36(12), 2460-2467.
[http://dx.doi.org/10.1124/dmd.108.023242] [PMID: 18784265]
[13]
Sachse, C.; Brockmöller, J.; Bauer, S.; Roots, I. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am. J. Hum. Genet., 1997, 60(2), 284-295.
[PMID: 9012401]
[14]
Tharanga, T.D.; Jinadasa, C.M.; Risama, M.F.; Galappatthy, P.; Jayakody, R.L.; Dissanayake, V.H. Genetic variants in the cytochrome P450 2D6 gene in the Sri Lankan population. Indian J. Hum. Genet., 2013, 19(4), 392-396.
[http://dx.doi.org/10.4103/0971-6866.124361] [PMID: 24497701]
[15]
Shiraishi, T.; Hosokawa, M.; Kobayashi, K.; Tainaka, H.; Yamaura, Y.; Taguchi, M.; Chiba, K. Effects of G169R and P34S substitutions produced by mutations of CYP2D6*14 on the functional properties of CYP2D6 expressed in V79 cells. Drug Metab. Dispos., 2002, 30(11), 1201-1205.
[http://dx.doi.org/10.1124/dmd.30.11.1201] [PMID: 12386125]
[16]
Pritchard, M.P.; Glancey, M.J.; Blake, J.A.R.; Gilham, D.E.; Burchell, B.; Wolf, C.R.; Friedberg, T. Functional co-expression of CYP2D6 and human NADPH-cytochrome P450 reductase in Escherichia coli. Pharmacogenetics, 1998, 8(1), 33-42.
[http://dx.doi.org/10.1097/00008571-199802000-00005] [PMID: 9511179]
[17]
Omura, T.; Sato, R. The carbon monoxide-binding pigment of liver microsomes: 1. evidence for its hemoprotein nature. J. Biol. Chem., 1964, 239, 2370-2378.
[http://dx.doi.org/10.1016/S0021-9258(20)82244-3] [PMID: 14209971]
[18]
Phillips, A.H.; Langdon, R.G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J. Biol. Chem., 1962, 237, 2652-2660.
[http://dx.doi.org/10.1016/S0021-9258(19)73803-4] [PMID: 14486217]
[19]
Donato, M.T.; Jiménez, N.; Castell, J.V.; Gómez-Lechón, M.J. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos., 2004, 32(7), 699-706.
[http://dx.doi.org/10.1124/dmd.32.7.699] [PMID: 15205384]
[20]
Mo, S.L.; Liu, W.F.; Li, C.G.; Zhou, Z.W.; Luo, H.B.; Chew, H.; Liang, J.; Zhou, S.F. Pharmacophore, QSAR, and binding mode studies of substrates of human cytochrome P450 2D6 (CYP2D6) using molecular docking and virtual mutations and an application to chinese herbal medicine screening. Curr. Pharm. Biotechnol., 2012, 13(9), 1640-1704.
[http://dx.doi.org/10.2174/138920112800958779] [PMID: 22039821]
[21]
Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model., 2009, 49(2), 444-460.
[http://dx.doi.org/10.1021/ci800293n] [PMID: 19434845]
[22]
Gotoh, O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem., 1992, 267(1), 83-90.
[http://dx.doi.org/10.1016/S0021-9258(18)48462-1] [PMID: 1730627]
[23]
Poulos, T.L. Cytochrome P450 flexibility. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13121-13122.
[http://dx.doi.org/10.1073/pnas.2336095100] [PMID: 14597705]
[24]
de Waal, P.W.; Sunden, K.F.; Furge, L.L. Molecular dynamics of CYP2D6 polymorphisms in the absence and presence of a mechanism-based inactivator reveals changes in local flexibility and dominant substrate access channels. PLoS One, 2014, 9(10), e108607.
[http://dx.doi.org/10.1371/journal.pone.0108607] [PMID: 25286176]
[25]
Fukuyoshi, S.; Kometani, M.; Watanabe, Y.; Hiratsuka, M.; Yamaotsu, N.; Hirono, S.; Manabe, N.; Takahashi, O.; Oda, A. Molecular dynamics simulations to investigate the influences of amino acid mutations on protein three-dimensional structures of cytochrome P450 2D6.1, 2, 10, 14A, 51 and 62. PLoS One, 2016, 11(4), e0152946.
[http://dx.doi.org/10.1371/journal.pone.0152946] [PMID: 27046024]
[26]
Cojocaru, V.; Winn, P.J.; Wade, R.C. The ins and outs of cytochrome P450s. Biochim. Biophys. Acta, 2007, 1770(3), 390-401.
[http://dx.doi.org/10.1016/j.bbagen.2006.07.005] [PMID: 16920266]
[27]
Keizers, P.H.; Van Dijk, B.R.; De Graaf, C.; Van Vugt-Lussenburg, B.M.; Vermeulen, N.P.; Commandeur, J.N. Metabolism of N-substituted 7-methoxy-4-(aminomethyl) -coumarins by cytochrome P450 2D6 mutants and the indication of additional substrate interaction points. Xenobiotica, 2006, 36(9), 763-771.
[http://dx.doi.org/10.1080/00498250600765325] [PMID: 16971342]
[28]
de Graaf, C.; Oostenbrink, C.; Keizers, P.H.; van Vugt-Lussenburg, B.M.; van Waterschoot, R.A.; Tschirret-Guth, R.A.; Commandeur, J.N.; Vermeulen, N.P. Molecular modeling-guided site-directed mutagenesis of cytochrome P450 2D6. Curr. Drug Metab., 2007, 8(1), 59-77.
[http://dx.doi.org/10.2174/138920007779315062] [PMID: 17266524]
[29]
Livezey, M.; Nagy, L.D.; Diffenderfer, L.E.; Arthur, E.J.; Hsi, D.J.; Holton, J.M.; Furge, L.L. Molecular analysis and modeling of inactivation of human CYP2D6 by four mechanism based inactivators. Drug Metab. Lett., 2012, 6(1), 7-14.
[http://dx.doi.org/10.2174/187231212800229318] [PMID: 22372551]
[30]
Wang, A.; Stout, C.D.; Zhang, Q.; Johnson, E.F. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J. Biol. Chem., 2015, 290(8), 5092-5104.
[http://dx.doi.org/10.1074/jbc.M114.627661] [PMID: 25555909]
[31]
Fukuda, T.; Nishida, Y.; Imaoka, S.; Hiroi, T.; Naohara, M.; Funae, Y.; Azuma, J. The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the low-expression but also by low affinity of CYP2D6. Arch. Biochem. Biophys., 2000, 380(2), 303-308.
[http://dx.doi.org/10.1006/abbi.2000.1936] [PMID: 10933885]
[32]
Zhou, Q.; Yu, X.M.; Lin, H.B.; Wang, L.; Yun, Q.Z.; Hu, S.N.; Wang, D.M. Genetic polymorphism, linkage disequilibrium, haplotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese. Pharmacogenomics J., 2009, 9(6), 380-394.
[http://dx.doi.org/10.1038/tpj.2009.31] [PMID: 19636337]
[33]
Cojocaru, V.; Balali-Mood, K.; Sansom, M.S.; Wade, R.C. Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLOS Comput. Biol., 2011, 7(8), e1002152.
[http://dx.doi.org/10.1371/journal.pcbi.1002152] [PMID: 21852944]
[34]
Berka, K.; Paloncýová, M.; Anzenbacher, P.; Otyepka, M. Behavior of human cytochromes P450 on lipid membranes. J. Phys. Chem. B, 2013, 117(39), 11556-11564.
[http://dx.doi.org/10.1021/jp4059559] [PMID: 23987570]
[35]
Šrejber, M.; Navrátilová, V.; Paloncýová, M.; Bazgier, V.; Berka, K.; Anzenbacher, P.; Otyepka, M. Membrane-attached mammalian cytochromes P450: An overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J. Inorg. Biochem., 2018, 183, 117-136.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.03.002] [PMID: 29653695]
[36]
Johansson, I.; Oscarson, M.; Yue, Q.Y.; Bertilsson, L.; Sjöqvist, F.; Ingelman-Sundberg, M. Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol. Pharmacol., 1994, 46(3), 452-459.
[PMID: 7935325]
[37]
Senda, C.; Yamaura, Y.; Kobayashi, K.; Fujii, H.; Minami, H.; Sasaki, Y.; Igarashi, T.; Chiba, K. Influence of the CYP2D6*10 allele on the metabolism of mexiletine by human liver microsomes. Br. J. Clin. Pharmacol., 2001, 52(1), 100-103.
[http://dx.doi.org/10.1046/j.0306-5251.2001.01411.x] [PMID: 11453897]
[38]
Yu, A.; Kneller, B.M.; Rettie, A.E.; Haining, R.L. Expression, purification, biochemical characterization, and comparative function of human cytochrome P450 2D6.1, 2D6.2, 2D6.10, and 2D6.17 allelic isoforms. J. Pharmacol. Exp. Ther., 2002, 303(3), 1291-1300.
[http://dx.doi.org/10.1124/jpet.102.039891] [PMID: 12438554]
[39]
Shen, H.; He, M.M.; Liu, H.; Wrighton, S.A.; Wang, L.; Guo, B.; Li, C. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab. Dispos., 2007, 35(8), 1292-1300.
[http://dx.doi.org/10.1124/dmd.107.015354] [PMID: 17470523]
[40]
Lewis, D.F. Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102 (P450bm3). Xenobiotica, 1995, 25(4), 333-366.
[http://dx.doi.org/10.3109/00498259509061857] [PMID: 7645302]
[41]
Oscarson, M.; Hidestrand, M.; Johansson, I.; Ingelman-Sundberg, M. A combination of mutations in the CYP2D6*17 (CYP2D6Z) allele causes alterations in enzyme function. Mol. Pharmacol., 1997, 52(6), 1034-1040.
[http://dx.doi.org/10.1124/mol.52.6.1034] [PMID: 9415713]
[42]
Rowland, P.; Blaney, F.E.; Smyth, M.G.; Jones, J.J.; Leydon, V.R.; Oxbrow, A.K.; Lewis, C.J.; Tennant, M.G.; Modi, S.; Eggleston, D.S.; Chenery, R.J.; Bridges, A.M. Crystal structure of human cytochrome P450 2D6. J. Biol. Chem., 2006, 281(11), 7614-7622.
[http://dx.doi.org/10.1074/jbc.M511232200] [PMID: 16352597]
[43]
Wang, A.; Savas, U.; Hsu, M.H.; Stout, C.D.; Johnson, E.F. Crystal structure of human cytochrome P450 2D6 with prinomastat bound. J. Biol. Chem., 2012, 287(14), 10834-10843.
[http://dx.doi.org/10.1074/jbc.M111.307918] [PMID: 22308038]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy