Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors Associated with Hepatocellular Carcinoma

Author(s): Yichen Tian, Yongrong Lei, Yuna Fu, Heng Sun, Jianhua Wang* and Feng Xia*

Volume 22, Issue 6, 2022

Published on: 10 May, 2022

Page: [454 - 462] Pages: 9

DOI: 10.2174/1568009622666220330151725

Price: $65

Abstract

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, which can be attributed to the high incidence and first diagnosis at an advanced stage. Tyrosine kinase inhibitors (TKIs), a class of small-molecule targeting drugs, are primarily used for the clinical treatment of HCC after chemotherapy because they show significant clinical efficacy and low incidence of clinical adverse reactions. However, resistance to sorafenib and other TKIs, which can be used to treat advanced HCC, poses a significant challenge. Recent mechanistic studies have shown that epithelial-mesenchymal transition or transformation (EMT), ATP binding cassette (ABC) transporters, hypoxia, autophagy, and angiogenesis are involved in apoptosis, angiogenesis, HCC cell proliferation, and TKI resistance in patients with HCC. Exploring and overcoming such resistance mechanisms is essential to extend the therapeutic benefits of TKIs to patients with TKI-resistant HCC. This review aims to summarize the potential resistance mechanism proposed in recent years and methods to reverse TKI resistance in the context of HCC.

Keywords: Hepatocellular carcinoma, tyrosine kinase inhibitors, resistance mechanisms, sorafenib, target proteins, molecular mechanisms.

Graphical Abstract
[1]
Tang, W.; Chen, Z.; Zhang, W.; Cheng, Y.; Zhang, B.; Wu, F.; Wang, Q.; Wang, S.; Rong, D.; Reiter, F.P.; De Toni, E.N.; Wang, X. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Signal Transduct. Target. Ther., 2020, 5(1), 87.
[http://dx.doi.org/10.1038/s41392-020-0187-x] [PMID: 32532960]
[2]
Huang, A.; Yang, X.R.; Chung, W.Y.; Dennison, A.R.; Zhou, J. Targeted therapy for hepatocellular carcinoma. Signal Transduct. Target. Ther., 2020, 5(1), 146.
[http://dx.doi.org/10.1038/s41392-020-00264-x] [PMID: 32782275]
[3]
Younossi, Z.M. The efficacy of new antiviral regimens for hepatitis C infection: Evidence from a systematic review. Hepatology, 2018, 67(3), 1160-1162.
[http://dx.doi.org/10.1002/hep.29580] [PMID: 29023922]
[4]
Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.W.; Blanc, J.F.; Bolondi, L.; Klümpen, H.J.; Chan, S.L.; Zagonel, V.; Pressiani, T.; Ryu, M.H.; Venook, A.P.; Hessel, C.; Borgman-Hagey, A.E.; Schwab, G.; Kelley, R.K. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med., 2018, 379(1), 54-63.
[http://dx.doi.org/10.1056/NEJMoa1717002] [PMID: 29972759]
[5]
Finn, R.S.; Zhu, A.X.; Farah, W.; Almasri, J.; Zaiem, F.; Prokop, L.J.; Murad, M.H.; Mohammed, K. Therapies for advanced stage hepatocellular carcinoma with macrovascular invasion or metastatic disease: A systematic review and meta-analysis. Hepatology, 2018, 67(1), 422-435.
[http://dx.doi.org/10.1002/hep.29486] [PMID: 28881497]
[6]
Ogasawara, S.; Chiba, T.; Ooka, Y.; Suzuki, E.; Kanogawa, N.; Saito, T.; Motoyama, T.; Tawada, A.; Kanai, F.; Yokosuka, O. Post-progression survival in patients with advanced hepatocellular carcinoma resistant to sorafenib. Invest. New Drugs, 2016, 34(2), 255-260.
[http://dx.doi.org/10.1007/s10637-016-0323-1] [PMID: 26769245]
[7]
Sui, Z.G.; Xue, H.W.; Jin, F.B.; Leng, P. Sorafenib plus capecitabine for patients with advanced hepatocellular carcinoma. Zhongguo Yaoke Daxue Xuebao, 2008, 19, 848-849.
[8]
Matsusaka, S.; Hanna, D.L.; Ning, Y.; Yang, D.; Cao, S.; Berger, M.D.; Miyamoto, Y.; Suenaga, M.; Dan, S.; Mashima, T.; Seimiya, H.; Zhang, W.; Lenz, H.J. Epidermal growth factor receptor mRNA expression: A potential molecular escape mechanism from regorafenib. Cancer Sci., 2020, 111(2), 441-450.
[http://dx.doi.org/10.1111/cas.14273] [PMID: 31821662]
[9]
Han, Z.; He, Z.; Wang, C.; Wang, Q. The effect of apatinib in the treatment of sorafenib resistant metastatic hepatocellular carcinoma: A case report. Medicine (Baltimore), 2018, 97(49), e13388.
[http://dx.doi.org/10.1097/MD.0000000000013388] [PMID: 30544412]
[10]
Galle, E.; Thienpont, B.; Cappuyns, S.; Venken, T.; Busschaert, P.; Van Haele, M.; Van Cutsem, E.; Roskams, T.; van Pelt, J.; Verslype, C.; Dekervel, J.; Lambrechts, D. DNA methylation-driven EMT is a common mechanism of resistance to various therapeutic agents in cancer. Clin. Epigenetics, 2020, 12(1), 27.
[http://dx.doi.org/10.1186/s13148-020-0821-z] [PMID: 32059745]
[11]
Juengpanich, S.; Topatana, W.; Lu, C.; Staiculescu, D.; Li, S.; Cao, J.; Lin, J.; Hu, J.; Chen, M.; Chen, J.; Cai, X. Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era. Int. J. Cancer, 2020, 147(7), 1778-1792.
[http://dx.doi.org/10.1002/ijc.32970] [PMID: 32162677]
[12]
Deng, J.; Shao, J.; Markowitz, J.S.; An, G. ABC transporters in multi-drug resistance and ADME-Tox of small molecule tyrosine kinase inhibitors. Pharm. Res., 2014, 31(9), 2237-2255.
[http://dx.doi.org/10.1007/s11095-014-1389-0] [PMID: 24842659]
[13]
Atwa, S.M.; Odenthal, M.; El Tayebi, H.M. Genetic heterogeneity, therapeutic hurdle confronting sorafenib and immune checkpoint inhibitors in hepatocellular carcinoma. Cancers (Basel), 2021, 13(17), 4343.
[14]
Kuczynski, E.A.; Lee, C.R.; Man, S.; Chen, E.; Kerbel, R.S. Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma. Cancer Res., 2015, 75(12), 2510-2519.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3687] [PMID: 25908587]
[15]
Liu, X.; Qin, S. Immune checkpoint inhibitors in hepatocellular carcinoma: Opportunities and challenges. Oncologist, 2019, 24(S1)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1634/theoncologist.2019-IO-S1-s01] [PMID: 30819826]
[16]
Liu, Z.; Lin, Y.; Zhang, J.; Zhang, Y.; Li, Y.; Liu, Z.; Li, Q.; Luo, M.; Liang, R.; Ye, J. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 447.
[http://dx.doi.org/10.1186/s13046-019-1412-8] [PMID: 31684985]
[17]
Toledo, R.A.; Garralda, E.; Mitsi, M.; Pons, T.; Monsech, J.; Vega, E.; Otero, Á.; Albarran, M.I.; Baños, N.; Durán, Y.; Bonilla, V.; Sarno, F.; Camacho-Artacho, M.; Sanchez-Perez, T.; Perea, S.; Álvarez, R.; De Martino, A.; Lietha, D.; Blanco-Aparicio, C.; Cubillo, A.; Domínguez, O.; Martínez-Torrecuadrada, J.L.; Hidalgo, M. Exome sequencing of plasma DNA portrays the mutation landscape of colorectal cancer and discovers mutated VEGFR2 receptors as modulators of antiangiogenic therapies. Clin. Cancer Res., 2018, 24(15), 3550-3559.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0103] [PMID: 29588308]
[18]
Sueangoen, N.; Tantiwetrueangdet, A.; Panvichian, R. HCC-derived EGFR mutants are functioning, EGF-dependent, and erlotinib-resistant. Cell Biosci., 2020, 10(1), 41.
[http://dx.doi.org/10.1186/s13578-020-00407-1] [PMID: 32190291]
[19]
Grillo, E.; Corsini, M.; Ravelli, C.; di Somma, M.; Zammataro, L.; Monti, E.; Presta, M.; Mitola, S. A novel variant of VEGFR2 identified by a pan-cancer screening of recurrent somatic mutations in the catalytic domain of tyrosine kinase receptors enhances tumor growth and metastasis. Cancer Lett., 2021, 496, 84-92.
[http://dx.doi.org/10.1016/j.canlet.2020.09.027] [PMID: 33035615]
[20]
Gorre, M.E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P.N.; Sawyers, C.L. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001, 293(5531), 876-880.
[http://dx.doi.org/10.1126/science.1062538] [PMID: 11423618]
[21]
Minnelli, C.; Laudadio, E.; Mobbili, G.; Galeazzi, R. Conformational insight on WT- and mutated-EGFR receptor activation and inhibition by epigallocatechin-3-gallate: Over a rational basis for the design of selective non-small-cell lung anticancer agents. Int. J. Mol. Sci., 2020, 21(5), E1721.
[http://dx.doi.org/10.3390/ijms21051721] [PMID: 32138321]
[22]
Negri, F.V.; Dal Bello, B.; Porta, C.; Campanini, N.; Rossi, S.; Tinelli, C.; Poggi, G.; Missale, G.; Fanello, S.; Salvagni, S.; Ardizzoni, A.; Maria, S.E. Expression of pERK and VEGFR-2 in advanced hepatocellular carcinoma and resistance to sorafenib treatment. Liver Int., 2015, 35(8), 2001-2008.
[http://dx.doi.org/10.1111/liv.12778] [PMID: 25559745]
[23]
Ji, L.; Lin, Z.; Wan, Z.; Xia, S.; Jiang, S.; Cen, D.; Cai, L.; Xu, J.; Cai, X. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR. Cell Death Dis., 2020, 11(4), 250.
[http://dx.doi.org/10.1038/s41419-020-2413-4] [PMID: 32313144]
[24]
Gusenbauer, S.; Vlaicu, P.; Ullrich, A. HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene, 2013, 32(33), 3846-3856.
[http://dx.doi.org/10.1038/onc.2012.396] [PMID: 23045285]
[25]
Ezzoukhry, Z.; Louandre, C.; Trécherel, E.; Godin, C.; Chauffert, B.; Dupont, S.; Diouf, M.; Barbare, J.C.; Mazière, J.C.; Galmiche, A. EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int. J. Cancer, 2012, 131(12), 2961-2969.
[http://dx.doi.org/10.1002/ijc.27604] [PMID: 22514082]
[26]
Scartozzi, M.; Faloppi, L.; Svegliati Baroni, G.; Loretelli, C.; Piscaglia, F.; Iavarone, M.; Toniutto, P.; Fava, G.; De Minicis, S.; Mandolesi, A.; Bianconi, M.; Giampieri, R.; Granito, A.; Facchetti, F.; Bitetto, D.; Marinelli, S.; Venerandi, L.; Vavassori, S.; Gemini, S.; D’Errico, A.; Colombo, M.; Bolondi, L.; Bearzi, I.; Benedetti, A.; Cascinu, S. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: The ALICE-1 study. Int. J. Cancer, 2014, 135(5), 1247-1256.
[http://dx.doi.org/10.1002/ijc.28772] [PMID: 24510746]
[27]
Gurzu, S.; Kobori, L.; Fodor, D.; Jung, I. Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: A review. BioMed Res. Int., 2019, 2019, 2962580.
[http://dx.doi.org/10.1155/2019/2962580] [PMID: 31781608]
[28]
Cabral, L.K.D.; Tiribelli, C.; Sukowati, C.H.C. Sorafenib resistance in hepatocellular carcinoma: The relevance of genetic heterogeneity. Cancers (Basel), 2020, 12(6), E1576.
[http://dx.doi.org/10.3390/cancers12061576] [PMID: 32549224]
[29]
Zhang, P.F.; Wang, F.; Wu, J.; Wu, Y.; Huang, W.; Liu, D.; Huang, X.Y.; Zhang, X.M.; Ke, A.W. LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR-128/CD151 pathway in hepatocellular carcinoma. J. Cell. Physiol., 2019, 234(3), 2788-2794.
[http://dx.doi.org/10.1002/jcp.27095] [PMID: 30132868]
[30]
Xu, Y.; Xu, H.; Li, M.; Wu, H.; Guo, Y.; Chen, J.; Shan, J.; Chen, X.; Shen, J.; Ma, Q.; Liu, J.; Wang, M.; Zhao, W.; Hong, J.; Qi, Y.; Yao, C.; Zhang, Q.; Yang, Z.; Qian, C.; Li, J. KIAA1199 promotes sorafenib tolerance and the metastasis of hepatocellular carcinoma by activating the EGF/EGFR-dependent epithelial-mesenchymal transition program. Cancer Lett., 2019, 454, 78-89.
[http://dx.doi.org/10.1016/j.canlet.2019.03.049] [PMID: 30980868]
[31]
Hu, B.; Cheng, J.W.; Hu, J.W.; Li, H.; Ma, X.L.; Tang, W.G.; Sun, Y.F.; Guo, W.; Huang, A.; Zhou, K.Q.; Gao, P.T.; Cao, Y.; Qiu, S.J.; Zhou, J.; Fan, J.; Yang, X.R. KPNA3 confers sorafenib resistance to advanced hepatocellular carcinoma via TWIST regulated epithelial-mesenchymal transition. J. Cancer, 2019, 10(17), 3914-3925.
[http://dx.doi.org/10.7150/jca.31448] [PMID: 31417635]
[32]
Wang, J.; Zhang, N.; Han, Q.; Lu, W.; Wang, L.; Yang, D.; Zheng, M.; Zhang, Z.; Liu, H.; Lee, T.H.; Zhou, X.Z.; Lu, K.P. Pin1 inhibition reverses the acquired resistance of human hepatocellular carcinoma cells to Regorafenib via the Gli1/Snail/E-cadherin pathway. Cancer Lett., 2019, 444, 82-93.
[http://dx.doi.org/10.1016/j.canlet.2018.12.010] [PMID: 30583078]
[33]
Dekervel, J.; Bulle, A.; Windmolders, P.; Lambrechts, D.; Van Cutsem, E.; Verslype, C.; van Pelt, J. Acriflavine inhibits acquired drug resistance by blocking the epithelial-to-mesenchymal transition and the unfolded protein response. Transl. Oncol., 2017, 10(1), 59-69.
[http://dx.doi.org/10.1016/j.tranon.2016.11.008] [PMID: 27987431]
[34]
Tao, L.; Shu-Ling, W.; Jing-Bo, H.; Ying, Z.; Rong, H.; Xiang-Qun, L.; Wen-Jie, C.; Lin-Fu, Z. MiR-451a attenuates doxorubicin resistance in lung cancer via suppressing Epithelial Mesenchymal Transition (EMT) through targeting c-Myc. Biomed. Pharmacother., 2020, 125, 109962.
[http://dx.doi.org/10.1016/j.biopha.2020.109962] [PMID: 32106373]
[35]
Chen, W.; Yang, J.; Zhang, Y.; Cai, H.; Chen, X.; Sun, D. Regorafenib reverses HGF-induced sorafenib resistance by inhibiting epithelial-mesenchymal transition in hepatocellular carcinoma. FEBS Open Bio, 2019, 9(2), 335-347.
[http://dx.doi.org/10.1002/2211-5463.12578] [PMID: 30761258]
[36]
Mohammad, I.S.; He, W.; Yin, L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. Pharmacother., 2018, 100, 335-348.
[http://dx.doi.org/10.1016/j.biopha.2018.02.038] [PMID: 29453043]
[37]
Zhang, H.; Xu, H.; Ashby, C.R.; Assaraf, Y.G.; Chen, Z.S.; Liu, H.M. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med. Res. Rev., 2020.
[PMID: 33047304]
[38]
Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D-H.; Chen, Z-S. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat., 2016, 27, 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[39]
Bae, S.; D’Cunha, R.; Shao, J.; An, G. Effect of 5,7-dimethoxyflavone on Bcrp1-mediated transport of sorafenib in vitro and in vivo in mice. Eur. J. Pharm. Sci., 2018, 117, 27-34.
[http://dx.doi.org/10.1016/j.ejps.2018.02.004] [PMID: 29425861]
[40]
Beretta, G.L.; Cassinelli, G.; Pennati, M.; Zuco, V.; Gatti, L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur. J. Med. Chem., 2017, 142, 271-289.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.062] [PMID: 28851502]
[41]
Di Giacomo, S.; Briz, O.; Monte, M.J.; Sanchez-Vicente, L.; Abete, L.; Lozano, E.; Mazzanti, G.; Di Sotto, A.; Marin, J.J.G. Chemosensitization of hepatocellular carcinoma cells to sorafenib by β-caryophyllene oxide-induced inhibition of ABC export pumps. Arch. Toxicol., 2019, 93(3), 623-634.
[http://dx.doi.org/10.1007/s00204-019-02395-9] [PMID: 30659321]
[42]
Huang, Y.S.; Xue, Z.; Zhang, H. Sorafenib reverses resistance of gastric cancer to treatment by cisplatin through down-regulating MDR1 expression. Med. Oncol., 2015, 32(2), 470.
[http://dx.doi.org/10.1007/s12032-014-0470-1] [PMID: 25579168]
[43]
Mazard, T.; Causse, A.; Simony, J.; Leconet, W.; Vezzio-Vie, N.; Torro, A.; Jarlier, M.; Evrard, A.; Del Rio, M.; Assenat, E.; Martineau, P.; Ychou, M.; Robert, B.; Gongora, C. Sorafenib overcomes irinotecan resistance in colorectal cancer by inhibiting the ABCG2 drug-efflux pump. Mol. Cancer Ther., 2013, 12(10), 2121-2134.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0966] [PMID: 23960095]
[44]
Wang, Y.J.; Zhang, Y.K.; Zhang, G.N.; Al Rihani, S.B.; Wei, M.N.; Gupta, P.; Zhang, X.Y.; Shukla, S.; Ambudkar, S.V.; Kaddoumi, A.; Shi, Z.; Chen, Z.S. Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: In vitro and in vivo study. Cancer Lett., 2017, 396, 145-154.
[http://dx.doi.org/10.1016/j.canlet.2017.03.011] [PMID: 28302530]
[45]
Méndez-Blanco, C.; Fondevila, F.; García-Palomo, A.; González-Gallego, J.; Mauriz, J.L. Sorafenib resistance in hepatocarcinoma: Role of hypoxia-inducible factors. Exp. Mol. Med., 2018, 50(10), 1-9.
[http://dx.doi.org/10.1038/s12276-018-0159-1] [PMID: 30315182]
[46]
Zhao, C.X.; Luo, C.L.; Wu, X.H. Hypoxia promotes 786-O cells invasiveness and resistance to sorafenib via HIF-2α/COX-2. Med. Oncol., 2015, 32(1), 419.
[http://dx.doi.org/10.1007/s12032-014-0419-4] [PMID: 25487445]
[47]
Lu, Y.; Liu, Y.; Oeck, S.; Glazer, P.M. Hypoxia promotes resistance to EGFR inhibition in NSCLC cells via the histone demethylases, LSD1 and PLU-1. Mol. Cancer Res., 2018, 16(10), 1458-1469.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0637] [PMID: 29934325]
[48]
Malale, K.; Fu, J.; Qiu, L.; Zhan, K.; Gan, X.; Mei, Z. Hypoxia-induced aquaporin-3 changes hepatocellular carcinoma cell sensitivity to sorafenib by activating the PI3K/Akt signaling pathway. Cancer Manag. Res., 2020, 12, 4321-4333.
[http://dx.doi.org/10.2147/CMAR.S243918] [PMID: 32606928]
[49]
Méndez-Blanco, C.; Fondevila, F.; Fernández-Palanca, P.; García-Palomo, A.; Pelt, J.V.; Verslype, C.; González-Gallego, J.; Mauriz, J.L. Stabilization of hypoxia-inducible factors and BNIP3 promoter methylation contribute to acquired sorafenib resistance in human hepatocarcinoma cells. Cancers (Basel), 2019, 11(12), E1984.
[http://dx.doi.org/10.3390/cancers11121984] [PMID: 31835431]
[50]
Dong, X.F.; Liu, T.Q.; Zhi, X.T.; Zou, J.; Zhong, J.T.; Li, T.; Mo, X.L.; Zhou, W.; Guo, W.W.; Liu, X.; Chen, Y.Y.; Li, M.Y.; Zhong, X.G.; Han, Y.M.; Wang, Z.H.; Dong, Z.R. COX-2/PGE2 axis regulates HIF2α activity to promote hepatocellular carcinoma hypoxic response and reduce the sensitivity of sorafenib treatment. Clin. Cancer Res., 2018, 24(13), 3204-3216.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2725] [PMID: 29514844]
[51]
Liang, Y.; Zheng, T.; Song, R.; Wang, J.; Yin, D.; Wang, L.; Liu, H.; Tian, L.; Fang, X.; Meng, X.; Jiang, H.; Liu, J.; Liu, L. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-α inhibition in hepatocellular carcinoma. Hepatology, 2013, 57(5), 1847-1857.
[http://dx.doi.org/10.1002/hep.26224] [PMID: 23299930]
[52]
Qiu, Y.; Shan, W.; Yang, Y.; Jin, M.; Dai, Y.; Yang, H.; Jiao, R.; Xia, Y.; Liu, Q.; Ju, L.; Huang, G.; Zhang, J.; Yang, L.; Li, L.; Li, Y. Reversal of sorafenib resistance in hepatocellular carcinoma: Epigenetically regulated disruption of 14-3-3η/hypoxia-inducible factor-1α. Cell Death Discov., 2019, 5(1), 120.
[http://dx.doi.org/10.1038/s41420-019-0200-8] [PMID: 31341646]
[53]
Collet, G.; Lamerant-Fayel, N.; Tertil, M.; El Hafny-Rahbi, B.; Stepniewski, J.; Guichard, A.; Foucault-Collet, A.; Klimkiewicz, K.; Petoud, S.; Matejuk, A.; Grillon, C.; Jozkowicz, A.; Dulak, J.; Kieda, C. Hypoxia-regulated overexpression of soluble VEGFR2 controls angiogenesis and inhibits tumor growth. Mol. Cancer Ther., 2014, 13(1), 165-178.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0637] [PMID: 24170768]
[54]
Nobre, A.R.; Entenberg, D.; Wang, Y.; Condeelis, J.; Aguirre-Ghiso, J.A. The different routes to metastasis via hypoxia-regulated programs. Trends Cell Biol., 2018, 28(11), 941-956.
[http://dx.doi.org/10.1016/j.tcb.2018.06.008] [PMID: 30041830]
[55]
Ahmadi, M.; Ahmadihosseini, Z.; Allison, S.J.; Begum, S.; Rockley, K.; Sadiq, M.; Chintamaneni, S.; Lokwani, R.; Hughes, N.; Phillips, R.M. Hypoxia modulates the activity of a series of clinically approved tyrosine kinase inhibitors. Br. J. Pharmacol., 2014, 171(1), 224-236.
[http://dx.doi.org/10.1111/bph.12438] [PMID: 24117380]
[56]
Han, R.; Li, S. Regorafenib delays the proliferation of hepatocellular carcinoma by inducing autophagy. Pharmazie, 2018, 73(4), 218-222.
[PMID: 29609689]
[57]
Sun, T.; Liu, H.; Ming, L. Multiple roles of autophagy in the sorafenib resistance of hepatocellular carcinoma. Cell. Physiol. Biochem., 2017, 44(2), 716-727.
[http://dx.doi.org/10.1159/000485285] [PMID: 29169150]
[58]
Tong, M.; Che, N.; Zhou, L.; Luk, S.T.; Kau, P.W.; Chai, S.; Ngan, E.S.; Lo, C.M.; Man, K.; Ding, J.; Lee, T.K.; Ma, S. Efficacy of annexin A3 blockade in sensitizing hepatocellular carcinoma to sorafenib and regorafenib. J. Hepatol., 2018, 69(4), 826-839.
[http://dx.doi.org/10.1016/j.jhep.2018.05.034] [PMID: 29885413]
[59]
Wu, F.Q.; Fang, T.; Yu, L.X.; Lv, G.S.; Lv, H.W.; Liang, D.; Li, T.; Wang, C.Z.; Tan, Y.X.; Ding, J.; Chen, Y.; Tang, L.; Guo, L.N.; Tang, S.H.; Yang, W.; Wang, H.Y. ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J. Hepatol., 2016, 65(2), 314-324.
[http://dx.doi.org/10.1016/j.jhep.2016.04.019] [PMID: 27154061]
[60]
Lu, S.; Yao, Y.; Xu, G.; Zhou, C.; Zhang, Y.; Sun, J.; Jiang, R.; Shao, Q.; Chen, Y. CD24 regulates sorafenib resistance via activating autophagy in hepatocellular carcinoma. Cell Death Dis., 2018, 9(6), 646.
[http://dx.doi.org/10.1038/s41419-018-0681-z] [PMID: 29844385]
[61]
Li, X.; Zhou, Y.; Yang, L.; Ma, Y.; Peng, X.; Yang, S.; Li, H.; Liu, J. LncRNA NEAT1 promotes autophagy via regulating miR-204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma. J. Cell. Physiol., 2020, 235(4), 3402-3413.
[http://dx.doi.org/10.1002/jcp.29230] [PMID: 31549407]
[62]
Jing, Z.; Ye, X.; Ma, X.; Hu, X.; Yang, W.; Shi, J.; Chen, G.; Gong, L. SNGH16 regulates cell autophagy to promote sorafenib resistance through suppressing miR-23b-3p via sponging EGR1 in hepatocellular carcinoma. Cancer Med., 2020, 9(12), 4324-4338.
[http://dx.doi.org/10.1002/cam4.3020] [PMID: 32324343]
[63]
Zhai, B.; Hu, F.; Jiang, X.; Xu, J.; Zhao, D.; Liu, B.; Pan, S.; Dong, X.; Tan, G.; Wei, Z.; Qiao, H.; Jiang, H.; Sun, X. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol. Cancer Ther., 2014, 13(6), 1589-1598.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1043] [PMID: 24705351]
[64]
Nassour, J.; Radford, R.; Correia, A.; Fusté, J.M.; Schoell, B.; Jauch, A.; Shaw, R.J.; Karlseder, J. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature, 2019, 565(7741), 659-663.
[http://dx.doi.org/10.1038/s41586-019-0885-0] [PMID: 30675059]
[65]
Xiong, Y.Q.; Sun, H.C.; Zhang, W.; Zhu, X.D.; Zhuang, P.Y.; Zhang, J.B.; Wang, L.; Wu, W.Z.; Qin, L.X.; Tang, Z.Y. Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin. Cancer Res., 2009, 15(15), 4838-4846.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2780] [PMID: 19638466]
[66]
Li, D.; Wang, T.; Sun, F.F.; Feng, J.Q.; Peng, J.J.; Li, H.; Wang, C.; Wang, D.; Liu, Y.; Bai, Y.D.; Shi, M.L.; Zhang, T. MicroRNA-375 represses tumor angiogenesis and reverses resistance to sorafenib in hepatocarcinoma. Cancer Gene Ther., 2020.
[PMID: 32616906]
[67]
Yang, W.; Li, Z.; Qin, R.; Wang, X.; An, H.; Wang, Y.; Zhu, Y.; Liu, Y.; Cai, S.; Chen, S.; Sun, T.; Meng, J.; Yang, C. YY1 promotes endothelial cell-dependent tumor angiogenesis in hepatocellular carcinoma by transcriptionally activating VEGFA. Front. Oncol., 2019, 9, 1187.
[http://dx.doi.org/10.3389/fonc.2019.01187] [PMID: 31799179]
[68]
Kuczynski, E.A.; Yin, M.; Bar-Zion, A.; Lee, C.R.; Butz, H.; Man, S.; Daley, F.; Vermeulen, P.B.; Yousef, G.M.; Foster, F.S.; Reynolds, A.R.; Kerbel, R.S. Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J. Natl. Cancer Inst., 2016, 108(8), djw030.
[http://dx.doi.org/10.1093/jnci/djw030] [PMID: 27059374]
[69]
Liao, Z.H.; Zhu, H.Q.; Chen, Y.Y.; Chen, R.L.; Fu, L.X.; Li, L.; Zhou, H.; Zhou, J.L.; Liang, G. The epigallocatechin gallate derivative Y6 inhibits human hepatocellular carcinoma by inhibiting angiogenesis in MAPK/ERK1/2 and PI3K/AKT/HIF-α/VEGF dependent pathways. J. Ethnopharmacol., 2020, 259, 112852.
[http://dx.doi.org/10.1016/j.jep.2020.112852] [PMID: 32278759]
[70]
Zanjani, L.S.; Madjd, Z.; Rasti, A.; Asgari, M.; Abolhasani, M.; Tam, K.J.; Roudi, R.; Mælandsmo, G.M.; Fodstad, Ø.; Andersson, Y. Spheroid-derived cells from renal adenocarcinoma have low telomerase activity and high stem-like and invasive characteristics. Front. Oncol., 2019, 9, 1302.
[71]
Liu, R.; Li, Y.; Tian, L.; Shi, H.; Wang, J.; Liang, Y.; Sun, B.; Wang, S.; Zhou, M.; Wu, L.; Nie, J.; Lin, B.; Tang, S.; Zhang, Y.; Wang, G.; Zhang, C.; Han, J.; Xu, B.; Liu, L.; Gong, K.; Zheng, T. Gankyrin drives metabolic reprogramming to promote tumorigenesis, metastasis and drug resistance through activating β-catenin/c-Myc signaling in human hepatocellular carcinoma. Cancer Lett., 2019, 443, 34-46.
[http://dx.doi.org/10.1016/j.canlet.2018.11.030] [PMID: 30503555]
[72]
Saraswati, S.; Alhaider, A.; Abdelgadir, A.M.; Tanwer, P.; Korashy, H.M. Phloretin attenuates STAT-3 activity and overcomes sorafenib resistance targeting SHP-1-mediated inhibition of STAT3 and Akt/VEGFR2 pathway in hepatocellular carcinoma. Cell Commun. Signal., 2019, 17(1), 127.
[http://dx.doi.org/10.1186/s12964-019-0430-7] [PMID: 31619257]
[73]
Zeidan, M.A.; Mostafa, A.S.; Gomaa, R.M.; Abou-Zeid, L.A.; El-Mesery, M.; El-Sayed, M.A.; Selim, K.B. Design, synthesis and docking study of novel picolinamide derivatives as anticancer agents and VEGFR-2 inhibitors. Eur. J. Med. Chem., 2019, 168, 315-329.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.050] [PMID: 30826508]
[74]
Lin, C.H.; Elkholy, K.H.; Wani, N.A.; Li, D.; Hu, P.; Barajas, J.M.; Yu, L.; Zhang, X.; Jacob, S.T.; Khan, W.N.; Bai, X.F.; Noonan, A.M.; Ghoshal, K. Ibrutinib potentiates antihepatocarcinogenic efficacy of sorafenib by targeting EGFR in tumor cells and BTK in immune cells in the stroma. Mol. Cancer Ther., 2020, 19(2), 384-396.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0135] [PMID: 31582534]
[75]
Chuma, M.; Uojima, H.; Numata, K.; Hidaka, H.; Toyoda, H.; Hiraoka, A.; Tada, T.; Hirose, S.; Atsukawa, M.; Itokawa, N.; Arai, T.; Kako, M.; Nakazawa, T.; Wada, N.; Iwasaki, S.; Miura, Y.; Hishiki, S.; Nishigori, S.; Morimoto, M.; Hattori, N.; Ogushi, K.; Nozaki, A.; Fukuda, H.; Kagawa, T.; Michitaka, K.; Kumada, T.; Maeda, S. Early changes in circulating FGF19 and Ang-2 levels as possible predictive biomarkers of clinical response to lenvatinib therapy in hepatocellular carcinoma. Cancers (Basel), 2020, 12(2), E293.
[http://dx.doi.org/10.3390/cancers12020293] [PMID: 31991869]
[76]
Liu, J.; Qiu, W.C.; Shen, X.Y.; Sun, G.C. Bioinformatics analysis revealed hub genes and pathways involved in sorafenib resistance in hepatocellular carcinoma. Math. Biosci. Eng., 2019, 16(6), 6319-6334.
[http://dx.doi.org/10.3934/mbe.2019315] [PMID: 31698564]
[77]
Guo, Q.R.; Zhang, L.L.; Liu, J.F.; Li, Z.; Li, J.J.; Zhou, W.M.; Wang, H.; Li, J.Q.; Liu, D.Y.; Yu, X.Y.; Zhang, J.Y. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics, 2021, 5(1), 73-89.
[http://dx.doi.org/10.7150/ntno.49614] [PMID: 33391976]
[78]
Golkowski, M.; Lau, H.T.; Chan, M.; Kenerson, H.; Vidadala, V.N.; Shoemaker, A.; Maly, D.J.; Yeung, R.S.; Gujral, T.S.; Ong, S.E. Pharmacoproteomics identifies kinase pathways that drive the epithelial-mesenchymal transition and drug resistance in hepatocellular carcinoma. Cell Syst., 2020, 11(2), 196-207.e7.
[http://dx.doi.org/10.1016/j.cels.2020.07.006] [PMID: 32755597]
[79]
Wei, L.; Lee, D.; Law, C.T.; Zhang, M.S.; Shen, J.; Chin, D.W.; Zhang, A.; Tsang, F.H.; Wong, C.L.; Ng, I.O.; Wong, C.C.; Wong, C.M. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat. Commun., 2019, 10(1), 4681.
[http://dx.doi.org/10.1038/s41467-019-12606-7] [PMID: 31615983]
[80]
Roudi, R.; D’Angelo, A.; Sirico, M.; Sobhani, N. Immunotherapeutic treatments in hepatocellular carcinoma; achievements, challenges and future prospects. Int. Immunopharmacol., 2021, 101(Pt A), 108322.
[http://dx.doi.org/10.1016/j.intimp.2021.108322] [PMID: 34735916]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy