Mini-Review Article

MicroRNAs as Biomarkers for Birth Defects

Author(s): Ratnam S. Seelan, M. Michele Pisano and Robert M. Greene*

Volume 11, Issue 1, 2022

Published on: 11 April, 2022

Page: [2 - 11] Pages: 10

DOI: 10.2174/2211536611666220215123423

Price: $65

Abstract

It is estimated that 2-4% of live births will have a birth defect (BD). The availability of biomarkers for the prenatal detection of BDs will facilitate early risk assessment, prompt medical intervention and ameliorating disease severity. miRNA expression levels are often found to be altered in many diseases. There is, thus, a growing interest in determining whether miRNAs, particularly extracellular miRNAs, can predict, diagnose, or monitor BDs. These miRNAs, typically encapsulated in exosomes, are released by cells (including those of the fetus and placenta) into the extracellular milieu, such as blood, urine, saliva and cerebrospinal fluid, thereby enabling interaction with target cells. Exosomal miRNAs are stable, protected from degradation, and retain functionality. The observation that placental and fetal miRNAs can be detected in maternal serum, provides a strong rationale for adopting miRNAs as noninvasive prenatal biomarkers for BDs. In this mini-review, we examine the current state of research involving the use of miRNAs as prognostic and diagnostic biomarkers for BD.

Keywords: Biomarkers, birth defects, exosomes, extracellular miRNAs, neural tube defects (NTDs), prenatal detection.

Graphical Abstract
[1]
Harris BS, Bishop KC, Kemeny HR, Walker JS, Rhee E, Kuller JA. Risk factors for birth defects. Obstet Gynecol Surv 2017; 72(2): 123-35.
[http://dx.doi.org/10.1097/OGX.0000000000000405] [PMID: 28218773]
[2]
Sherman SL, Allen EG, Bean LH, Freeman SB. Epidemiology of down syndrome. Ment Retard Dev Disabil Res Rev 2007; 13(3): 221-7.
[http://dx.doi.org/10.1002/mrdd.20157] [PMID: 17910090]
[3]
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22(9): 589-607.
[http://dx.doi.org/10.1038/s41580-021-00382-6]
[4]
Seelan RS, Greene RM, Pisano MM. MicroRNAs as epigenetic targets of cigarette smoke during embryonic development. MicroRNA 2020; 9(3): 168-73.
[http://dx.doi.org/10.2174/2211536608666190926114704] [PMID: 31556862]
[5]
Hui L, Wick HC, Edlow AG, Cowan JM, Bianchi DW. Global gene expression analysis of term amniotic fluid cell-free fetal RNA. Obstet Gynecol 2013; 121(6): 1248-54.
[http://dx.doi.org/10.1097/AOG.0b013e318293d70b] [PMID: 23812459]
[6]
Pereira-Terra P, Deprest JA, Kholdebarin R, et al. Unique tracheal fluid microRNA signature predicts response to FETO in patients with congenital diaphragmatic hernia. Ann Surg 2015; 262(6): 1130-40.
[http://dx.doi.org/10.1097/SLA.0000000000001054] [PMID: 25563880]
[7]
Radhakrishna U, Albayrak S, Zafra R, et al. Placental epigenetics for evaluation of fetal congenital heart defects: Ventricular Septal Defect (VSD). PLoS One 2019; 14(3): e0200229.
[http://dx.doi.org/10.1371/journal.pone.0200229] [PMID: 30897084]
[8]
Centers for Disease Control and Prevention (CDC). Update on overall prevalence of major birth defects-Atlanta, Georgia, 1978-2005. MMWR Morb Mortal Wkly Rep 2008; 57(1): 1-5.
[PMID: 18185492]
[10]
Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell 2012; 149(3): 515-24.
[http://dx.doi.org/10.1016/j.cell.2012.04.005] [PMID: 22541426]
[11]
Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007; 23(1): 175-205.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406] [PMID: 17506695]
[12]
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11(9): 597-610.
[http://dx.doi.org/10.1038/nrg2843] [PMID: 20661255]
[13]
Creugny A, Fender A, Pfeffer S. Regulation of primary microRNA processing. FEBS Lett 2018; 592(12): 1980-96.
[http://dx.doi.org/10.1002/1873-3468.13067] [PMID: 29683487]
[14]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[15]
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56(11): 1733-41.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[16]
Girdauskas E, Petersen J, Neumann N, et al. Evaluation of microribonucleic acids as potential biomarkers in the bicuspid aortic valve-associated aortopathy. Interact Cardiovasc Thorac Surg 2018; 27(1): 60-6.
[http://dx.doi.org/10.1093/icvts/ivy033] [PMID: 29462317]
[17]
Putkonen N, Laiho A, Ethell D, et al. Urine microRNA profiling displays miR-125a dysregulation in children with Fragile X syndrome. Cells 2020; 9(2): 289.
[http://dx.doi.org/10.3390/cells9020289] [PMID: 31991700]
[18]
Paoli D, Pecora G, Pallotti F, et al. Cytological and molecular aspects of the ageing sperm. Hum Reprod 2019; 34(2): 218-27.
[http://dx.doi.org/10.1093/humrep/dey357] [PMID: 30551142]
[19]
Salazar C, Nagadia R, Pandit P, et al. A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell Oncol (Dordr) 2014; 37(5): 331-8.
[http://dx.doi.org/10.1007/s13402-014-0188-2] [PMID: 25156495]
[20]
Burgos KL, Javaherian A, Bomprezzi R, et al. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation se-quencing. RNA 2013; 19(5): 712-22.
[http://dx.doi.org/10.1261/rna.036863.112] [PMID: 23525801]
[21]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mech-anism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[22]
Chen X, Liang H, Zhang J, Zen K, Zhang C-Y. Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol 2012; 22(3): 125-32.
[http://dx.doi.org/10.1016/j.tcb.2011.12.001] [PMID: 22260888]
[23]
Kamhieh-Milz J, Moftah RFH, Bal G, et al. Differentially expressed microRNAs in maternal plasma for the noninvasive prenatal diagnosis of Down syndrome (trisomy 21). BioMed Res Int 2014; 2014: 402475.
[http://dx.doi.org/10.1155/2014/402475] [PMID: 25478570]
[24]
Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 2010; 3(6): 499-506.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.957415] [PMID: 20921333]
[25]
Calvopina DA, Coleman MA, Lewindon PJ, Ramm GA. Function and regulation of microRNAs and their potential as biomarkers in paediat-ric liver disease. Int J Mol Sci 2016; 17(11): 1795.
[http://dx.doi.org/10.3390/ijms17111795]
[26]
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011; 13(4): 423-33.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[27]
Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011; 108(12): 5003-8.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[28]
Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012; 7(3): e30679.
[http://dx.doi.org/10.1371/journal.pone.0030679] [PMID: 22427800]
[29]
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513-8.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[30]
Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseas-es. Cell Res 2008; 18(10): 997-1006.
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[31]
Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008; 3(9): e3148.
[http://dx.doi.org/10.1371/journal.pone.0003148] [PMID: 18773077]
[32]
Chim SSC, Shing TKF, Hung ECW, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 2008; 54(3): 482-90.
[http://dx.doi.org/10.1373/clinchem.2007.097972] [PMID: 18218722]
[33]
Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141(5): 672-5.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07077.x] [PMID: 18318758]
[34]
Yu Z, Han S, Hu P, et al. Potential role of maternal serum microRNAs as a biomarker for fetal congenital heart defects. Med Hypotheses 2011; 76(3): 424-6.
[http://dx.doi.org/10.1016/j.mehy.2010.11.010]
[35]
Miura K, Miura S, Yamasaki K, et al. Identification of pregnancy-associated microRNAs in maternal plasma. Clin Chem 2010; 56(11): 1767-71.
[http://dx.doi.org/10.1373/clinchem.2010.147660] [PMID: 20729298]
[36]
Mitchell MD, Peiris HN, Kobayashi M, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol 2015; 213(4)(Suppl.): S173-81.
[http://dx.doi.org/10.1016/j.ajog.2015.07.001] [PMID: 26428497]
[37]
Li X, Zhao Z. MicroRNA biomarkers for early detection of embryonic malformations in pregnancy. J Biomol Res Ther 2014; 3(3): 119.
[http://dx.doi.org/10.4172/2167-7956.1000119] [PMID: 25859419]
[38]
Smith T, Rajakaruna C, Caputo M, Emanueli C. MicroRNAs in congenital heart disease. Ann Transl Med 2015; 3(21): 333.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.12.25] [PMID: 26734643]
[39]
Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007; 8(1): 166.
[http://dx.doi.org/10.1186/1471-2164-8-166] [PMID: 17565689]
[40]
Zhu S, Cao L, Zhu J, et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta 2013; 424: 66-72.
[http://dx.doi.org/10.1016/j.cca.2013.05.010] [PMID: 23707860]
[41]
Chen T, Li SJ, Chen B, et al. Akt3 is a target of miR-29c-3p and serves an important function in the pathogenesis of congenital heart dis-ease. Int J Mol Med 2019; 43(2): 980-92.
[http://dx.doi.org/10.3892/ijmm.2018.4008] [PMID: 30535467]
[42]
Gu H, Chen L, Xue J, et al. Expression profile of maternal circulating microRNAs as non-invasive biomarkers for prenatal diagnosis of congenital heart defects. Biomed Pharmacother 2019; 109: 823-30.
[http://dx.doi.org/10.1016/j.biopha.2018.10.110] [PMID: 30551536]
[43]
Bruneau BG, Logan M, Davis N, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 1999; 211(1): 100-8.
[http://dx.doi.org/10.1006/dbio.1999.9298] [PMID: 10373308]
[44]
Wang F, Yang XY, Zhao JY, et al. miR-10a and miR-10b target the 3′-untranslated region of TBX5 to repress its expression. Pediatr Cardiol 2014; 35(6): 1072-9.
[http://dx.doi.org/10.1007/s00246-014-0901-y] [PMID: 24714979]
[45]
Song Y, Higgins H, Guo J, et al. Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart de-fects in children. J Transl Med 2018; 16(1): 42.
[http://dx.doi.org/10.1186/s12967-018-1411-0] [PMID: 29482591]
[46]
Tang P. Clinical diagnostic value of circulating serum miR-509-3p in pulmonary arterial hypertension with congenital heart disease. Hellenic J Cardiol 2020; 61(1): 26-30.
[http://dx.doi.org/10.1016/j.hjc.2018.06.004] [PMID: 29890280]
[47]
Chen W, Li S. Circulating microRNA as a novel biomarker for pulmonary arterial hypertension due to congenital heart disease. Pediatr Cardiol 2017; 38(1): 86-94.
[http://dx.doi.org/10.1007/s00246-016-1487-3] [PMID: 27837306]
[48]
Sánchez-Gómez MC, García-Mejía KA, Pérez-Díaz Conti M, et al. MicroRNAs association in the cardiac hypertrophy secondary to com-plex congenital heart disease in children. Pediatr Cardiol 2017; 38(5): 991-1003.
[http://dx.doi.org/10.1007/s00246-017-1607-8] [PMID: 28382463]
[49]
Botto LD, Moore CA, Khoury MJ, Erickson JD. Neural-tube defects. N Engl J Med 1999; 341(20): 1509-19.
[http://dx.doi.org/10.1056/NEJM199911113412006] [PMID: 10559453]
[50]
Greene ND, Stanier P, Copp AJ. Genetics of human neural tube defects. Hum Mol Genet 2009; 18(R2): R113-29.
[http://dx.doi.org/10.1093/hmg/ddp347] [PMID: 19808787]
[51]
Gu H, Li H, Zhang L, et al. Diagnostic role of microRNA expression profile in the serum of pregnant women with fetuses with neural tube defects. J Neurochem 2012; 122(3): 641-9.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07812.x] [PMID: 22642222]
[52]
Mai CT, Isenburg JL, Canfield MA, et al. National population-based estimates for major birth defects, 2010-2014. Birth Defects Res 2019; 111(18): 1420-35.
[http://dx.doi.org/10.1002/bdr2.1589] [PMID: 31580536]
[53]
Qin P, Li L, Zhang D, et al. Altered microRNA expression profiles in a rat model of spina bifida. Neural Regen Res 2016; 11(3): 502-7.
[http://dx.doi.org/10.4103/1673-5374.179070] [PMID: 27127493]
[54]
Qin P, Li L, Zhang D, et al. Preliminary investigation of methylation status of microRNA-124a in spinal cords of rat fetuses with congenital spina bifida. J Matern Fetal Neonatal Med 2017; 30(1): 23-8.
[http://dx.doi.org/10.3109/14767058.2015.1119114] [PMID: 26611840]
[55]
Rogers JM. Search for the missing lncs: Gene regulatory networks in neural crest development and long non-coding RNA biomarkers of Hirschsprung’s disease. Neurogastroenterol Motil 2016; 28(2): 161-6.
[http://dx.doi.org/10.1111/nmo.12776] [PMID: 26806097]
[56]
Tang W, Li H, Tang J, et al. Specific serum microRNA profile in the molecular diagnosis of Hirschsprung’s disease. J Cell Mol Med 2014; 18(8): 1580-7.
[http://dx.doi.org/10.1111/jcmm.12348] [PMID: 24974861]
[57]
Lim JH, Lee DE, Kim SY, et al. MicroRNAs as potential biomarkers for noninvasive detection of fetal trisomy 21. J Assist Reprod Genet 2015; 32(5): 827-37.
[http://dx.doi.org/10.1007/s10815-015-0429-y] [PMID: 25749789]
[58]
Karaca E, Aykut A, Ertürk B, et al. MicroRNA expression profile in the prenatal amniotic fluid samples of pregnant women with Down syndrome. Balkan Med J 2018; 35(2): 163-6.
[http://dx.doi.org/10.4274/balkanmedj.2017.0511] [PMID: 29219113]
[59]
Svobodová I, Korabečná M, Calda P, et al. Differentially expressed miRNAs in trisomy 21 placentas. Prenat Diagn 2016; 36(8): 775-84.
[http://dx.doi.org/10.1002/pd.4861] [PMID: 27323694]
[60]
Zbucka-Kretowska M, Niemira M, Paczkowska-Abdulsalam M, et al. Prenatal circulating microRNA signatures of foetal Down syndrome. Sci Rep 2019; 9(1): 2394.
[http://dx.doi.org/10.1038/s41598-018-35876-5] [PMID: 30787377]
[61]
Muddashetty RS, Nalavadi VC, Gross C, et al. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell 2011; 42(5): 673-88.
[http://dx.doi.org/10.1016/j.molcel.2011.05.006] [PMID: 21658607]
[62]
Fiksinski AM, Schneider M, Zinkstok J, Baribeau D, Chawner SJRA, Vorstman JAS. Neurodevelopmental trajectories and psychiatric mor-bidity: Lessons learned from the 22q11.2 deletion syndrome. Curr Psychiatry Rep 2021; 23(3): 13.
[http://dx.doi.org/10.1007/s11920-021-01225-z] [PMID: 33625600]
[63]
Sellier C, Hwang VJ, Dandekar R, et al. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syn-drome. PLoS One 2014; 9(8): e103884.
[http://dx.doi.org/10.1371/journal.pone.0103884] [PMID: 25084529]
[64]
Zou J, Li J, Li J, Ji C, Li Q, Guo X. Expression profile of plasma microRNAs in nonsyndromic cleft lip and their clinical significance as biomarkers. Biomed Pharmacother 2016; 82: 459-66.
[http://dx.doi.org/10.1016/j.biopha.2016.05.033]
[65]
Grassia V, Lombardi A, Kawasaki H, et al. Salivary microRNAs as new molecular markers in cleft lip and palate: A new frontier in mo-lecular medicine. Oncotarget 2018; 9(27): 18929-38.
[http://dx.doi.org/10.18632/oncotarget.24838] [PMID: 29721173]
[66]
May PA, Chambers CD, Kalberg WO, et al. Prevalence of fetal alcohol spectrum disorders in 4 US communities. JAMA 2018; 319(5): 474-82.
[http://dx.doi.org/10.1001/jama.2017.21896] [PMID: 29411031]
[67]
Goetzl L, Darbinian N, Merabova N. Noninvasive assessment of fetal central nervous system insult: Potential application to prenatal diag-nosis. Prenat Diagn 2019; 39(8): 609-15.
[http://dx.doi.org/10.1002/pd.5474] [PMID: 31069822]
[68]
Verstraeten A, Alaerts M, Van Laer L, Loeys B. Marfan syndrome and related disorders: 25 years of gene discovery. Hum Mutat 2016; 37(6): 524-31.
[http://dx.doi.org/10.1002/humu.22977] [PMID: 26919284]
[69]
Abu-Halima M, Kahraman M, Henn D, et al. Deregulated microRNA and mRNA expression profiles in the peripheral blood of patients with Marfan syndrome. J Transl Med 2018; 16(1): 60.
[http://dx.doi.org/10.1186/s12967-018-1429-3] [PMID: 29530068]
[70]
Abu-Halima M, Ludwig N, Rädle-Hurst T, et al. Characterization of micro-RNA profile in the blood of patients with Marfan’s syndrome. Thorac Cardiovasc Surg 2018; 66(1): 116-24.
[http://dx.doi.org/10.1055/s-0037-1604083] [PMID: 28679133]
[71]
Hand NJ, Horner AM, Master ZR, et al. MicroRNA profiling identifies miR-29 as a regulator of disease-associated pathways in experi-mental biliary atresia. J Pediatr Gastroenterol Nutr 2012; 54(2): 186-92.
[http://dx.doi.org/10.1097/MPG.0b013e318244148b] [PMID: 22167021]
[72]
Zahm AM, Hand NJ, Boateng LA, Friedman JR. Circulating microRNA is a biomarker of biliary atresia. J Pediatr Gastroenterol Nutr 2012; 55(4): 366-9.
[http://dx.doi.org/10.1097/MPG.0b013e318264e648] [PMID: 22732895]
[73]
Peng X, Yang L, Liu H, et al. Identification of circulating microRNAs in biliary atresia by next-generation sequencing. J Pediatr Gastroenterol Nutr 2016; 63(5): 518-23.
[http://dx.doi.org/10.1097/MPG.0000000000001194.] [PMID: 26960174]
[74]
Dong R, Shen Z, Zheng C, Chen G, Zheng S. Serum microRNA microarray analysis identifies miR-4429 and miR-4689 are potential diag-nostic biomarkers for biliary atresia. Sci Rep 2016; 6(1): 21084.
[http://dx.doi.org/10.1038/srep21084] [PMID: 26879603]
[75]
Jovanovic I, Zivkovic M, Kostic M, et al. Transcriptome-wide based identification of miRs in congenital anomalies of the kidney and uri-nary tract (CAKUT) in children: The significant upregulation of tissue miR-144 expression. J Transl Med 2016; 14(1): 193.
[http://dx.doi.org/10.1186/s12967-016-0955-0] [PMID: 27364533]
[76]
Tobin SW, Alibhai FJ, Lee MM, et al. Novel mediators of aneurysm progression in bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 132: 71-83.
[http://dx.doi.org/10.1016/j.yjmcc.2019.04.022] [PMID: 31047984]
[77]
Martínez-Micaelo N, Beltrán-Debón R, Baiges I, Faiges M, Alegret JM. Specific circulating microRNA signature of bicuspid aortic valve disease. J Transl Med 2017; 15(1): 76.
[http://dx.doi.org/10.1186/s12967-017-1176-x] [PMID: 28399937]
[78]
Martínez-Micaelo N, Beltrán-Debón R, Aragonés G, Faiges M, Alegret JM. MicroRNAs clustered within the 14q32 locus are associated with endothelial damage and microparticle secretion in bicuspid aortic valve disease. Front Physiol 2017; 8: 648.
[http://dx.doi.org/10.3389/fphys.2017.00648] [PMID: 28928672]
[79]
Gallo A, Agnese V, Coronnello C, et al. On the prospect of serum exosomal miRNA profiling and protein biomarkers for the diagnosis of ascending aortic dilatation in patients with bicuspid and tricuspid aortic valve. Int J Cardiol 2018; 273: 230-6.
[http://dx.doi.org/10.1016/j.ijcard.2018.10.005] [PMID: 30297190]
[80]
Luo W, Dong Y, Hu T, et al. 25(OH)D status and expression of miR-140 in the serum of patients with developmental dysplasia of the hip. Nutrition 2021; 81: 110896.
[http://dx.doi.org/10.1016/j.nut.2020.110896] [PMID: 32739657]
[81]
Herrera-Rivero M, Zhang R, Heilmann-Heimbach S, et al. Circulating microRNAs are associated with pulmonary hypertension and devel-opment of chronic lung disease in congenital diaphragmatic hernia. Sci Rep 2018; 8(1): 10735.
[http://dx.doi.org/10.1038/s41598-018-29153-8] [PMID: 30013141]
[82]
Chen SD, Pan HY, Huang JB, et al. Circulating microRNAs from serum exosomes may serve as a putative biomarker in the diagnosis and treatment of patients with focal cortical dysplasia. Cells 2020; 9(8): 1867.
[http://dx.doi.org/10.3390/cells9081867] [PMID: 32785072]
[83]
Salem NA, Mahnke AH, Wells AB, et al. Association between fetal sex and maternal plasma microRNA responses to prenatal alcohol ex-posure: Evidence from a birth outcome-stratified cohort. Biol Sex Differ 2020; 11(1): 51.
[http://dx.doi.org/10.1186/s13293-020-00327-2] [PMID: 32912312]
[84]
Cai S, Pataillot-Meakin T, Shibakawa A, et al. Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nat Commun 2021; 12(1): 3515.
[http://dx.doi.org/10.1038/s41467-021-23497-y] [PMID: 34112774]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy