Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Applications of Sulfinic Acids, Sodium Sulfinates, or Sulfonyl Hydrazides in the Radical Cyclization

Author(s): Yangyang Li, Dayun Huang, Danfeng Deng* and Sheng-Rong Guo*

Volume 26, Issue 4, 2022

Published on: 10 March, 2022

Page: [369 - 381] Pages: 13

DOI: 10.2174/1385272826666220222110614

Price: $65

Abstract

Sulfinic acids, sodium sulfinates, and sulfonyl hydrazides are stable, inexpensive, and readily available building blocks, which have been recently utilized as synthons to access various heterocyclic motifs via radical sulfonylation and cyclization. This review systematically summarizes the radical cyclization cascades and discusses their mechanisms. Moreover, it also discusses multi-component reactions, rearrangements, cycloadditions, coupling, green chemistry, etc. We hope that this review will promote future research in this area.

Keywords: Sulfonylation, cyclization, ketones, sulfinic acid, sodium sulfinate, sulfonyl hydrazide.

Graphical Abstract
[1]
Oae, S.; Kunieda, N. Sulfinic acids and sulfinic esters. Org. Chem. Sulfur, 1977, 603.
[2]
Lu, X.; Yi, Q.; Pan, X.; Wang, P.; Vessally, E. Aryl sulfonyl chlorides and sodium aryl sulfinates: Non-volatile, non-stench, and non-toxic aryl thiol surrogates for direct aryl-sulfenylation of C–H bonds. J. Sulfur Chem., 2020, 41(2), 210-228.
[http://dx.doi.org/10.1080/17415993.2019.1683181]
[3]
Wu, R.; Huang, K.; Qiu, G.; Liu, J. Synthesis of thioethers from sulfonyl chlorides, sodium sulfinates, and sulfonyl hydrazides. Synthesis, 2019, 51(19), 3567-3587.
[http://dx.doi.org/10.1055/s-0039-1690015]
[4]
Dong, D.; Han, Q.; Yang, S.; Song, J.; Li, N.; Wang, Z.; Xu, X. Recent progress in sulfonylation via radical reaction with sodium sulfinates, sulfinic acids, sulfonyl chlo-rides or sulfonyl hydrazides. ChemistrySelect, 2020, 5(42), 13103-13134.
[http://dx.doi.org/10.1002/slct.202003650]
[5]
Reddy, R.J.; Kumari, A.H. Synthesis and applications of sodium sulfinates (RSO2Na): A powerful building block for the synthesis of organosulfur compounds. RSC Advances, 2021, 11(16), 9130-9221.
[http://dx.doi.org/10.1039/D0RA09759D]
[6]
Dong, D.; Hao, S.; Yang, D.; Li, L.; Wang, Z. Sulfenylation of C–H Bonds for C–S bond formation under metal-free conditions. Eur. J. Org. Chem., 2017, 2017(45), 6576-6592.
[http://dx.doi.org/10.1002/ejoc.201700853]
[7]
Ye, X.; Wu, X.; Guo, S.; Huang, D.; Sun, X. Recent advances of sodium sulfinates in radical reactions. Tetrahedron Lett., 2021, 81, 153368.
[http://dx.doi.org/10.1016/j.tetlet.2021.153368]
[8]
El-Sayed, R.A. Review on the chemistry of sulfonohydrazides and sulfonoazides. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179(2), 237-266.
[http://dx.doi.org/10.1080/10426500490274673]
[9]
Yang, F.; Tian, S. Sulfonyl hydrazides as sulfonyl sources in organic synthesis. Tetrahedron Lett., 2017, 58(6), 487-504.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.058]
[10]
Hosseinian, A.; Arshadi, S.; Sarhandi, S.; Monfared, A.; Vessally, E. Direct C–H bond sulfenylation of (Het)arenes using sulfonyl hydrazides as thiol surrogate: A re-view. J. Sulfur Chem., 2019, 40(3), 289-311.
[http://dx.doi.org/10.1080/17415993.2019.1582654]
[11]
Zhao, S.; Chen, K.; Zhang, L.; Yang, W.; Huang, D. Sulfonyl hydrazides in organic synthesis: A review of recent studies. Adv. Synth. Catal., 2020, 362(17), 3516-3541.
[http://dx.doi.org/10.1002/adsc.202000466]
[12]
Guo, S.R.; He, W.M.; Xiang, J.N.; Yuan, Y.Q. Palladium-catalyzed thiolation of alkanes and ethers with arylsulfonyl hydrazides. Chem. Commun. (Camb.), 2014, 50(62), 8578-8581.
[http://dx.doi.org/10.1039/C4CC02876G] [PMID: 24956497]
[13]
Guo, S.; Kumar, P.S.; Yang, M. Recent advances of oxidative radical cross-coupling reactions: Direct α-C(sp3)-H bond functionalization of ethers and alcohols. Adv. Synth. Catal., 2017, 359(1), 2-25.
[http://dx.doi.org/10.1002/adsc.201600467]
[14]
Guo, S.R.; Yuan, Y.Q.; Xiang, J.N. Metal-free oxidative C(sp3)-H bond thiolation of ethers with disulfides. Org. Lett., 2013, 15(18), 4654-4657.
[http://dx.doi.org/10.1021/ol402281f] [PMID: 23987104]
[15]
Guo, S.; Yuan, Y. Copper-catalyzed alkenylation of alcohols with β-nitrostyrenes via a radical addition–elimination process. Synlett, 2015, 26(14), 1961-1968.
[http://dx.doi.org/10.1055/s-0034-1380445]
[16]
Guo, S.; Yuan, Y.; Xiang, J. Copper-catalyzed oxidative alkenylation of C(sp3)–H bonds via benzyl or alkyl radical addition to β-nitrostyrenes. New J. Chem., 2015, 39(4), 3093-3097.
[http://dx.doi.org/10.1039/C4NJ02416H]
[17]
Wang, L.; Zhang, M.; Zhang, Y.; Liu, Q.; Zhao, X.; Li, J.; Luo, Z.; Wei, W. Metal-free visible-light-induced oxidative cyclization reaction of 1, 6-enynes and arylsulfinic acids leading to sulfonylated benzofurans. Chin. Chem. Lett., 2020, 31(1), 67-70.
[http://dx.doi.org/10.1016/j.cclet.2019.05.041]
[18]
Shen, Z.J.; Wu, Y.N.; He, C.L.; He, L.; Hao, W.J.; Wang, A.F.; Tu, S.J.; Jiang, B. Stereoselective synthesis of sulfonated 1-indenones via radical-triggered multi-component cyclization of β-alkynyl propenones. Chem. Commun. (Camb.), 2018, 54(5), 445-448.
[http://dx.doi.org/10.1039/C7CC08516H] [PMID: 29199312]
[19]
Wu, Y.; Zhang, T.; Hao, W.; Tu, S.; Jiang, B. Metal-free radical annulation-hydrofunctionalization of 1,6-enynes for stereoselective synthesis of (E)-1-indanones. Asian J. Org. Chem., 2020, 9(7), 1040-1044.
[http://dx.doi.org/10.1002/ajoc.202000197]
[20]
Qiu, J.; Shan, C.; Wang, D.; Wei, P.; Jiang, B.; Tu, S.; Li, G.; Guo, K. Metal-Free radical-triggered selenosulfonation of 1,7-enynes for the rapid synthesis of 3,4-dihydroquinolin-2(1h)-ones in batch and flow. Adv. Synth. Catal., 2017, 359(24), 4332-4339.
[http://dx.doi.org/10.1002/adsc.201701118]
[21]
Zhu, Y.L.; Zhu, C.F.; Zhou, P.; Hao, W.J.; Wang, D.C.; Tu, S.J.; Jiang, B. Pd(II)-catalyzed carbonyl-directing activation of alkenes: Selective fluorosulfonylation and aminosulfonylation of 1,7-enynes. J. Org. Chem., 2018, 83(17), 9641-9653.
[http://dx.doi.org/10.1021/acs.joc.8b00994] [PMID: 30070107]
[22]
Huang, M.; Zhu, Y.; Hao, W.; Wang, A.; Wang, D.; Liu, F.; Wei, P.; Tu, S.; Jiang, B. Visible-light photocatalytic bicyclization of 1,7-enynes toward functionalized sul-fone-containing benzo[a]fluoren-5-ones. Adv. Synth. Catal., 2017, 359(13), 2229-2234.
[http://dx.doi.org/10.1002/adsc.201700124]
[23]
Wu, W.; Yi, S.; Huang, W.; Luo, D.; Jiang, H. Ag-catalyzed oxidative cyclization reaction of 1, 6-enynes and sodium sulfinate: Access to sulfonylated benzofurans. Org. Lett., 2017, 19(11), 2825-2828.
[http://dx.doi.org/10.1021/acs.orglett.7b00980] [PMID: 28517933]
[24]
Wu, W.; Yi, S.; Yu, Y.; Huang, W.; Jiang, H. Synthesis of sulfonylated lactones via Ag-catalyzed cascade sulfonylation/cyclization of 1, 6-enynes with sodium sul-finates. J. Org. Chem., 2017, 82(2), 1224-1230.
[http://dx.doi.org/10.1021/acs.joc.6b02416] [PMID: 28029252]
[25]
Cao, X.; Cheng, X.; Xuan, J. Arylsulfonyl radical triggered 1, 6-enyne cyclization: Synthesis of γ-lactams containing alkenyl C–X bonds. Org. Lett., 2018, 20(2), 449-452.
[http://dx.doi.org/10.1021/acs.orglett.7b03794] [PMID: 29286251]
[26]
Meng, X.; Kang, Q.; Zhang, J.; Li, Q.; Wei, W.; He, W. Copper-catalyzed sulfonyl radical-enabled regioselective cyclization of 1,6-enynes. Asian J. Org. Chem., 2019, 8(11), 2050-2053.
[http://dx.doi.org/10.1002/ajoc.201900539]
[27]
Zhu, Y.L.; Jiang, B.; Hao, W.J.; Wang, A.F.; Qiu, J.K.; Wei, P.; Wang, D.C.; Li, G.; Tu, S.J. A new cascade halosulfonylation of 1,7-enynes toward 3,4-dihydroquinolin-2(1H)-ones via sulfonyl radical-triggered addition/6-exo-dig cyclization. Chem. Commun. (Camb.), 2016, 52(9), 1907-1910.
[http://dx.doi.org/10.1039/C5CC08895J] [PMID: 26680370]
[28]
Mei, W.; Kong, Y.; Yan, G. Synthetic applications of αα-difluoroarylacetic acids and salts via decarboxylative functionalization. Org. Chem. Front., 2021, 8(19), 5516-5530.
[http://dx.doi.org/10.1039/D1QO00775K]
[29]
Yan, G.; Qiu, K.; Guo, M. Recent advance in the C–F bond functionalization of trifluoromethyl-containing compounds. Org. Chem. Front., 2021, 8(14), 3915-3942.
[http://dx.doi.org/10.1039/D1QO00037C]
[30]
Jiang, B.; Wu, Y.; Chen, Z.; Wen, X.; Hao, W.; Wang, S.; Tu, S. Synthesis of sulfonylated anti-indeno [1, 2-d] pyridazines via oxidative three-component 1, 5-enyne-bicyclization. Tetrahedron Lett., 2016, 57(37), 4246-4249.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.023]
[31]
Chen, Z.Z.; Liu, S.; Hao, W.J.; Xu, G.; Wu, S.; Miao, J.N.; Jiang, B.; Wang, S.L.; Tu, S.J.; Li, G. Catalytic arylsulfonyl radical-triggered 1,5-enyne-bicyclizations and hydrosulfonylation of α,β-conjugates. Chem. Sci. (Camb.), 2015, 6(11), 6654-6658.
[http://dx.doi.org/10.1039/C5SC02343B] [PMID: 26568814]
[32]
Zhu, Y.L.; Jiang, B.; Hao, W.J.; Qiu, J.K.; Sun, J.; Wang, D.C.; Wei, P.; Wang, A.F.; Li, G.; Tu, S.J. Catalytic arylsulfonyl radical triggered 1, 7-enyne bicyclizations. Org. Lett., 2015, 17(24), 6078-6081.
[http://dx.doi.org/10.1021/acs.orglett.5b03100] [PMID: 26618403]
[33]
Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Leowanawat, P.; Saithong, S.; Kuhakarn, C. TBAI/TBHP-mediated cascade cyclization toward sulfonylated indeno[1,2-c]quinolines. Org. Lett., 2017, 19(24), 6546-6549.
[http://dx.doi.org/10.1021/acs.orglett.7b03246] [PMID: 29172552]
[34]
Zheng, L.; Zhou, Z.Z.; He, Y.T.; Li, L.H.; Ma, J.W.; Qiu, Y.F.; Zhou, P.X.; Liu, X.Y.; Xu, P.F.; Liang, Y.M. Iodine-promoted radical cyclization in water: A selective reac-tion of 1, 6-enynes with sulfonyl hydrazides. J. Org. Chem., 2016, 81(1), 66-76.
[http://dx.doi.org/10.1021/acs.joc.5b02161] [PMID: 26642246]
[35]
Suneja, A.; Unhale, R.A.; Singh, V.K.; Han, J.; Zhou, J.; Pan, Y. Enantioselective hydrophosphonylation of in situ generated n-acyl ketimines catalyzed by BINOL-derived phosphoric acid. Org. Lett., 2017, 19(3), 476-479.
[http://dx.doi.org/10.1021/acs.orglett.6b03623] [PMID: 28075602]
[36]
Zhou, N.; Wu, M.; Zhang, M.; Zhou, X.; Zhou, W. TBPB-initiated cascade cyclization of 3-arylethynyl-[1,1′-biphenyl]-2-carbonitriles with sulfinic acids: Access to sulfone-containing cyclopenta[gh]phenanthridines. Org. Biomol. Chem., 2020, 18(9), 1733-1737.
[http://dx.doi.org/10.1039/D0OB00119H] [PMID: 32048693]
[37]
Zhou, B.; Chen, W.; Yang, Y.; Yang, Y.; Deng, G.; Liang, Y. A radical cyclization cascade of 2-alkynylbenzonitriles with sodium arylsulfinates. Org. Biomol. Chem., 2018, 16(42), 7959-7963.
[http://dx.doi.org/10.1039/C8OB02288G] [PMID: 30320325]
[38]
Wang, S.; Huang, X.; Wang, Q.; Ge, Z.; Wang, X.; Li, R. An efficient synthesis of sulfonated quinoline diones by copper catalyzed sulfonylation of activated alkenes with sulfonylhydrazides. RSC Advances, 2016, 6(14), 11754-11757.
[http://dx.doi.org/10.1039/C5RA27878C]
[39]
Zhu, X.T.; Lu, Q.L.; Wang, X.; Zhang, T.S.; Hao, W.J.; Tu, S.J.; Jiang, B. Substrate-controlled generation of 3-sulfonylated 1-indenones and 3-arylated (Z)-indenes via Cu-catalyzed radical cyclization cascades of o-alkynylbenzonitriles. J. Org. Chem., 2018, 83(17), 9890-9901.
[http://dx.doi.org/10.1021/acs.joc.8b01343] [PMID: 30106298]
[40]
Sun, K.; Chen, X.L.; Li, S.J.; Wei, D.H.; Liu, X.C.; Zhang, Y.L.; Liu, Y.; Fan, L.L.; Qu, L.B.; Yu, B.; Li, K.; Sun, Y.Q.; Zhao, Y.F. Copper-catalyzed radical cascade cy-clization to access 3-sulfonated indenones with the AIE phenomenon. J. Org. Chem., 2018, 83(23), 14419-14430.
[http://dx.doi.org/10.1021/acs.joc.8b02175] [PMID: 30383381]
[41]
Zhou, N.; Kuang, K.; Wu, M.; Wu, S.; Xu, Q.; Xia, Z.; Zhang, M. tert-Butyl hydroperoxide-initiated radical cyclization of 1-(allyloxy)-2-(1-arylvinyl)benzenes with sulfinic acids to access sulfonated benzoxepines. Adv. Synth. Catal., 2021, 363(14), 3491-3495.
[http://dx.doi.org/10.1002/adsc.202100466]
[42]
Ding, R.; Mao, M.; Jia, W.; Fu, J.; Liu, L.; Mao, Y.; Guo, Y.; Wang, P. Synthesis of sulfonylated pyrrolines and pyrrolinones via Ag- mediated radical cyclization of olefinic enamides with sodium sulfinates. Asian J. Org. Chem., 2021, 10(2), 366-370.
[http://dx.doi.org/10.1002/ajoc.202000664]
[43]
Xia, D.; Li, Y.; Miao, T.; Li, P.; Wang, L. Direct synthesis of sulfonated dihydroisoquinolinones from N-allylbenzamide and arylsulfinic acids via TBHP-promoted cascade radical addition and cyclization. Chem. Commun. (Camb.), 2016, 52(77), 11559-11562.
[http://dx.doi.org/10.1039/C6CC04983D] [PMID: 27604055]
[44]
Xia, D.; Miao, T.; Li, P.; Wang, L. Visible-light photoredox catalysis: Direct synthesis of sulfonated oxindoles from N-arylacrylamides and arylsulfinic acids by means of a cascade C–S/C–C formation process. Chem. Asian J., 2015, 10(9), 1919-1925.
[http://dx.doi.org/10.1002/asia.201500498] [PMID: 26097076]
[45]
Wei, W.; Wen, J.; Yang, D.; Du, J.; You, J.; Wang, H. Catalyst-free direct arylsulfonylation of N-arylacrylamides with sulfinic acids: A convenient and efficient route to sulfonated oxindoles. Green Chem., 2014, 16(6), 2988-2991.
[http://dx.doi.org/10.1039/C4GC00231H]
[46]
Shen, T.; Yuan, Y.; Song, S.; Jiao, N. Iron-catalyzed aerobic difunctionalization of alkenes: A highly efficient approach to construct oxindoles by C-S and C-C bond formation. Chem. Commun. (Camb.), 2014, 50(31), 4115-4118.
[http://dx.doi.org/10.1039/c4cc00401a] [PMID: 24622694]
[47]
Tang, Q.; Xie, P.; Wang, J.; Lin, J.; Feng, C.; Pittman, C.U., Jr; Zhou, A. “One-pot” sequential preparation of isoquinoline-1,3(2H,4H)-dione derivatives by reacting N-alkyl(aryl)-N-methacryloyl benzamides with benzyl alcohols and sodium benzenesulfinates. Tetrahedron, 2017, 73(36), 5436-5443.
[http://dx.doi.org/10.1016/j.tet.2017.07.055]
[48]
Jiang, Y.; Liang, S.; Zeng, C.; Hu, L.; Sun, B. Electrochemically initiated formation of sulfonyl radicals: Synthesis of oxindoles via difunctionalization of acrylamides mediated by bromide ion. Green Chem., 2016, 18(23), 6311-6319.
[http://dx.doi.org/10.1039/C6GC01970F]
[49]
Ji, P.Y.; Zhang, M.Z.; Xu, J.W.; Liu, Y.F.; Guo, C.C. Transition-metal-free TBAI-facilitated addition–cyclization of N-methyl-N-arylacrylamides with arylaldehydes or benzenesulfonohydrazides: Access to carbonyl- and sulfone-containing N-methyloxindoles. J. Org. Chem., 2016, 81(12), 5181-5189.
[http://dx.doi.org/10.1021/acs.joc.6b00773] [PMID: 27232267]
[50]
Li, X.; Xu, X.; Hu, P.; Xiao, X.; Zhou, C. Synthesis of sulfonated oxindoles by potassium iodide catalyzed arylsulfonylation of activated alkenes with sulfonylhydra-zides in water. J. Org. Chem., 2013, 78(14), 7343-7348.
[http://dx.doi.org/10.1021/jo401069d] [PMID: 23805848]
[51]
Zhang, M.; Xie, P.; Zhao, W.; Niu, B.; Wu, W.; Bian, Z.; Pittman, C.U., Jr; Zhou, A. Cascade couplings of N-alkyl-N-methacryloyl benzamides with ethers and benzenesul-fonohydrazides to generate isoquinoline-1,3(2H,4H)-dione derivatives. J. Org. Chem., 2015, 80(8), 4176-4183.
[http://dx.doi.org/10.1021/acs.joc.5b00158] [PMID: 25785787]
[52]
Yu, W.; Hu, P.; Fan, Y.; Yu, C.; Yan, X.; Li, X.; Xu, X. Metal-free TBAI-catalyzed arylsulfonylation of activated alkenes with sulfonylhydrazides. Org. Biomol. Chem., 2015, 13(11), 3308-3313.
[http://dx.doi.org/10.1039/C4OB01651C] [PMID: 25645079]
[53]
Zhang, Y.; Chen, W.; Jia, X.; Wang, L.; Li, P. A visible-light-induced oxidative cyclization of N-propargylanilines with sulfinic acids to 3-sulfonated quinoline deriva-tives without external photocatalysts. Chem. Commun. (Camb.), 2019, 55(19), 2785-2788.
[http://dx.doi.org/10.1039/C8CC10235J] [PMID: 30758355]
[54]
Liu, J.; Wang, M.; Li, L.; Wang, L. Electrooxidative tandem cyclization of N-propargylanilines with sulfinic acids for rapid access to 3-arylsulfonylquinoline deriva-tives. Green Chem., 2021, 23(13), 4733-4740.
[http://dx.doi.org/10.1039/D1GC00171J]
[55]
Yang, W.; Yang, S.; Li, P.; Wang, L. Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions. Chem. Commun. (Camb.), 2015, 51(35), 7520-7523.
[http://dx.doi.org/10.1039/C5CC00878F] [PMID: 25838160]
[56]
Wen, J.; Shi, W.; Zhang, F.; Liu, D.; Tang, S.; Wang, H.; Lin, X.M.; Lei, A. Electrooxidative tandem cyclization of activated alkynes with sulfinic acids to access sul-fonated indenones. Org. Lett., 2017, 19(12), 3131-3134.
[http://dx.doi.org/10.1021/acs.orglett.7b01256] [PMID: 28541702]
[57]
Xie, X.; Li, P.; Wang, L. Synthesis of 2-sulfonated-9H-pyrrolo[1,2-a]indoles via a Ag-promoted cascade sulfonation and cyclization. Eur. J. Org. Chem., 2019, 2019(1), 221-227.
[http://dx.doi.org/10.1002/ejoc.201801510]
[58]
Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Visible-light-enabled spirocyclization of alkynes leading to 3-sulfonyl and 3-sulfenyl azaspiro [4, 5] trienones. Green Chem., 2017, 19(23), 5608-5613.
[http://dx.doi.org/10.1039/C7GC02330H]
[59]
Zhou, L.; Xia, Y.; Wang, Y.; Fang, J.; Liu, X. Mn (III)-Promoted synthesis of spiroannular tricyclic scaffolds via sulfonylation/dearomatization of biaryl ynones. Tetrahedron, 2019, 75(9), 1267-1274.
[http://dx.doi.org/10.1016/j.tet.2019.01.041]
[60]
Yuan, J.; Li, J.; Zhou, H.; Xu, J.; Zhu, F.; Liang, Q.; Liu, Z.; Huang, G.; Huang, J. Synthesis of 3-sulfonylquinolines by visible-light promoted metalfree cascade cycloaddition involving N-propargylanilines and sodium sulfinates. New J. Chem., 2020, 44(8), 3189-3193.
[http://dx.doi.org/10.1039/C9NJ05248H]
[61]
Tang, J.; Sivaguru, P.; Ning, Y.; Zanoni, G.; Bi, X. Silver-catalyzed tandem C=C bond hydroazidation/radical addition/cyclization of biphenyl acetylene: One-pot syn-thesis of 6-methyl sulfonylated phenanthridines. Org. Lett., 2017, 19(15), 4026-4029.
[http://dx.doi.org/10.1021/acs.orglett.7b01771] [PMID: 28737404]
[62]
Mao, L.; Quan, L.; Zhu, X.; Ji, C.; Zhou, A.; Chen, F.; Zheng, D. Visible-light-mediated tandem sulfonylation/cyclization of vinyl azides with sulfonyl hydrazines for the synthesis of 6-(sulfonylmethyl) phenanthridines under mild conditions. Synlett, 2019, 30(8), 955-960.
[http://dx.doi.org/10.1055/s-0037-1611758]
[63]
Wei, W.; Wen, J.; Yang, D.; Guo, M.; Wang, Y.; You, J.; Wang, H. Direct and metal-free arylsulfonylation of alkynes with sulfonylhydrazides for the construction of 3-sulfonated coumarins. Chem. Commun. (Camb.), 2015, 51(4), 768-771.
[http://dx.doi.org/10.1039/C4CC08117J] [PMID: 25421259]
[64]
Yang, X.; Zhao, L.; Yuan, B.; Qi, Z.; Yan, R. TBAI/K2S2O8 initiated radical cyclization to synthesize β- arylsulfonyl naphthalenes from homopropargylic alcohols and sulfonyl hydrazides. Adv. Synth. Catal., 2017, 359(18), 3248-3253.
[http://dx.doi.org/10.1002/adsc.201700634]
[65]
Zhang, L.; Chen, S.; Gao, Y.; Zhang, P.; Wu, Y.; Tang, G.; Zhao, Y. tert-Butyl hydroperoxide mediated cascade synthesis of 3-arylsulfonylquinolines. Org. Lett., 2016, 18(6), 1286-1289.
[http://dx.doi.org/10.1021/acs.orglett.6b00198] [PMID: 26959409]
[66]
Tang, G.; Zhang, P.; Gao, Y.; Chen, S.; Zhao, Y. Direct synthesis of 2-sulfonated 9 H-pyrrolo [1,2-a] indoles via NaI-catalyzed cascade radical addi-tion/cyclization/isomerization. Org. Chem. Front., 2017, 4(7), 1350-1353.
[http://dx.doi.org/10.1039/C7QO00167C]
[67]
Zhu, X.Y.; Li, M.; Han, Y.P.; Chen, S.; Li, X.S.; Liang, Y.M. Copper-catalyzed oxidative cyclization of alkynes with sulfonylhydrazides leading to 2-sulfonated 9H-pyrrolo[1,2-a]indol-9-ones. J. Org. Chem., 2017, 82(16), 8761-8768.
[http://dx.doi.org/10.1021/acs.joc.7b01497] [PMID: 28752762]
[68]
Arepalli, S.K.; Choi, Y.; Lee, K.; Kang, J.; Jung, J.; Lee, H. Transition-metal-free, atom-economical cascade synthesis of novel 2-sulfonated-benzo [f][1, 7] naphthy-ridines and their cytotoxic activities. Tetrahedron, 2018, 74(14), 1646-1654.
[http://dx.doi.org/10.1016/j.tet.2018.02.023]
[69]
Sheng, X.; Chen, K.; Shi, C.; Huang, D. Recent advances in reactions of propargylamines. Synthesis, 2020, 52(1), 1-20.
[http://dx.doi.org/10.1055/s-0039-1690684]
[70]
Vessally, E.; Nikpasand, M.; Parvaneh, S.A.; Nezhad, D.K.J. Transition metal-catalyzed intramolecular cyclization of N-BoC–protected propargyl/ethynyl amines: A novel and convenient access to 2-oxazolidinone/oxazolone derivatives. Iran. Chem. Soc., 2019, 16(3), 617-627.
[http://dx.doi.org/10.1007/s13738-018-1542-5]
[71]
Zhang, B.; Wang, T. Gold-catalyzed transformations of propargyl alcohols and propargyl amines. Asian J. Org. Chem., 2018, 7(9), 1758-1783.
[http://dx.doi.org/10.1002/ajoc.201800324]
[72]
Peshkov, V.A.; Pereshivko, O.P.; Nechaev, A.A.; Peshkov, A.A.; Van der Eycken, E.V. Reactions of secondary propargylamines with heteroallenes for the synthesis of diverse heterocycles. Chem. Soc. Rev., 2018, 47(11), 3861-3898.
[http://dx.doi.org/10.1039/C7CS00065K] [PMID: 29546891]
[73]
Zheng, M.W.; Yuan, X.; Cui, Y.S.; Qiu, J.K.; Li, G.; Guo, K. Electrochemical sulfonylation/heteroarylation of alkenes via distal heteroaryl ipso-migration. Org. Lett., 2018, 20(24), 7784-7789.
[http://dx.doi.org/10.1021/acs.orglett.8b03191] [PMID: 30507201]
[74]
Qiu, J.; Hao, W.; Kong, L.; Ping, W.; Tu, S.; Jiang, B. Metal-free synthesis of sulfonylated amides through radical aryl migration-de- sulfonylation. Tetrahedron Lett., 2016, 57(22), 2414-2417.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.073]
[75]
Tian, Q.; He, P.; Kuang, C. Copper-catalyzed arylsulfonylation of N-arylsulfonyl-acrylamides with arylsulfonohydrazides: Synthesis of sulfonated oxindoles. Org. Biomol. Chem., 2014, 12(33), 6349-6353.
[http://dx.doi.org/10.1039/C4OB01231C] [PMID: 25027468]
[76]
Li, Y.; Miao, T.; Li, P.; Wang, L. Photo-driven synthesis of c6-polyfunctionalized phenanthridines from three-component reactions of isocyanides, alkynes, and sulfinic acids by electron donor-acceptor complex. Org. Lett., 2018, 20(7), 1735-1739.
[http://dx.doi.org/10.1021/acs.orglett.8b00171] [PMID: 29527899]
[77]
Han, Q.; Li, G.; Sun, Y.; Chen, D.; Wang, Z.; Yu, X.; Xu, X. Silver-catalyzed cascade radical cyclization of sodium sulfinates and o-(allyloxy)arylaldehydes towards functionalized chroman-4-ones. Tetrahedron Lett., 2020, 61(14), 151704.
[http://dx.doi.org/10.1016/j.tetlet.2020.151704]
[78]
Ni, J.; Xue, Y.; Sun, L.; Zhang, A. Cu-mediated sulfonyl radical-enabled 5-exo-trig cyclization of alkenyl aldehydes: Access to sulfonylmethyl 1H-indenes. J. Org. Chem., 2018, 83(8), 4598-4605.
[http://dx.doi.org/10.1021/acs.joc.8b00341] [PMID: 29589947]
[79]
Ren, Y.; Meng, L.G.; Peng, T.; Wang, L. Synthesis of multisubstituted furans via a catalyst- and additive- free tandem reaction of enynones with sulfinic acids in water. Org. Lett., 2018, 20(15), 4430-4433.
[http://dx.doi.org/10.1021/acs.orglett.8b01714] [PMID: 30028619]
[80]
Zhou, N.; Yan, Z.; Zhang, H.; Wu, Z.; Zhu, C. Metal-free radical oxidative cyclization of o-azidoaryl acetylenic ketones with sulfinic acids to access sulfone-containing 4-quinolones. J. Org. Chem., 2016, 81(24), 12181-12188.
[http://dx.doi.org/10.1021/acs.joc.6b01847] [PMID: 27978760]
[81]
Chen, F.; Meng, Q.; Han, S.Q.; Han, B. tert-Butyl hydroperoxide (TBHP)-initiated vicinal sulfonamination of alkynes: A radical annulation toward 3-sulfonylindoles. Org. Lett., 2016, 18(14), 3330-3333.
[http://dx.doi.org/10.1021/acs.orglett.6b01427] [PMID: 27340838]
[82]
Santiago, J.V. p-Toluenesulfonyl azide. Synlett, 2015, 26(16), 2323-2324.
[http://dx.doi.org/10.1055/s-0034-1381138]
[83]
Banert, K. The chemistry of unusually functionalized azides. Synthesis, 2016, 48(15), 2361-2375.
[http://dx.doi.org/10.1055/s-0035-1561454]
[84]
Hyatt, I.F.D. Meza-AviÇa, M.E.; Croatt, M.P. Alkynes and azides: Not just for click reactions. Synlett, 2012, 23(20), 2869-2874.
[http://dx.doi.org/10.1055/s-0032-1317545]
[85]
Huang, D.; Yan, G. Recent advances in reactions of azides. Adv. Synth. Catal., 2017, 359(10), 1600-1619.
[http://dx.doi.org/10.1002/adsc.201700103]
[86]
Wang, L.J.; Chen, J.M.; Dong, W.; Hou, C.Y.; Pang, M.; Jin, W.B.; Dong, F.G.; Xu, Z.D.; Li, W. Synthesis of sulfonylated lactams by copper-mediated aminosulfonyla-tion of 2-vinylbenzamides with sodium sulfinates. J. Org. Chem., 2019, 84(4), 2330-2338.
[http://dx.doi.org/10.1021/acs.joc.8b03002] [PMID: 30665305]
[87]
Wu, J.; Zong, Y.; Zhao, C.; Yan, Q.; Sun, L.; Li, Y.; Zhao, J.; Ge, Y.; Li, Z. Silver or cerium-promoted free radical cascade difunctionalization of o-vinylanilides with sodium aryl- or alkylsulfinates. Org. Biomol. Chem., 2019, 17(4), 794-797.
[http://dx.doi.org/10.1039/C8OB02964D] [PMID: 30628603]
[88]
Zhang, Z.; Yan, J.; Ma, D.; Sun, J. Electrochemical synthesis of β-hydroxy-, β-alkoxy-, and β-carbonyloxy sulfones by vicinal difunctionalization of olefins. Chin. Chem. Lett., 2019, 30(8), 1509-1511.
[http://dx.doi.org/10.1016/j.cclet.2019.04.023]
[89]
Xiong, Y.S.; Zhang, B.; Yu, Y.; Weng, J.; Lu, G. Construction of sulfonyl phthalides via copper-catalyzed oxysulfonylation of 2-vinylbenzoic acids with sodium sul-finates. J. Org. Chem., 2019, 84(21), 13465-13472.
[http://dx.doi.org/10.1021/acs.joc.9b01646] [PMID: 31545049]
[90]
Wang, L.J.; Chen, M.; Qi, L.; Xu, Z.; Li, W. Copper-mediated oxysulfonylation of alkenyl oximes with sodium sulfinates: A facile synthesis of isoxazolines featuring a sulfone substituent. Chem. Commun. (Camb.), 2017, 53(12), 2056-2059.
[http://dx.doi.org/10.1039/C7CC00090A] [PMID: 28133674]
[91]
Li, H.S.; Liu, G. Copper/silver-mediated cascade reactions for the construction of 2-sulfonylbenzo[b]furans from trans-2-hydroxycinnamic acids and sodium sulfinates. J. Org. Chem., 2014, 79(2), 509-516.
[http://dx.doi.org/10.1021/jo4024478] [PMID: 24354639]
[92]
Wan, J.; Zhong, S.; Guo, Y.; Wei, L. Iodine-mediated domino C(sp2)–H sulfonylation/annulation of enaminones and sulfonyl hydrazines for the synthesis of 3-sulfonyl chromones. Eur. J. Org. Chem., 2017, 30(30), 4401-4404.
[http://dx.doi.org/10.1002/ejoc.201700910]
[93]
Chen, L.; Zhang, L.; Yan, G.; Huang, D. Recent advances of cinnamic acids in organic synthesis. Asian J. Org. Chem., 2020, 9(6), 842-862.
[http://dx.doi.org/10.1002/ajoc.202000217]
[94]
Borah, A.J.; Yan, G. Decarboxylative functionalization of cinnamic acids. Org. Biomol. Chem., 2015, 13(30), 8094-8115.
[http://dx.doi.org/10.1039/C5OB00727E] [PMID: 26118850]
[95]
Zhang, D.; Cai, J.; Du, J.; Wang, X.; He, W.; Yang, Z.; Liu, C.; Fang, Z.; Guo, K. Oxidant-and catalyst-free synthesis of sulfonated benzothiophenes via electrooxidative tandem cyclization. J. Org. Chem., 2021, 86(3), 2593-2601.
[http://dx.doi.org/10.1021/acs.joc.0c02679] [PMID: 33426878]
[96]
Zhang, M.M.; Sun, Y.; Wang, W.W.; Chen, K.K.; Yang, W.C.; Wang, L. Electrochemical synthesis of sulfonated benzothiophenes using 2-alkynylthioanisoles and sodi-um sulfinates. Org. Biomol. Chem., 2021, 19(17), 3844-3849.
[http://dx.doi.org/10.1039/D1OB00079A] [PMID: 33949560]
[97]
Xie, S.; Li, Y.; Liu, P.; Sun, P. Visible light-induced radical addition/annulation to construct phenylsulfonyl-functionalized dihydrobenzofurans involving an intramo-lecular 1,5-hydrogen atom transfer process. Org. Lett., 2020, 22(22), 8774-8779.
[http://dx.doi.org/10.1021/acs.orglett.0c03038] [PMID: 33147046]
[98]
Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Leowanawat, P.; Kuhakarn, C. Synthesis of N-alkyl-3-sulfonylindoles and N-alkyl-3-sulfanylindoles by cas-cade annulation of 2-alkynyl-N,N-dialkylanilines. Org. Biomol. Chem., 2017, 15(17), 3662-3669.
[http://dx.doi.org/10.1039/C7OB00366H] [PMID: 28397895]
[99]
Liu, Y.; Wang, Q.L.; Chen, Z.; Zhou, Q.; Zhou, C.S.; Xiong, B.Q.; Zhang, P.L.; Yang, C.A.; Tang, K.W. Silver-mediated oxidative C-C bond sulfonylation/arylation of methylenecyclopropanes with sodium sulfinates: Facile access to 3-sulfonyl-1,2-dihydronaphthalenes. Org. Biomol. Chem., 2019, 17(6), 1365-1369.
[http://dx.doi.org/10.1039/C8OB03045F] [PMID: 30648164]
[100]
Zhu, X.; Han, Y.; Li, M.; Li, X.; Liang, Y. Copper–catalyzed radical sulfonylation of N-propargylindoles with concomitant 1,2-aryl migration. Adv. Synth. Catal., 2018, 360(18), 3460-3465.
[http://dx.doi.org/10.1002/adsc.201800414]
[101]
Kim, Y.J.; Choo, M.H.; Kim, D.Y. Potassium iodide-mediated radical arylsulfonylation/1,2-carbon migration sequences for the synthesis of b-sulfonated cyclic ketones. Tetrahedron Lett., 2018, 59(43), 3863-3866.
[http://dx.doi.org/10.1016/j.tetlet.2018.09.027]
[102]
Kim, Y.J.; Kim, D.Y. Electrochemical radical arylsulfonylation/semipinacol rearrangement sequences of alkenylcyclobutanols: Synthesis of β-sulfonated cyclic ke-tones. Tetrahedron Lett., 2019, 6(18), 1287-1290.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy