Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Polyphenols as the Potential Disease-modifying Therapy in Cancer

Author(s): Vladimir Rogovskii

Volume 22, Issue 13, 2022

Published on: 18 March, 2022

Page: [2385 - 2392] Pages: 8

DOI: 10.2174/1871520622666220201105204

Price: $65

Abstract

Background: Disease-modifying therapy in cancer can be defined as long-term treatment that has a beneficial outcome on the course of cancer, affecting the underlying pathophysiology of cancer. The anticancer potential of polyphenols is widely studied. However, there is a significant gap between experimental data obtained in vitro and in vitro and the current role of polyphenols in cancer therapy.

Objective: In this article, the reason for this inconsistency is discussed, which might be in the design of polyphenols clinical trials. The approach of long-term polyphenol disease-modifying therapy in cancer is encouraged.

Conclusion: The physiologic concentrations of polyphenols are not sufficient for reaching cytotoxic levels. Therefore, the immune modulation and effects on cancer signal transduction pathways should be considered in the design of polyphenol clinical trials. Such effects apparently can not cause the rapid regression of the disease. However, more likely, they can modulate the course of the disease, leading to favorable changes in the patient's condition in case of long-term treatment..

Keywords: polyphenols, flavonoids, cancer, disease-modifying therapy, inflammation, polyphenol trials.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in hu-man health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[3]
Vitelli-Storelli, F.; Rossi, M.; Pelucchi, C.; Rota, M.; Palli, D.; Ferraroni, M.; Lunet, N.; Morais, S.; López-Carrillo, L.; Zaridze, D.G.; Maximovich, D.; Rubín García, M.; Castaño-Vinyals, G.; Aragonés, N.; Garcia de la Hera, M.; Hernández-Ramírez, R.U.; Negri, E.; Bonzi, R.; Ward, M.H.; Lagiou, A.; La-giou, P.; López-Cervantes, M.; Boffetta, P.; Camargo, M.C.; Curado, M.P.; Zhang, Z.F.; Vioque, J.; La Vecchia, C.; Martín Sánchez, V. Polyphenol in-take and gastric cancer risk: findings from the stomach cancer pooling pro-ject (StoP). Cancers (Basel), 2020, 12(10), E3064.
[http://dx.doi.org/10.3390/cancers12103064] [PMID: 33092262]
[4]
Castro-Barquero, S.; Lamuela-Raventós, R.M.; Doménech, M.; Estruch, R. Relationship between mediterranean dietary polyphenol intake and obesi-ty. Nutrients, 2018, 10(10), E1523.
[http://dx.doi.org/10.3390/nu10101523] [PMID: 30336572]
[5]
Molina-Montes, E.; Salamanca-Fernández, E.; Garcia-Villanova, B.; Sánchez, M.J. The impact of plant-based dietary patterns on cancer-related outcomes: a rapid review and meta-analysis. Nutrients, 2020, 12(7), E2010.
[http://dx.doi.org/10.3390/nu12072010] [PMID: 32640737]
[6]
Leláková, V.; Šmejkal, K.; Jakubczyk, K.; Veselý, O.; Landa, P.; Václavík, J. Bobáľ, P.; Pížová, H.; Temml, V.; Steinacher, T.; Schuster, D.; Granica, S.; Hanáková, Z.; Hošek, J. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chem., 2019, 285, 431-440.
[http://dx.doi.org/10.1016/j.foodchem.2019.01.128] [PMID: 30797367]
[7]
Torkildsen, Ø.; Myhr, K.M.; Bø, L. Disease-modifying treatments for multi-ple sclerosis - a review of approved medications. Eur. J. Neurol., 2016, 23(Suppl. 1), 18-27.
[http://dx.doi.org/10.1111/ene.12883] [PMID: 26563094]
[8]
Melnikov, M.V.; Paschenkov, M.V.; Boyko, A.N. Dendritic cells in multiple sclerosis. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova., 2017, 117(2. Vyp. 2), 22-30.
[http://dx.doi.org/10.17116/jnevro20171172222-30] [PMID: 28617358]
[9]
Cummings, J.L. Defining and labeling disease-modifying treatments for Alzheimer’s disease. Alzheimers Dement., 2009, 5(5), 406-418.
[http://dx.doi.org/10.1016/j.jalz.2008.12.003] [PMID: 19751920]
[10]
Morant, A.V.; Jagalski, V.; Vestergaard, H.T. Labeling of disease-modifying therapies for neurodegenerative disorders. Front. Med. (Lausanne), 2019, 6, 223.
[http://dx.doi.org/10.3389/fmed.2019.00223] [PMID: 31681780]
[11]
Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun., 2020, 11(1), 3801.
[http://dx.doi.org/10.1038/s41467-020-17670-y] [PMID: 32732879]
[12]
Ding, S.; Jiang, H.; Fang, J. Regulation of immune function by polyphenols. J. Immunol. Res., 2018, 2018, 1264074.
[http://dx.doi.org/10.1155/2018/1264074] [PMID: 29850614]
[13]
Bose, S.; Panda, A.K.; Mukherjee, S.; Sa, G. Curcumin and tumor immune-editing: resurrecting the immune system. Cell Div., 2015, 10, 6.
[http://dx.doi.org/10.1186/s13008-015-0012-z] [PMID: 26464579]
[14]
Eleazu, C.; Eleazu, K.; Kalu, W. Management of benign prostatic hyperplas-ia: could dietary polyphenols be an alternative to existing therapies? Front. Pharmacol., 2017, 8, 234.
[http://dx.doi.org/10.3389/fphar.2017.00234] [PMID: 28503148]
[15]
Fedotcheva, T.A.; Matyushin, A.I.; Rzheznikov, V.M.; Shimanovskii, N.L. Antioxidant and cytoprotector properties of genistein - isoflavone with es-trogenic activity. Eksp. Klin. Farmakol., 2016, 79(12), 24-28.
[PMID: 29791099]
[16]
Rogovskii, V. Modulation of inflammation-induced tolerance in cancer. Front. Immunol., 2020, 11, 1180.
[http://dx.doi.org/10.3389/fimmu.2020.01180] [PMID: 32676076]
[17]
Jantan, I.; Haque, M.A.; Arshad, L.; Harikrishnan, H.; Septama, A.W.; Mohamed-Hussein, Z.A. Dietary polyphenols suppress chronic inflamma-tion by modulation of multiple inflammation-associated cell signaling pathways. J. Nutr. Biochem., 2021, 93, 108634.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108634] [PMID: 33794330]
[18]
Rogovskiĭ, V.S.; Shimanovskiĭ, N.L.; Matiushin, A.I. Antihypertensive and neuroprotective activity of quercetin and its derivatives. Eksp. Klin. Farmakol., 2012, 75(9), 37-41.
[PMID: 23156087]
[19]
Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int., 2015, 15, 106.
[http://dx.doi.org/10.1186/s12935-015-0260-7] [PMID: 26549987]
[20]
Willenberg, I.; Meschede, A.K.; Gueler, F.; Jang, M.S.; Shushakova, N.; Schebb, N.H. Food polyphenols fail to cause a biologically relevant reduc-tion of COX-2 activity. PLoS One, 2015, 10(10), e0139147.
[http://dx.doi.org/10.1371/journal.pone.0139147] [PMID: 26440517]
[21]
Aharoni, S.; Lati, Y.; Aviram, M.; Fuhrman, B. Pomegranate juice polyphe-nols induce a phenotypic switch in macrophage polarization favoring a M2 anti-inflammatory state. Biofactors, 2015, 41(1), 44-51.
[http://dx.doi.org/10.1002/biof.1199] [PMID: 25650983]
[22]
Dugo, L.; Belluomo, M.G.; Fanali, C.; Russo, M.; Cacciola, F.; Maccarrone, M.; Sardanelli, A.M. Effect of cocoa polyphenolic extract on macrophage polarization from proinflammatory M1 to anti-inflammatory M2 state. Oxid. Med. Cell. Longev., 2017, 2017, 6293740.
[http://dx.doi.org/10.1155/2017/6293740] [PMID: 28744339]
[23]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: triggers, mecha-nisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[24]
Oshi, M.; Tokumaru, Y.; Asaoka, M.; Yan, L.; Satyananda, V.; Matsuyama, R.; Matsuhashi, N.; Futamura, M.; Ishikawa, T.; Yoshida, K.; Endo, I.; Takabe, K. M1 Macrophage and M1/M2 ratio defined by transcriptomic sig-natures resemble only part of their conventional clinical characteristics in breast cancer. Sci. Rep., 2020, 10(1), 16554.
[http://dx.doi.org/10.1038/s41598-020-73624-w] [PMID: 33024179]
[25]
Abdelazeem, K.N.M.; Kalo, M.Z.; Beer-Hammer, S.; Lang, F. The gut micro-biota metabolite urolithin A inhibits NF-κB activation in LPS stimulated BMDMs. Sci. Rep., 2021, 11(1), 7117.
[http://dx.doi.org/10.1038/s41598-021-86514-6] [PMID: 33782464]
[26]
Wang, Y.; Tang, Q.; Duan, P.; Yang, L. Curcumin as a therapeutic agent for blocking NF-κB activation in ulcerative colitis. Immunopharmacol. Immunotoxicol., 2018, 40(6), 476-482.
[http://dx.doi.org/10.1080/08923973.2018.1469145] [PMID: 30111198]
[27]
Milella, M.; Falcone, I.; Conciatori, F.; Cesta Incani, U.; Del Curatolo, A.; Inzerilli, N.; Nuzzo, C.M.; Vaccaro, V.; Vari, S.; Cognetti, F.; Ciuffreda, L. PTEN: Multiple functions in human malignant tumors. Front. Oncol., 2015, 5, 24.
[http://dx.doi.org/10.3389/fonc.2015.00024] [PMID: 25763354]
[28]
Arora, I.; Sharma, M.; Tollefsbol, T.O. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int. J. Mol. Sci., 2019, 20(18), E4567.
[http://dx.doi.org/10.3390/ijms20184567] [PMID: 31540128]
[29]
Locke, W.J.; Guanzon, D.; Ma, C.; Liew, Y.J.; Duesing, K.R.; Fung, K.Y.C.; Ross, J.P. DNA methylation cancer biomarkers: translation to the clinic. Front. Genet., 2019, 10, 1150.
[http://dx.doi.org/10.3389/fgene.2019.01150] [PMID: 31803237]
[30]
Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. CpG and Non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel), 2017, 8(6), E148.
[http://dx.doi.org/10.3390/genes8060148] [PMID: 28545252]
[31]
Kedhari Sundaram, M.; Hussain, A.; Haque, S.; Raina, R.; Afroze, N. Quer-cetin modifies 5'CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J. Cell. Biochem., 2019, 120(10), 18357-18369.
[http://dx.doi.org/10.1002/jcb.29147] [PMID: 31172592]
[32]
Hassan, F.U.; Rehman, M.S.; Khan, M.S.; Ali, M.A.; Javed, A.; Nawaz, A.; Yang, C. Curcumin as an alternative epigenetic modulator: mechanism of ac-tion and potential effects. Front. Genet., 2019, 10, 514.
[http://dx.doi.org/10.3389/fgene.2019.00514] [PMID: 31214247]
[33]
Chen, J.; Ying, Y.; Zhu, H.; Zhu, T.; Qu, C.; Jiang, J.; Fang, B. Curcumin-induced promoter hypermethylation of the mammalian target of rapamycin gene in multiple myeloma cells. Oncol. Lett., 2019, 17(1), 1108-1114.
[PMID: 30655872]
[34]
Marquardt, J.U.; Gomez-Quiroz, L.; Arreguin Camacho, L.O.; Pinna, F.; Lee, Y.H.; Kitade, M.; Domínguez, M.P.; Castven, D.; Breuhahn, K.; Conner, E.A.; Galle, P.R.; Andersen, J.B.; Factor, V.M.; Thorgeirsson, S.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness fea-tures in liver cancer. J. Hepatol., 2015, 63(3), 661-669.
[http://dx.doi.org/10.1016/j.jhep.2015.04.018] [PMID: 25937435]
[35]
Chen, B.H.; Hsieh, C.H.; Tsai, S.Y.; Wang, C.Y.; Wang, C.C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci. Rep., 2020, 10(1), 5163.
[http://dx.doi.org/10.1038/s41598-020-62136-2] [PMID: 32198390]
[36]
Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in cancer prevention: New insights. Int J Funct Nutr, 2020, 1(2), 9.
[http://dx.doi.org/10.3892/ijfn.2020.9]
[37]
Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol., 2016, 40-41, 192-208.
[http://dx.doi.org/10.1016/j.semcancer.2016.09.001] [PMID: 27609747]
[38]
Roomi, M.W.; Kalinovsky, T.; Roomi, N.M.; Cha, J.; Rath, M.; Niedzwiecki, A. In vitro and in vivo effects of a nutrient mixture on breast cancer progres-sion. Int. J. Oncol., 2014, 44(6), 1933-1944.
[http://dx.doi.org/10.3892/ijo.2014.2379] [PMID: 24728148]
[39]
Kausar, H.; Jeyabalan, J.; Aqil, F.; Chabba, D.; Sidana, J.; Singh, I.P.; Gupta, R.C. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett., 2012, 325(1), 54-62.
[http://dx.doi.org/10.1016/j.canlet.2012.05.029] [PMID: 22659736]
[40]
Bimonte, S.; Barbieri, A.; Palma, G.; Rea, D.; Luciano, A.; D’Aiuto, M.; Arra, C.; Izzo, F. Dissecting the role of curcumin in tumour growth and an-giogenesis in mouse model of human breast cancer. BioMed Res. Int., 2015, 2015, 878134.
[http://dx.doi.org/10.1155/2015/878134] [PMID: 25879038]
[41]
Bianchi, G.; Ravera, S.; Traverso, C.; Amaro, A.; Piaggio, F.; Emionite, L.; Bachetti, T.; Pfeffer, U.; Raffaghello, L. Curcumin induces a fatal energetic impairment in tumor cells in vitro and in vivo by inhibiting ATP-synthase activity. Carcinogenesis, 2018, 39(9), 1141-1150.
[http://dx.doi.org/10.1093/carcin/bgy076] [PMID: 29860383]
[42]
Wang, R.; Zhu, X.; Wang, Q.; Li, X.; Wang, E.; Zhao, Q.; Wang, Q.; Cao, H. The anti-tumor effect of taxifolin on lung cancer via suppressing stemness and epithelial-mesenchymal transition in vitro and oncogenesis in nude mice. Ann. Transl. Med., 2020, 8(9), 590.
[http://dx.doi.org/10.21037/atm-20-3329] [PMID: 32566617]
[43]
Totiger, T.M.; Srinivasan, S.; Jala, V.R.; Lamichhane, P.; Dosch, A.R.; Gai-darski, A.A., III; Joshi, C.; Rangappa, S.; Castellanos, J.; Vemula, P.K.; Chen, X.; Kwon, D.; Kashikar, N.; VanSaun, M.; Merchant, N.B.; Nagathi-halli, N.S. Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer. Mol. Cancer Ther., 2019, 18(2), 301-311.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0464] [PMID: 30404927]
[44]
Nagathihalli, N.S.; Castellanos, J.A.; Shi, C.; Beesetty, Y.; Reyzer, M.L.; Caprioli, R.; Chen, X.; Walsh, A.J.; Skala, M.C.; Moses, H.L.; Merchant, N.B. Signal transducer and activator of transcription 3, mediated remodeling of the tumor microenvironment results in enhanced tumor drug delivery in a mouse model of pancreatic cancer. Gastroenterology, 2015, 149(7), 1932-1943.e9.
[http://dx.doi.org/10.1053/j.gastro.2015.07.058] [PMID: 26255562]
[45]
Li, M.; Yue, G.G.; Luo, L.; Tsui, S.K.; Fung, K.P.; Ng, S.S.; Lau, C.B. Tur-meric is therapeutic in vivo on patient-derived colorectal cancer xenografts: inhibition of growth, metastasis, and tumor recurrence. Front. Oncol., 2021, 10, 574827.
[http://dx.doi.org/10.3389/fonc.2020.574827] [PMID: 33552955]
[46]
Hu, M.; Wu, B.; Liu, Z. Bioavailability of polyphenols and flavonoids in the era of precision medicine. Mol. Pharm., 2017, 14(9), 2861-2863.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00545] [PMID: 28870081]
[47]
Zhu, Y.; Huang, Y.; Liu, M.; Yan, Q.; Zhao, W.; Yang, P.; Gao, Q.; Wei, J.; Zhao, W.; Ma, L. Epigallocatechin gallate inhibits cell growth and regulates miRNA expression in cervical carcinoma cell lines infected with different high-risk human papillomavirus subtypes. Exp. Ther. Med., 2019, 17(3), 1742-1748.
[PMID: 30783443]
[48]
Hahn, Y.I.; Kim, S.J.; Choi, B.Y.; Cho, K.C.; Bandu, R.; Kim, K.P.; Kim, D.H.; Kim, W.; Park, J.S.; Han, B.W.; Lee, J.; Na, H.K.; Cha, Y.N.; Surh, Y.J. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci. Rep., 2018, 8(1), 6409.
[http://dx.doi.org/10.1038/s41598-018-23840-2] [PMID: 29686295]
[49]
Luo, K-W.; Xia, J.; Cheng, B-H.; Gao, H-C.; Fu, L-W.; Luo, X-L. Tea poly-phenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3. Gastroenterol. Rep. (Oxf.), 2020, 9(1), 59-70.
[http://dx.doi.org/10.1093/gastro/goaa072] [PMID: 33747527]
[50]
Chow, H.H.; Hakim, I.A. Pharmacokinetic and chemoprevention studies on tea in humans. Pharmacol. Res., 2011, 64(2), 105-112.
[http://dx.doi.org/10.1016/j.phrs.2011.05.007] [PMID: 21624470]
[51]
Gee, J.R.; Saltzstein, D.R.; Kim, K.; Kolesar, J.; Huang, W.; Havighurst, T.C.; Wollmer, B.W.; Stublaski, J.; Downs, T.; Mukhtar, H.; House, M.G.; Parnes, H.L.; Bailey, H.H. A Phase II randomized, double-blind, presurgical trial of polyphenon e in bladder cancer patients to evaluate pharmacody-namics and bladder tissue biomarkers. Cancer Prev. Res. (Phila.), 2017, 10(5), 298-307.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0167] [PMID: 28325826]
[52]
Egert, S.; Wolffram, S.; Bosy-Westphal, A.; Boesch-Saadatmandi, C.; Wag-ner, A.E.; Frank, J.; Rimbach, G.; Mueller, M.J. Daily quercetin supplemen-tation dose-dependently increases plasma quercetin concentrations in healthy humans. J. Nutr., 2008, 138(9), 1615-1621.
[http://dx.doi.org/10.1093/jn/138.9.1615] [PMID: 18716159]
[53]
Inoue, T.; Saito, S.; Tanaka, M.; Yamakage, H.; Kusakabe, T.; Shimatsu, A.; Ihara, M.; Satoh-Asahara, N. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. USA, 2019, 116(20), 10031-10038.
[http://dx.doi.org/10.1073/pnas.1901659116] [PMID: 31036637]
[54]
Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; Pirmo-hamed, M.; Gescher, A.J.; Steward, W.P. Phase I clinical trial of oral curcu-min: biomarkers of systemic activity and compliance. Clin. Cancer Res., 2004, 10(20), 6847-6854.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0744] [PMID: 15501961]
[55]
Mansouri, K.; Rasoulpoor, S.; Daneshkhah, A.; Abolfathi, S.; Salari, N.; Mohammadi, M.; Rasoulpoor, S.; Shabani, S. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer, 2020, 20(1), 791.
[http://dx.doi.org/10.1186/s12885-020-07256-8] [PMID: 32838749]
[56]
Keating, E.; Martel, F. Antimetabolic effects of polyphenols in breast cancer cells: focus on glucose uptake and metabolism. Front. Nutr., 2018, 5, 25.
[http://dx.doi.org/10.3389/fnut.2018.00025] [PMID: 29713632]
[57]
D’Arena, G.; Simeon, V.; De Martino, L.; Statuto, T.; D’Auria, F.; Volpe, S.; Deaglio, S.; Maidecchi, A.; Mattoli, L.; Mercati, V.; Musto, P.; De Feo, V. Regulatory T-cell modulation by green tea in chronic lymphocytic leuke-mia. Int. J. Immunopathol. Pharmacol., 2013, 26(1), 117-125.
[http://dx.doi.org/10.1177/039463201302600111] [PMID: 23527714]
[58]
Focaccetti, C.; Izzi, V.; Benvenuto, M.; Fazi, S.; Ciuffa, S.; Giganti, M.G.; Potenza, V.; Manzari, V.; Modesti, A.; Bei, R. Polyphenols as immunomod-ulatory compounds in the tumor microenvironment: friends or foes? Int. J. Mol. Sci., 2019, 20(7), E1714.
[http://dx.doi.org/10.3390/ijms20071714] [PMID: 30959898]
[59]
Choi, Y.H.; Han, D.H.; Kim, S.W.; Kim, M.J.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Lee, H.M.; Choi, H.Y. A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation. Prostate, 2019, 79(6), 614-621.
[http://dx.doi.org/10.1002/pros.23766] [PMID: 30671976]
[60]
Nguyen, M.M.; Ahmann, F.R.; Nagle, R.B.; Hsu, C.H.; Tangrea, J.A.; Parnes, H.L.; Sokoloff, M.H.; Gretzer, M.B.; Chow, H.H. Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: evaluation of potential chemopreventive activities. Cancer Prev. Res. (Phila.), 2012, 5(2), 290-298.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0306] [PMID: 22044694]
[61]
Giménez-Bastida, J.A.; Ávila-Gálvez, M.A.; Espín, J.C.; González-Sarrías, A. The gut microbiota metabolite urolithin A, but not other relevant uro-lithins, induces p53-dependent cellular senescence in human colon cancer cells. Food Chem. Toxicol., 2020, 139, 111260.
[http://dx.doi.org/10.1016/j.fct.2020.111260] [PMID: 32179165]
[62]
Turner, M.C.; Andersen, Z.J.; Baccarelli, A.; Diver, W.R.; Gapstur, S.M.; Pope, C.A., III; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J. Clin., 2020.
[http://dx.doi.org/10.3322/caac.21632] [PMID: 32964460]
[63]
Dydjow-Bendek, D. Zagoźdźon, P. Total dietary fats, fatty acids, and ome-ga-3/omega-6 ratio as risk factors of breast cancer in the polish population - a case-control study. In Vivo, 2020, 34(1), 423-431.
[http://dx.doi.org/10.21873/invivo.11791] [PMID: 31882509]
[64]
Todoric, J.; Antonucci, L.; Karin, M. Targeting inflammation in cancer prevention and therapy. Cancer Prev. Res. (Phila.), 2016, 9(12), 895-905.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0209] [PMID: 27913448]
[65]
Rutkowski, S.; Si, T.; Gai, M.; Sun, M.; Frueh, J.; He, Q. Magnetically-guided hydrogel capsule motors produced via ultrasound assisted hydro-dynamic electrospray ionization jetting. J. Colloid Interface Sci., 2019, 541, 407-417.
[http://dx.doi.org/10.1016/j.jcis.2019.01.103] [PMID: 30710823]
[66]
Rutkowski, S.; Mu, L.; Si, T.; Gai, M.; Sun, M.; Frueh, J.; He, Q. Magnetical-ly-propelled hydrogel particle motors produced by ultrasound assisted hy-drodynamic electrospray ionization jetting. Colloids Surf. B Biointerfaces, 2019, 175, 44-55.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.068] [PMID: 30517904]
[67]
Zhang, H.; Li, Z.; Gao, C.; Fan, X.; Pang, Y.; Li, T.; Wu, Z.; Xie, H.; He, Q. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot., 2021, 6(52), eaaz9519.
[http://dx.doi.org/10.1126/scirobotics.aaz9519] [PMID: 34043546]
[68]
Handa, M.; Beg, S.; Shukla, R.; Barkat, M.A.; Choudhry, H.; Singh, K.K. Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting. J. Control. Release, 2021, 340, 48-59.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.025] [PMID: 34695523]
[69]
Feng, T.; Wei, Y.; Lee, R.J.; Zhao, L. Liposomal curcumin and its applica-tion in cancer. Int. J. Nanomedicine, 2017, 12, 6027-6044.
[http://dx.doi.org/10.2147/IJN.S132434] [PMID: 28860764]
[70]
Gnananath, K.; Sri Nataraj, K.; Ganga Rao, B. Phospholipid complex tech-nique for superior bioavailability of phytoconstituents. Adv. Pharm. Bull., 2017, 7(1), 35-42.
[http://dx.doi.org/10.15171/apb.2017.005] [PMID: 28507935]
[71]
Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; Rainato, G.; Gion, M.; Ursini, F. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res., 2018, 132, 72-79.
[http://dx.doi.org/10.1016/j.phrs.2018.03.013] [PMID: 29614381]
[72]
Ombredane, A.S.; Silva, V.R.P.; Andrade, L.R.; Pinheiro, W.O.; Simonelly, M.; Oliveira, J.V.; Pinheiro, A.C.; Gonçalves, G.F.; Felice, G.J.; Garcia, M.P.; Campos, P.M.; Luz, G.V.S.; Joanitti, G.A. In Vivo efficacy and toxici-ty of curcumin nanoparticles in breast cancer treatment: a systematic re-view. Front. Oncol., 2021, 11, 612903.
[http://dx.doi.org/10.3389/fonc.2021.612903] [PMID: 33767985]
[73]
Saghatelyan, T.; Tananyan, A.; Janoyan, N.; Tadevosyan, A.; Petrosyan, H.; Hovhannisyan, A.; Hayrapetyan, L.; Arustamyan, M.; Arnhold, J.; Rot-mann, A.R.; Hovhannisyan, A.; Panossian, A. Efficacy and safety of curcu-min in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine, 2020, 70, 153218.
[http://dx.doi.org/10.1016/j.phymed.2020.153218] [PMID: 32335356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy