Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in the Surfactant and Controlled Release Polymer-based Solid Dispersion

Author(s): Aman Gupta, Gourav Paudwal, Rigzin Dolkar, Shaila Lewis and Prem N. Gupta*

Volume 28, Issue 20, 2022

Published on: 10 May, 2022

Page: [1643 - 1659] Pages: 17

DOI: 10.2174/1381612828666220223095417

Price: $65

Abstract

The oral route is the most preferred delivery route for drug administration due to its advantages, such as lower cost, improved patient compliance, no need for trained personnel, and less severity of drug reactions in general. The major problem with new molecules in the drug discovery pipeline is poor solubility and dissolution rate that ultimately results in low oral bioavailability. Numerous techniques are available for solubility and bioavailability (BA) enhancement, but out of all, solid dispersion (SD) is proven to be the most feasible due to fewer issues in manufacturing, processing, storage, and transportation. In the past few years, SD has been extensively applied to reinforce the common issues of insoluble drugs. Currently, many hydrophobic and hydrophilic polymers are used to prepare either immediate release or controlled release SDs. Therefore, the biological behavior of the SDs is contingent upon the use of appropriate polymeric carriers and methods of preparation. The exploration of novel carriers and methodologies in SD technology leads to improved BA and therapeutic effectiveness. Moreover, the clinical applicability of SD-based formulations has been increased with the discovery of novel polymeric carriers. In this review, emphasis is laid down on the present status of recent generations of SDs (i.e., surfactant and controlled release polymer-based SD) and their application in modifying the physical properties of the drug and modulation of pharmacological response in different ailments.

Keywords: Solid dispersion, dissolution rate, bioavailability, solubility enhancement, polymeric carrier, surfactants.

[1]
Jadav N, Paradkar A. Solid dispersions: Technologies used and future outlook. In: Shegokar R, Ed. Nanopharmaceuticals. Elsevier 2020; pp. 91-120.
[http://dx.doi.org/10.1016/B978-0-12-817778-5.00005-1]
[2]
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007; 12(23-24): 1068-75.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005] [PMID: 18061887]
[3]
Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm 2011; 420(1): 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.032] [PMID: 21884771]
[4]
Berge SM, Bighley LD, Monkhouse DC. Pharmaceutical salts. J Pharm Sci 1977; 66(1): 1-19.
[http://dx.doi.org/10.1002/jps.2600660104] [PMID: 833720]
[5]
Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004; 3(9): 785-96.
[http://dx.doi.org/10.1038/nrd1494] [PMID: 15340388]
[6]
Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 2002; 54(2): 169-90.
[http://dx.doi.org/10.1016/S0169-409X(02)00015-7] [PMID: 11897144]
[7]
Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: Design and clinical applications. Nat Rev Drug Discov 2008; 7(3): 255-70.
[http://dx.doi.org/10.1038/nrd2468] [PMID: 18219308]
[8]
Fatouros DG, Deen GR, Arleth L, et al. Structural development of self nano emulsifying drug delivery systems (SNEDDS) during in vitro lipid digestion monitored by small-angle X-ray scattering. Pharm Res 2007; 24(10): 1844-53.
[http://dx.doi.org/10.1007/s11095-007-9304-6] [PMID: 17458683]
[9]
Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm 2007; 329(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[10]
Mueller EA, Kovarik JM, van Bree JB, Tetzloff W, Grevel J, Kutz K. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm Res 1994; 11(2): 301-4.
[http://dx.doi.org/10.1023/A:1018923912135] [PMID: 8165192]
[11]
Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. Int J Pharm 1998; 160(2): 229-37.
[http://dx.doi.org/10.1016/S0378-5173(97)00311-6]
[12]
Andresen TL, Larsen JB. Compositional inhomogeneity of drug delivery liposomes quantified at the single liposome level. Acta Biomater 2020; 118: 207-14.
[http://dx.doi.org/10.1016/j.actbio.2020.10.003] [PMID: 33065286]
[13]
Potta SG, Minemi S, Nukala RK, et al. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs. J Biomed Nanotechnol 2010; 6(6): 634-40.
[http://dx.doi.org/10.1166/jbn.2010.1169] [PMID: 21361127]
[14]
Serajuddin AT. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 1999; 88(10): 1058-66.
[http://dx.doi.org/10.1021/js980403l] [PMID: 10514356]
[15]
Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013; 65(1): 315-499.
[http://dx.doi.org/10.1124/pr.112.005660] [PMID: 23383426]
[16]
Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci 1971; 60(9): 1281-302.
[http://dx.doi.org/10.1002/jps.2600600902] [PMID: 4935981]
[17]
Bhujbal SV, Mitra B, Jain U, et al. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11(8): 2505-36.
[http://dx.doi.org/10.1016/j.apsb.2021.05.014] [PMID: 34522596]
[18]
Alshehri S, Imam SS, Hussain A, et al. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: Newer formulation techniques, current marketed scenario and patents. Drug Deliv 2020; 27(1): 1625-43.
[http://dx.doi.org/10.1080/10717544.2020.1846638] [PMID: 33207947]
[19]
Ohara T, Kitamura S, Kitagawa T, Terada K. Dissolution mechanism of poorly water-soluble drug from extended release solid disper-sion system with ethylcellulose and hydroxypropylmethylcellulose. Int J Pharm 2005; 302(1-2): 95-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.06.019] [PMID: 16102924]
[20]
Patel BB, Patel JK, Chakraborty S, Shukla D. Revealing facts behind spray dried solid dispersion technology used for solubility en-hancement. Saudi Pharm J 2015; 23(4): 352-65.
[http://dx.doi.org/10.1016/j.jsps.2013.12.013] [PMID: 27134535]
[21]
Van den Mooter G. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol 2012; 9(2): e71-e174.
[http://dx.doi.org/10.1016/j.ddtec.2011.10.002] [PMID: 24064267]
[22]
Vasconcelos T, Marques S. das Neves J, Sarmento B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev 2016; 100: 85-101.
[http://dx.doi.org/10.1016/j.addr.2016.01.012] [PMID: 26826438]
[23]
Vasanthavada M, Tong W-Q, Joshi Y, Kislalioglu MS. Phase behavior of amorphous molecular dispersions I: Determination of the de-gree and mechanism of solid solubility. Pharm Res 2004; 21(9): 1598-606.
[http://dx.doi.org/10.1023/B:PHAM.0000041454.76342.0e] [PMID: 15497685]
[24]
Chauhan B, Shimpi S, Paradkar A. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur J Pharm Sci 2005; 26(2): 219-30.
[http://dx.doi.org/10.1016/j.ejps.2005.06.005] [PMID: 16087324]
[25]
Pokharkar VB, Mandpe LP, Padamwar MN, Ambike AA, Mahadik KR, Paradkar A. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol 2006; 167(1): 20-5.
[http://dx.doi.org/10.1016/j.powtec.2006.05.012]
[26]
Van den Mooter G, Weuts I, De Ridder T, Blaton N. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int J Pharm 2006; 316(1-2): 1-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.025] [PMID: 16563676]
[27]
Singh N, Mk S. Solid dispersion-a novel approach for enhancement of bioavailability of poorly soluble drugs in oral drug delivery sys-tem. Global J Pharm Pharm Sci 2017; 3(2): 30-7.
[http://dx.doi.org/10.19080/GJPPS.2017.03.555608]
[28]
Mishra DK, Dhote V, Bhargava A, Jain DK, Mishra PK. Amorphous solid dispersion technique for improved drug delivery: Basics to clinical applications. Drug Deliv Transl Res 2015; 5(6): 552-65.
[http://dx.doi.org/10.1007/s13346-015-0256-9] [PMID: 26306524]
[29]
Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull (Tokyo) 1961; 9(11): 866-72.
[http://dx.doi.org/10.1248/cpb.9.866]
[30]
Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 2002; 231(2): 131-44.
[http://dx.doi.org/10.1016/S0378-5173(01)00891-2] [PMID: 11755266]
[31]
Miyazaki T, Aso Y, Yoshioka S, Kawanishi T. Differences in crystallization rate of nitrendipine enantiomers in amorphous solid disper-sions with HPMC and HPMCP. Int J Pharm 2011; 407(1-2): 111-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.035] [PMID: 21277962]
[32]
Jachowicz R. Dissolution rates of partially water-soluble drugs from solid dispersion systems. I. Prednisolone. Int J Pharm 1987; 35(1-2): 1-5.
[http://dx.doi.org/10.1016/0378-5173(87)90067-6]
[33]
Hallouard F, Mehenni L, Lahiani-Skiba M, Anouar Y, Skiba M. Solid dispersions for oral administration: An overview of the methods for their preparation. Curr Pharm Des 2016; 22(32): 4942-58.
[http://dx.doi.org/10.2174/1381612822666160726095916] [PMID: 27464728]
[34]
Karagianni A, Kachrimanis K, Nikolakakis I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery. Pharmaceutics 2018; 10(3): 98.
[http://dx.doi.org/10.3390/pharmaceutics10030098] [PMID: 30029516]
[35]
van Drooge DJ, Hinrichs WL, Visser MR, Frijlink HW. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int J Pharm 2006; 310(1-2): 220-9.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.007] [PMID: 16427226]
[36]
Tanaka N, Imai K, Okimoto K, et al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): In vivo evaluation. J Control Release 2006; 112(1): 51-6.
[http://dx.doi.org/10.1016/j.jconrel.2006.01.020] [PMID: 16545477]
[37]
Urbanetz NA. Stabilization of solid dispersions of nimodipine and polyethylene glycol 2000. Eur J Pharm Sci 2006; 28(1-2): 67-76.
[http://dx.doi.org/10.1016/j.ejps.2005.12.009] [PMID: 16472995]
[38]
Chauhan H, Hui-Gu C, Atef E. Correlating the behavior of polymers in solution as precipitation inhibitor to its amorphous stabilization ability in solid dispersions. J Pharm Sci 2013; 102(6): 1924-35.
[http://dx.doi.org/10.1002/jps.23539] [PMID: 23580406]
[39]
Crowley MM, Zhang F, Repka MA, et al. Pharmaceutical applications of hot-melt extrusion: Part I. Drug Dev Ind Pharm 2007; 33(9): 909-26.
[http://dx.doi.org/10.1080/03639040701498759] [PMID: 17891577]
[40]
Vo CL, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 2013; 85(3 Pt B): 799-813.
[http://dx.doi.org/10.1016/j.ejpb.2013.09.007] [PMID: 24056053]
[41]
Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular disper-sions. Pharm Res 1997; 14(12): 1691-8.
[http://dx.doi.org/10.1023/A:1012167410376] [PMID: 9453055]
[42]
Bley H, Fussnegger B, Bodmeier R. Characterization and stability of solid dispersions based on PEG/polymer blends. Int J Pharm 2010; 390(2): 165-73.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.039] [PMID: 20132875]
[43]
Shin S-C, Oh I-J, Lee Y-B, Choi H-K, Choi J-S. Enhanced dissolution of furosemide by coprecipitating or cogrinding with crospovidone. Int J Pharm 1998; 175(1): 17-24.
[http://dx.doi.org/10.1016/S0378-5173(98)00260-9]
[44]
Lim H-T, Balakrishnan P, Oh DH, et al. Development of novel sibutramine base-loaded solid dispersion with gelatin and HPMC: Physi-cochemical characterization and pharmacokinetics in beagle dogs. Int J Pharm 2010; 397(1-2): 225-30.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.013] [PMID: 20637849]
[45]
Bialleck S, Rein H. Preparation of starch-based pellets by hot-melt extrusion. Eur J Pharm Biopharm 2011; 79(2): 440-8.
[http://dx.doi.org/10.1016/j.ejpb.2011.04.007] [PMID: 21570466]
[46]
Zhang M, Li H, Lang B, et al. Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. Eur J Pharm Biopharm 2012; 82(3): 534-44.
[http://dx.doi.org/10.1016/j.ejpb.2012.06.016] [PMID: 22974985]
[47]
van Drooge DJ, Hinrichs WL, Frijlink HW. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid disper-sions. J Control Release 2004; 97(3): 441-52.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.018] [PMID: 15212876]
[48]
Tambosi G, Coelho PF, Luciano S, et al. Challenges to improve the biopharmaceutical properties of poorly water-soluble drugs and the application of the solid dispersion technology. Materia (Rio J) 2018; 23(4)
[http://dx.doi.org/10.1590/s1517-707620180004.0558]
[49]
Pouton CW. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 2006; 29(3-4): 278-87.
[http://dx.doi.org/10.1016/j.ejps.2006.04.016] [PMID: 16815001]
[50]
Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: Selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm 2007; 328(2): 119-29.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.010] [PMID: 16968659]
[51]
Passerini N, Albertini B, González-Rodríguez ML, Cavallari C, Rodriguez L. Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation. Eur J Pharm Sci 2002; 15(1): 71-8.
[http://dx.doi.org/10.1016/S0928-0987(01)00210-X] [PMID: 11803133]
[52]
Damian F, Blaton N, Naesens L, et al. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyeth-ylene glycol 6000 and Gelucire 44/14. Eur J Pharm Sci 2000; 10(4): 311-22.
[http://dx.doi.org/10.1016/S0928-0987(00)00084-1] [PMID: 10838021]
[53]
Kalivoda A, Fischbach M, Kleinebudde P. Application of mixtures of polymeric carriers for dissolution enhancement of fenofibrate using hot-melt extrusion. Int J Pharm 2012; 429(1-2): 58-68.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.009] [PMID: 22440149]
[54]
Stevens CV, Meriggi A, Peristeropoulou M, et al. Polymeric surfactants based on inulin, a polysaccharide extracted from chicory. 1. Synthesis and interfacial properties. Biomacromolecules 2001; 2(4): 1256-9.
[http://dx.doi.org/10.1021/bm015570l] [PMID: 11777400]
[55]
Stevens CV, Meriggi A, Booten K. Chemical modification of inulin, a valuable renewable resource, and its industrial applications. Biomacromolecules 2001; 2(1): 1-16.
[http://dx.doi.org/10.1021/bm005642t] [PMID: 11749147]
[56]
Jagdale S, Patil S, Kuchekar B, Chabukswar A. Preparation and characterization of Metformin hydrochloride- Compritol 888 ATO solid dispersion. J Young Pharm 2011; 3(3): 197-204.
[http://dx.doi.org/10.4103/0975-1483.83758] [PMID: 21897658]
[57]
Nowak M, Gajda M, Baranowski P, Szymczyk P, Karolewicz B, Nartowski KP. Stabilisation and growth of metastable form II of flucon-azole in amorphous solid dispersions. Pharmaceutics 2019; 12(1): 12.
[http://dx.doi.org/10.3390/pharmaceutics12010012] [PMID: 31877666]
[58]
Shah S, Maddineni S, Lu J, Repka MA. Melt extrusion with poorly soluble drugs. Int J Pharm 2013; 453(1): 233-52.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.001] [PMID: 23178213]
[59]
Won D-H, Kim M-S, Lee S, Park J-S, Hwang S-J. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int J Pharm 2005; 301(1-2): 199-208.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.017] [PMID: 16024189]
[60]
Szűts A, Láng P, Ambrus R, Kiss L, Deli MA, Szabó-Révész P. Applicability of sucrose laurate as surfactant in solid dispersions pre-pared by melt technology. Int J Pharm 2011; 410(1-2): 107-10.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.033] [PMID: 21421029]
[61]
Moes JJ, Koolen SL, Huitema AD, Schellens JH, Beijnen JH, Nuijen B. Pharmaceutical development and preliminary clinical testing of an oral solid dispersion formulation of docetaxel (ModraDoc001). Int J Pharm 2011; 420(2): 244-50.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.041] [PMID: 21907780]
[62]
Goddeeris C, Willems T, Houthoofd K, Martens JA, Van den Mooter G. Dissolution enhancement of the anti-HIV drug UC 781 by for-mulation in a ternary solid dispersion with TPGS 1000 and Eudragit E100. Eur J Pharm Biopharm 2008; 70(3): 861-8.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.006] [PMID: 18691650]
[63]
Ali W, Williams AC, Rawlinson CF. Stochiometrically governed molecular interactions in drug: Poloxamer solid dispersions. Int J Pharm 2010; 391(1-2): 162-8.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.014] [PMID: 20214957]
[64]
de los Santos CJJ, Pérez-Martínez JI, Gómez-Pantoja ME, Moyano JR. Enhancement of albendazole dissolution properties using solid dispersions with Gelucire 50/13 and PEG 15000. J Drug Deliv Sci Technol 2017; 42: 261-72.
[http://dx.doi.org/10.1016/j.jddst.2017.03.030]
[65]
Tambe A, Pandita N. Enhanced solubility and drug release profile of boswellic acid using a poloxamer-based solid dispersion technique. J Drug Deliv Sci Technol 2018; 44: 172-80.
[http://dx.doi.org/10.1016/j.jddst.2017.11.025]
[66]
Huang J, Wigent RJ, Schwartz JB. Nifedipine molecular dispersion in microparticles of ammonio methacrylate copolymer and ethylcellu-lose binary blends for controlled drug delivery: Effect of matrix composition. Drug Dev Ind Pharm 2006; 32(10): 1185-97.
[http://dx.doi.org/10.1080/03639040600832827] [PMID: 17090441]
[67]
Desai J, Alexander K, Riga A. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int J Pharm 2006; 308(1-2): 115-23.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.034] [PMID: 16326055]
[68]
Cui F, Yang M, Jiang Y, et al. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method. J Control Release 2003; 91(3): 375-84.
[http://dx.doi.org/10.1016/S0168-3659(03)00275-X] [PMID: 12932715]
[69]
Ozeki T, Yuasa H, Kanaya Y. Controlled release from solid dispersion composed of poly(ethylene oxide)-Carbopol interpolymer com-plex with various cross-linking degrees of Carbopol. J Control Release 2000; 63(3): 287-95.
[http://dx.doi.org/10.1016/S0168-3659(99)00202-3] [PMID: 10601724]
[70]
Guo S, Wang G, Wu T, Bai F, Xu J, Zhang X. Solid dispersion of berberine hydrochloride and Eudragit® S100: Formulation, physico-chemical characterization and cytotoxicity evaluation. J Drug Deliv Sci Technol 2017; 40: 21-7.
[http://dx.doi.org/10.1016/j.jddst.2017.02.003]
[71]
Tran TT-D, Tran PH-L, Lim J, Park JB, Choi S-K, Lee B-J. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther Deliv 2010; 1(1): 51-62.
[http://dx.doi.org/10.4155/tde.10.3] [PMID: 22816119]
[72]
Yu D-G, Li J-J, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release 2018; 292: 91-110.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.016] [PMID: 30118788]
[73]
Tran PH-L, Tran TT-D, Park JB, Lee B-J. Controlled release systems containing solid dispersions: Strategies and mechanisms. Pharm Res 2011; 28(10): 2353-78.
[http://dx.doi.org/10.1007/s11095-011-0449-y] [PMID: 21553168]
[74]
Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007; 18(3): 241-68.
[http://dx.doi.org/10.1163/156856207779996931] [PMID: 17471764]
[75]
Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine 2005; 1(1): 22-30.
[http://dx.doi.org/10.1016/j.nano.2004.11.009] [PMID: 17292054]
[76]
Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 2009; 38(2): 372-90.
[http://dx.doi.org/10.1039/B709883A] [PMID: 19169455]
[77]
Venkataraman S, Hedrick JL, Ong ZY, et al. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 2011; 63(14-15): 1228-46.
[http://dx.doi.org/10.1016/j.addr.2011.06.016] [PMID: 21777633]
[78]
Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X. Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carri-ers. Prog Polym Sci 2009; 34(9): 893-910.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.05.002]
[79]
Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 2012; 41(9): 3679-98.
[http://dx.doi.org/10.1039/c2cs15308d] [PMID: 22441299]
[80]
Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev 2012; 64(5): 396-421.
[http://dx.doi.org/10.1016/j.addr.2011.07.009] [PMID: 21843564]
[81]
Bhugra C, Shmeis R, Krill SL, Pikal MJ. Prediction of onset of crystallization from experimental relaxation times. II. Comparison be-tween predicted and experimental onset times. J Pharm Sci 2008; 97(1): 455-72.
[http://dx.doi.org/10.1002/jps.21162] [PMID: 17854050]
[82]
Vyazovkin S, Dranca I. Physical stability and relaxation of amorphous indomethacin. J Phys Chem B 2005; 109(39): 18637-44.
[http://dx.doi.org/10.1021/jp052985i] [PMID: 16853398]
[83]
Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci 1994; 83(12): 1700-5.
[http://dx.doi.org/10.1002/jps.2600831211] [PMID: 7891297]
[84]
Duddu SP, Sokoloski TD. Dielectric analysis in the characterization of amorphous pharmaceutical solids. 1. Molecular mobility in poly(vinylpyrrolidone)-water systems in the glassy state. J Pharm Sci 1995; 84(6): 773-6.
[http://dx.doi.org/10.1002/jps.2600840621] [PMID: 7562421]
[85]
Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 1995; 12(6): 799-806.
[http://dx.doi.org/10.1023/A:1016292416526] [PMID: 7667182]
[86]
Gunawan L, Johari GP, Shanker RM. Structural relaxation of acetaminophen glass. Pharm Res 2006; 23(5): 967-79.
[http://dx.doi.org/10.1007/s11095-006-9898-0] [PMID: 16715387]
[87]
Vasanthavada M, Tong W-QT, Joshi Y, Kislalioglu MS. Phase behavior of amorphous molecular dispersions II: Role of hydrogen bond-ing in solid solubility and phase separation kinetics. Pharm Res 2005; 22(3): 440-8.
[http://dx.doi.org/10.1007/s11095-004-1882-y] [PMID: 15835750]
[88]
Kohri N, Yamayoshi Y, Xin H, et al. Improving the oral bioavailability of albendazole in rabbits by the solid dispersion technique. J Pharm Pharmacol 1999; 51(2): 159-64.
[http://dx.doi.org/10.1211/0022357991772277] [PMID: 10217314]
[89]
Yan Y-D, Sung JH, Kim KK, et al. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm 2012; 422(1-2): 202-10.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.053] [PMID: 22085435]
[90]
De Mohac LM, Raimi-Abraham B, Caruana R, Gaetano G, Licciardi M. Multicomponent solid dispersion a new generation of solid dis-persion produced by spray-drying. J Drug Deliv Sci Technol 2020; 57: 101750.
[http://dx.doi.org/10.1016/j.jddst.2020.101750]
[91]
Mura P, Moyano JR, González-Rodríguez ML, Rabasco-Alvaréz AM, Cirri M, Maestrelli F. Characterization and dissolution properties of ketoprofen in binary and ternary solid dispersions with polyethylene glycol and surfactants. Drug Dev Ind Pharm 2005; 31(4-5): 425-34.
[http://dx.doi.org/10.1080/03639040500214621] [PMID: 16093208]
[92]
Kolašinac N, Kachrimanis K, Homšek I. Grujić B, Ðurić Z, Ibrić S. Solubility enhancement of desloratadine by solid dispersion in poloxamers. Int J Pharm 2012; 436(1-2): 161-70.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.060] [PMID: 22772487]
[93]
Passerini N, Qi S, Albertini B, Grassi M, Rodriguez L, Craig DQ. Solid lipid microparticles produced by spray congealing: Influence of the atomizer on microparticle characteristics and mathematical modeling of the drug release. J Pharm Sci 2010; 99(2): 916-31.
[http://dx.doi.org/10.1002/jps.21854] [PMID: 19569208]
[94]
Verreck G, Decorte A, Heymans K, et al. The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64. Eur J Pharm Sci 2005; 26(3-4): 349-58.
[http://dx.doi.org/10.1016/j.ejps.2005.07.006] [PMID: 16137869]
[95]
Breitenbach J, Lewis J. Two concepts, one technology: Controlled release and solid dispersion with meltrex. Modified-Release Drug Deliv Technol 2003; p. 125.
[96]
Seo A, Holm P, Kristensen HG, Schaefer T. The preparation of agglomerates containing solid dispersions of diazepam by melt agglomer-ation in a high shear mixer. Int J Pharm 2003; 259(1-2): 161-71.
[http://dx.doi.org/10.1016/S0378-5173(03)00228-X] [PMID: 12787644]
[97]
Verhoeven E, De Beer TR, Schacht E, Van den Mooter G, Remon JP, Vervaet C. Influence of polyethylene glycol/polyethylene oxide on the release characteristics of sustained-release ethylcellulose mini-matrices produced by hot-melt extrusion: In vitro and in vivo evalua-tions. Eur J Pharm Biopharm 2009; 72(2): 463-70.
[http://dx.doi.org/10.1016/j.ejpb.2009.01.006] [PMID: 19462482]
[98]
Saerens L, Dierickx L, Lenain B, Vervaet C, Remon JP, De Beer T. Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur J Pharm Biopharm 2011; 77(1): 158-63.
[http://dx.doi.org/10.1016/j.ejpb.2010.09.015] [PMID: 20933084]
[99]
Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000; 50(1): 47-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00076-X] [PMID: 10840192]
[100]
LaFountaine JS, McGinity JW, Williams RO III. Challenges and strategies in thermal processing of amorphous solid dispersions: A re-view. AAPS PharmSciTech 2016; 17(1): 43-55.
[http://dx.doi.org/10.1208/s12249-015-0393-y] [PMID: 26307759]
[101]
Ford JL, Rubinstein MH. Formulation and ageing of tablets prepared from indomethacin-polyethylene glycol 6000 solid dispersions. Pharm Acta Helv 1980; 55(1): 1-7.
[PMID: 7367448]
[102]
Gupta MK, Tseng Y-C, Goldman D, Bogner RH. Hydrogen bonding with adsorbent during storage governs drug dissolution from solid-dispersion granules. Pharm Res 2002; 19(11): 1663-72.
[http://dx.doi.org/10.1023/A:1020905412654] [PMID: 12458672]
[103]
DiNunzio JC, Brough C, Miller DA, Williams RO III, McGinity JW. Fusion processing of itraconazole solid dispersions by kinetisol dispersing: A comparative study to hot melt extrusion. J Pharm Sci 2010; 99(3): 1239-53.
[http://dx.doi.org/10.1002/jps.21893] [PMID: 19681106]
[104]
Miller DA, Keen JM. KinetiSol®-based amorphous solid dispersions. In: Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW, Eds. Amorphous Solid Dispersions. New York: Springer 2014; pp. 567-77.
[http://dx.doi.org/10.1007/978-1-4939-1598-9_18]
[105]
Trasi NS, Bhujbal S, Zhou QT, Taylor LS. Amorphous solid dispersion formation via solvent granulation - A case study with ritonavir and lopinavir. Int J Pharm X 2019; 1: 100035.
[http://dx.doi.org/10.1016/j.ijpx.2019.100035] [PMID: 31788669]
[106]
Sahoo NG, Kakran M, Li L, Judeh Z, Müller RH. Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier. Mater Sci Eng C 2011; 31(2): 391-9.
[http://dx.doi.org/10.1016/j.msec.2010.10.018]
[107]
Muhrer G, Meier U, Fusaro F, Albano S, Mazzotti M. Use of compressed gas precipitation to enhance the dissolution behavior of a poor-ly water-soluble drug: Generation of drug microparticles and drug-polymer solid dispersions. Int J Pharm 2006; 308(1-2): 69-83.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.026] [PMID: 16324806]
[108]
Yoshihashi Y, Iijima H, Yonemochi E, Terada K. Estimation of physical stability of amorphous solid dispersion using differential scan-ning calorimetry. J Therm Anal Calorim 2006; 85(3): 689-92.
[http://dx.doi.org/10.1007/s10973-006-7653-8]
[109]
Marín MT, Margarit MV, Salcedo GE. Characterization and solubility study of solid dispersions of flunarizine and polyvinylpyrrolidone. Farmaco 2002; 57(9): 723-7.
[http://dx.doi.org/10.1016/S0014-827X(02)01262-4] [PMID: 12385522]
[110]
Majerik V, Charbit G, Badens E, et al. Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. J Supercrit Fluids 2007; 40(1): 101-10.
[http://dx.doi.org/10.1016/j.supflu.2006.03.027]
[111]
Cid AG, Simonazzi A, Palma SD, Bermúdez JM. Solid dispersion technology as a strategy to improve the bioavailability of poorly solu-ble drugs. Ther Deliv 2019; 10(6): 363-82.
[http://dx.doi.org/10.4155/tde-2019-0007] [PMID: 31094298]
[112]
Ceballos A, Cirri M, Maestrelli F, Corti G, Mura P. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco 2005; 60(11-12): 913-8.
[http://dx.doi.org/10.1016/j.farmac.2005.07.002] [PMID: 16129436]
[113]
Wang X, Michoel A, Van den Mooter G. Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int J Pharm 2005; 303(1-2): 54-61.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.002] [PMID: 16105723]
[114]
Li C, Li C, Le Y, Chen J-F. Formation of bicalutamide nanodispersion for dissolution rate enhancement. Int J Pharm 2011; 404(1-2): 257-63.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.015] [PMID: 21093558]
[115]
Overhoff KA, Engstrom JD, Chen B, et al. Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. Eur J Pharm Biopharm 2007; 65(1): 57-67.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.012] [PMID: 16987642]
[116]
Zhou X, Parikh A, Garg S. Edaravone dosage form. Google Patents 2019.
[117]
Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. Int J Pharm 2013; 453(1): 253-84.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.015] [PMID: 22820134]
[118]
Mann AKP, Schenck L, Koynov A, et al. Producing amorphous solid dispersions via co-precipitation and spray drying: Impact to physi-cochemical and biopharmaceutical properties. J Pharm Sci 2018; 107(1): 183-91.
[http://dx.doi.org/10.1016/j.xphs.2017.07.001] [PMID: 28711592]
[119]
Bikiaris DN. Solid dispersions, part I: Recent evolutions and future opportunities in manufacturing methods for dissolution rate en-hancement of poorly water-soluble drugs. Expert Opin Drug Deliv 2011; 8(11): 1501-19.
[http://dx.doi.org/10.1517/17425247.2011.618181] [PMID: 21919807]
[120]
Smithey D, Gao P, Taylor L. Amorphous solid dispersions: An enabling formulation technology for oral delivery of poorly water solu-ble drugs. AAPS Newsmagazine 2013; 16: 11-4.
[121]
Srinarong P, de Waard H, Frijlink HW, Hinrichs WL. Improved dissolution behavior of lipophilic drugs by solid dispersions: The pro-duction process as starting point for formulation considerations. Expert Opin Drug Deliv 2011; 8(9): 1121-40.
[http://dx.doi.org/10.1517/17425247.2011.598147] [PMID: 21722000]
[122]
Onoue S, Nakamura T, Uchida A, et al. Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobi-letin, a citrus polymethoxylated flavone, with improved hepatoprotective effects. Eur J Pharm Sci 2013; 49(4): 453-60.
[http://dx.doi.org/10.1016/j.ejps.2013.05.014] [PMID: 23707470]
[123]
van Drooge DJ, Braeckmans K, Hinrichs WL, Remaut K, De Smedt SC, Frijlink HW. Characterization of the mode of incorporation of lipophilic compounds in solid dispersions at the nanoscale using fluorescence resonance energy transfer (FRET). Macromol Rapid Commun 2006; 27(14): 1149-55.
[http://dx.doi.org/10.1002/marc.200600177]
[124]
van Drooge D-J, Hinrichs WL, Dickhoff BH, et al. Spray freeze drying to produce a stable Δ(9)-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation. Eur J Pharm Sci 2005; 26(2): 231-40.
[http://dx.doi.org/10.1016/j.ejps.2005.06.007] [PMID: 16084699]
[125]
Vishali DA, Monisha J, Sivakamasundari SK, Moses JA, Anandharamakrishnan C. Spray freeze drying: Emerging applications in drug delivery. J Control Release 2019; 300: 93-101.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.044] [PMID: 30836115]
[126]
Overhoff KA, Moreno A, Miller DA, Johnston KP, Williams RO III. Solid dispersions of itraconazole and enteric polymers made by ultra-rapid freezing. Int J Pharm 2007; 336(1): 122-32.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.043] [PMID: 17184938]
[127]
Yu L. Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Adv Drug Deliv Rev 2001; 48(1): 27-42.
[http://dx.doi.org/10.1016/S0169-409X(01)00098-9] [PMID: 11325475]
[128]
Hu J, Johnston KP, Williams RO III. Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: Organic solvent versus organic/aqueous co-solvent systems. Eur J Pharm Sci 2003; 20(3): 295-303.
[http://dx.doi.org/10.1016/S0928-0987(03)00203-3] [PMID: 14592695]
[129]
Hu J, Rogers TL, Brown J, Young T, Johnston KP, Williams RO III. Improvement of dissolution rates of poorly water soluble APIs us-ing novel spray freezing into liquid technology. Pharm Res 2002; 19(9): 1278-84.
[http://dx.doi.org/10.1023/A:1020390422785] [PMID: 12403063]
[130]
Tong HH, Du Z, Wang GN, et al. Spray freeze drying with polyvinylpyrrolidone and sodium caprate for improved dissolution and oral bioavailability of oleanolic acid, a BCS Class IV compound. Int J Pharm 2011; 404(1-2): 148-58.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.027] [PMID: 21094233]
[131]
Badens E, Majerik V, Horváth G, et al. Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing tech-nologies. Int J Pharm 2009; 377(1-2): 25-34.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.047] [PMID: 19442711]
[132]
Hur S, Kim WD. The electrospinning process and mechanical properties of nanofiber mats under vacuum conditions. Key Eng Mater 2006; 326-328: 393-6.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.326-328.393]
[133]
Verreck G, Chun I, Rosenblatt J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 2003; 92(3): 349-60.
[http://dx.doi.org/10.1016/S0168-3659(03)00342-0] [PMID: 14568415]
[134]
Chen Z, Chen X, Halloran K. Solid dispersions. Google Patents 2020.
[135]
Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res 2003; 20(5): 810-7.
[http://dx.doi.org/10.1023/A:1023450006281] [PMID: 12751639]
[136]
Kawakami K. Miscibility analysis of particulate solid dispersions prepared by electrospray deposition. Int J Pharm 2012; 433(1-2): 71-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.082] [PMID: 22583851]
[137]
Yu D-G, Shen X-X, Branford-White C, White K, Zhu L-M, Bligh SW. Oral fast-dissolving drug delivery membranes prepared from elec-trospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 2009; 20(5): 055104.
[http://dx.doi.org/10.1088/0957-4484/20/5/055104] [PMID: 19417335]
[138]
Goldberg AH, Gibaldi M, Kanig JL, Mayersohn M. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solu-tions and eutectic mixtures. IV. Chloramphenicol--urea system. J Pharm Sci 1966; 55(6): 581-3.
[http://dx.doi.org/10.1002/jps.2600550610] [PMID: 5924122]
[139]
Kim KT, Lee JY, Lee MY, Song CK, Choi J, Kim D-D. Solid dispersions as a drug delivery system. J Pharm Investig 2011; 41(3): 125-42.
[http://dx.doi.org/10.4333/KPS.2011.41.3.125]
[140]
García-Rodriguez JJ, de la Torre-Iglesias PM, Vegas-Sánchez MC, Torrado-Durán S, Bolás-Fernández F, Torrado-Santiago S. Changed crystallinity of mebendazole solid dispersion: Improved anthelmintic activity. Int J Pharm 2011; 403(1-2): 23-8.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.002] [PMID: 20934497]
[141]
Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: A review. Drug Deliv 2020; 27(1): 110-27.
[http://dx.doi.org/10.1080/10717544.2019.1704940] [PMID: 31885288]
[142]
Okonogi S, Oguchi T, Yonemochi E, Puttipipatkhachorn S, Yamamoto K. Improved dissolution of ofloxacin via solid dispersion. Int J Pharm 1997; 156(2): 175-80.
[http://dx.doi.org/10.1016/S0378-5173(97)00196-8]
[143]
Karavas E, Georgarakis E, Sigalas MP, Avgoustakis K, Bikiaris D. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interac-tions. Eur J Pharm Biopharm 2007; 66(3): 334-47.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.020] [PMID: 17267194]
[144]
Paudwal G, Rawat N, Gupta R, Baldi A, Singh G, Gupta PN. Recent advances in solid dispersion technology for efficient delivery of poorly water-soluble drugs. Curr Pharm Des 2019; 25(13): 1524-35.
[http://dx.doi.org/10.2174/1381612825666190618121553] [PMID: 31258070]
[145]
Kaushik R, Budhwar V, Kaushik D. An overview on recent patents and technologies on solid dispersion. Recent Pat Drug Deliv Formul 2020; 14(1): 63-74.
[http://dx.doi.org/10.2174/1872211314666200117094406] [PMID: 31951172]
[146]
Wang H, Fan Y, Xueqing C, Chen X. Solid dispersion of decoquinate, a preparation process and its application. Google Patents 2019.
[147]
Reddy BP, Reddy KR, Reddy DM, Reddy KSC, Krishna BV. Rufinamide solid dispersion. Google Patents 2019.
[148]
Hsu M-C, Lin C-C, King C-HR. Solid dispersion formulation. Google Patents 2018.
[149]
Adamer V, Krekeler A, Sedlmayr M. Solid dispersion comprising an orexin receptor antagonist. Google Patents 2019.
[150]
Fang LY, Wan J, Li K, Gu M. Ferroporphyrin solid dispersion and preparation method thereof. Google Patents 2019.
[151]
Watanabe S, Takemura S, Tsutsui Y, Kondo H, Nakanishi K, Sako K. Pharmaceutical composition for oral use with improved absorp-tion. Google Patents 2011.
[152]
Appel LE, Ray RJ, Lyon DK, West JB, McCray SB, Crew MD. Multiparticulate crystalline drug compositions having controlled release profiles. Google Patents 2011.
[153]
Birudaraj K, Brandl MT, Hegde S, Sana F, Stefanidis D. Pharmaceutical composition and process. Google Patents 2011.
[154]
Shaw K, Zhang M. Solid ganaxolone formulations and methods for the making and use thereof. Google Patents 2010.
[155]
Hanna MH, York P. Particle formation methods and their products. Google Patents 2006.
[156]
Takagi H, Kajiyama A, Yanagisawa M. Rapidly disintegrable pharmaceutical composition. Google Patents 2005.
[157]
Ghebre-Sellassie I, Reisch R Jr, Parikh R, Fawzi MB, Nesbitt RU. Solid pharmaceutical dispersions. Google Patents 2004.
[158]
Chen D, Tsay R-J, Lin H-I, Lu S-B. Stabilization of prostaglandin drug. Google Patents 1999.
[159]
Nair M, Brick MC, Lobo LA, Barber GN. Stable aqueous solid particle dispersions. Google Patents 1997.
[160]
de Waard H, Hinrichs WL, Visser MR, Bologna C, Frijlink HW. Unexpected differences in dissolution behavior of tablets prepared from solid dispersions with a surfactant physically mixed or incorporated. Int J Pharm 2008; 349(1-2): 66-73.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.023] [PMID: 17804180]
[161]
Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improv-ing the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 2019; 11(3): 132.
[http://dx.doi.org/10.3390/pharmaceutics11030132] [PMID: 30893899]
[162]
Shamma RN, Basha M. Soluplus®: A novel polymeric solubilizer for optimization of carvedilol solid dispersions: Formulation design and effect of method of preparation. Powder Technol 2013; 237: 406-14.
[http://dx.doi.org/10.1016/j.powtec.2012.12.038]
[163]
Song CK, Yoon I-S, Kim D-D. Poloxamer-based solid dispersions for oral delivery of docetaxel: Differential effects of F68 and P85 on oral docetaxel bioavailability. Int J Pharm 2016; 507(1-2): 102-8.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.002] [PMID: 27154250]
[164]
Colombo M, de Lima Melchiades G, Michels LR, et al. Solid dispersion of kaempferol: Formulation development, characterization, and oral bioavailability assessment. AAPS PharmSciTech 2019; 20(3): 106.
[http://dx.doi.org/10.1208/s12249-019-1318-y] [PMID: 30746582]
[165]
Lee J-Y, Kang W-S, Piao J, Yoon I-S, Kim D-D, Cho H-J. Soluplus®/TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan. Drug Des Devel Ther 2015; 9: 2745-56.
[PMID: 26045660]
[166]
Alshehri S, Shakeel F, Elzayat E, et al. Rat palatability, pharmacodynamics effect and bioavailability of mefenamic acid formulations utilizing hot-melt extrusion technology. Drug Dev Ind Pharm 2019; 45(10): 1610-6.
[http://dx.doi.org/10.1080/03639045.2019.1645161] [PMID: 31311329]
[167]
Silva de Sá I, Peron AP, Leimann FV, et al. In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and geno-toxicity of curcumin-loaded solid dispersions. Food Chem Toxicol 2019; 125: 29-37.
[http://dx.doi.org/10.1016/j.fct.2018.12.037] [PMID: 30592967]
[168]
Lian X, Dong J, Zhang J, et al. Soluplus® based 9-nitrocamptothecin solid dispersion for peroral administration: Preparation, characteri-zation, in vitro and in vivo evaluation. Int J Pharm 2014; 477(1-2): 399-407.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.055] [PMID: 25445521]
[169]
Fonseca-Berzal C, Palmeiro-Roldán R, Escario JA, et al. Novel solid dispersions of benznidazole: Preparation, dissolution profile and biological evaluation as alternative antichagasic drug delivery system. Exp Parasitol 2015; 149: 84-91.
[http://dx.doi.org/10.1016/j.exppara.2015.01.002] [PMID: 25583295]
[170]
Li H, Ma L, Li X, et al. A simple and effective method to improve bioavailability of glimepiride by utilizing hydrotropy technique. Eur J Pharm Sci 2015; 77: 154-60.
[http://dx.doi.org/10.1016/j.ejps.2015.06.016] [PMID: 26093052]
[171]
Reginald-Opara JN, Attama A, Ofokansi K, Umeyor C, Kenechukwu F. Molecular interaction between glimepiride and Soluplus®-PEG 4000 hybrid based solid dispersions: Characterisation and anti-diabetic studies. Int J Pharm 2015; 496(2): 741-50.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.007] [PMID: 26581773]
[172]
Zawar LR, Bari SB. Preparation, characterization and in vivo evaluation of antihyperglycemic activity of microwave generated repaglinide solid dispersion. Chem Pharm Bull (Tokyo) 2012; 60(4): 482-7.
[http://dx.doi.org/10.1248/cpb.60.482] [PMID: 22466731]
[173]
Ayenew Z, Paudel A, Van den Mooter G. Can compression induce demixing in amorphous solid dispersions? A case study of naproxen-PVP K25. Eur J Pharm Biopharm 2012; 81(1): 207-13.
[http://dx.doi.org/10.1016/j.ejpb.2012.01.007] [PMID: 22293573]
[174]
Beg S, Swain S, Rizwan M, Irfanuddin M, Malini DS. Bioavailability enhancement strategies: Basics, formulation approaches and regula-tory considerations. Curr Drug Deliv 2011; 8(6): 691-702.
[http://dx.doi.org/10.2174/156720111797635504] [PMID: 21864253]
[175]
Heo M-Y, Piao Z-Z, Kim T-W, Cao Q-R, Kim A, Lee B-J. Effect of solubilizing and microemulsifying excipients in polyethylene glycol 6000 solid dispersion on enhanced dissolution and bioavailability of ketoconazole. Arch Pharm Res 2005; 28(5): 604-11.
[http://dx.doi.org/10.1007/BF02977766] [PMID: 15974450]
[176]
Tran PH-L, Tran TT-D, Piao ZZ, et al. Physical properties and in vivo bioavailability in human volunteers of isradipine using controlled release matrix tablet containing self-emulsifying solid dispersion. Int J Pharm 2013; 450(1-2): 79-86.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.022] [PMID: 23612354]
[177]
Tran PH, Tran TT-D, Lee SA, Nho VH, Chi S-C, Lee B-J. Roles of MgO release from polyethylene glycol 6000-based solid dispersions on microenvironmental pH, enhanced dissolution and reduced gastrointestinal damage of telmisartan. Arch Pharm Res 2011; 34(5): 747-55.
[http://dx.doi.org/10.1007/s12272-011-0508-2] [PMID: 21656360]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy