Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Dendritic Cells - Winning the Fight against HIV

Author(s): Naresh Poondla, Mohsen Sheykhhasan*, Yaghoub Ahmadyousefi, Mohammad Akbari, Reihaneh Seyedebrahimi, Mohsen Eslami Farsani and Naser Kalhor

Volume 18, Issue 2, 2023

Published on: 04 August, 2022

Page: [174 - 185] Pages: 12

DOI: 10.2174/1574888X17666220401102718

Price: $65

Abstract

HIV is a virus that targets and hijacks the immune cells of the host. It multiplies by attacking the helper T-lymphocytes. HIV has remained one of the most difficult and dangerous infections in the world due to the inability to find a successful treatment and a lack of access to medical care. When the virus reaches the body, dendritic cells are the first cells it encounters. DCs have been identified as one of the most effective mediators of immune responses, implying a promising strategy against viral infection. The current state of knowledge about the function of dendritic cells and their subsets is critical for using their full potential as a candidate for the development of an HIV vaccine. Despite extensive efforts, a reliable vaccine with the fewest side effects has yet to be found, and further research is needed to find a dependable and efficient vaccine. The extent to which dendritic cell-based therapy is used to treat HIV was investigated in this study. As the virus attacks the host immune system, the dendritic cells can trigger an immune response against HIV-1 infection.

Keywords: Dendritic cells, vaccine, HIV, immune system, cell-based therapy, T-lymphocytes.

[1]
Alter G, Barouch D. Immune correlate-guided HIV vaccine design. Cell Host Microbe 2018; 24(1): 25-33.
[http://dx.doi.org/10.1016/j.chom.2018.06.012] [PMID: 30001521]
[2]
Sheykhhasan M, Foroutan A, Manoochehri H, Khoei SG, Poondla N, Saidijam M. Could gene therapy cure HIV? Life Sci 2021; 277: 119451.
[http://dx.doi.org/10.1016/j.lfs.2021.119451] [PMID: 33811896]
[3]
Mohammadi M, Akhoundi M, Malih S, Mohammadi A, Sheykhhasan M. Therapeutic roles of CAR T cells in infectious diseases: Clinical lessons learnt from cancer. Reviews in Medical Virology e2325
[4]
Martín-Moreno A, Muñoz-Fernández MA. Dendritic cells, the double agent in the war against HIV-1. Front Immunol 2019; 10: 2485.
[http://dx.doi.org/10.3389/fimmu.2019.02485] [PMID: 31708924]
[5]
Søgaard OS. DC-based immunotherapy as strategy to purge the HIV reservoir? EBioMedicine 2019; 43: 16-7.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.013] [PMID: 30981650]
[6]
Sallusto F, Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. Arthritis Res 2002; 4 (Suppl. 3): S127-32.
[7]
Collin M, Bigley V. Human dendritic cell subsets: An update. Immunology 2018; 154(1): 3-20.
[http://dx.doi.org/10.1111/imm.12888] [PMID: 29313948]
[8]
Marcenaro E, Carlomagno S, Pesce S, Moretta A, Sivori S. NK/DC crosstalk in anti-viral response.In: Current Topics in Innate Immunity II. Springer 2012; pp. 295-308.
[9]
Kaushik S, Teque F, Patel M, Fujimura SH, Schmidt B, Levy JA. Plasmacytoid dendritic cell number and responses to Toll-like receptor 7 and 9 agonists vary in HIV Type 1-infected individuals in relation to clinical state. AIDS Res Hum Retroviruses 2013; 29(3): 501-10.
[http://dx.doi.org/10.1089/aid.2012.0200] [PMID: 23131038]
[10]
Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. Pathogens have evolved various means of evading or subverting normal host de-fenses. In: Immunobiology: The Immune System in Health and Disease. 5th ed. Garland Science 2001.
[11]
Hersperger AR, Martin JN, Shin LY, et al. Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood 2011; 117(14): 3799-808.
[http://dx.doi.org/10.1182/blood-2010-12-322727] [PMID: 21289310]
[12]
Blankson JN. Effector mechanisms in HIV-1 infected elite controllers: Highly active immune responses? Antiviral Res 2010; 85(1): 295-302.
[http://dx.doi.org/10.1016/j.antiviral.2009.08.007] [PMID: 19733595]
[13]
Martin-Gayo E, Yu XG. Role of dendritic cells in natural immune control of HIV-1 infection. Front Immunol 2019; 10: 1306.
[http://dx.doi.org/10.3389/fimmu.2019.01306] [PMID: 31244850]
[14]
Dillon SM, Robertson KB, Pan SC, et al. Plasmacytoid and myeloid dendritic cells with a partial activation phenotype accumulate in lym-phoid tissue during asymptomatic chronic HIV-1 infection. Journal of Acquired Immune Deficiency Syndromes 2008; 48(1): 1-12.
[15]
Sabado RL, O’Brien M, Subedi A, et al. Evidence of dysregulation of dendritic cells in primary HIV infection. Blood 2010; 116(19): 3839-52.
[http://dx.doi.org/10.1182/blood-2010-03-273763] [PMID: 20693428]
[16]
Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000; 1(4): 305-10.
[http://dx.doi.org/10.1038/79747] [PMID: 11017101]
[17]
Umemoto E, Otani K, Ikeno T, et al. Constitutive plasmacytoid dendritic cell migration to the splenic white pulp is cooperatively regulated by CCR7- and CXCR4-mediated signaling. J Immunol 2012; 189(1): 191-9.
[18]
Ye Y, Gaugler B, Mohty M, Malard F. Plasmacytoid dendritic cell biology and its role in immune-mediated diseases. Clin Transl Immunology 2020; 9(5): e1139.
[http://dx.doi.org/10.1002/cti2.1139] [PMID: 32489664]
[19]
O’Brien M, Manches O, Bhardwaj N. Plasmacytoid dendritic cells in HIV infection. Adv Exp Med Biol 2013; 762: 71-107.
[http://dx.doi.org/10.1007/978-1-4614-4433-6_3] [PMID: 22975872]
[20]
Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol 2014; 35(3): 114-22.
[http://dx.doi.org/10.1016/j.it.2013.10.003] [PMID: 24246474]
[21]
Tong O, Duette G, O’Neil TR, et al. Plasmacytoid dendritic cells have divergent effects on HIV infection of initial target cells and induce a pro-retention phenotype. PLoS Pathog 2021; 17(4): e1009522.
[http://dx.doi.org/10.1371/journal.ppat.1009522] [PMID: 33872331]
[22]
Soper A, Kimura I, Nagaoka S, et al. Type I interferon responses by HIV-1 infection: Association with disease progression and control. Front Immunol 2018; 8: 1823.
[http://dx.doi.org/10.3389/fimmu.2017.01823] [PMID: 29379496]
[23]
Manches O, Munn D, Fallahi A, et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest 2008; 118(10): 3431-9.
[http://dx.doi.org/10.1172/JCI34823] [PMID: 18776940]
[24]
Derby N, Martinelli E, Robbiani M. Myeloid dendritic cells in HIV-1 infection. Curr Opin HIV AIDS 2011; 6(5): 379-84.
[http://dx.doi.org/10.1097/COH.0b013e3283499d63] [PMID: 21743323]
[25]
Wilen CB, Tilton JC, Doms RW. HIV: Cell binding and entry. Cold Spring Harb Perspect Med 2012; 2(8): a006866.
[http://dx.doi.org/10.1101/cshperspect.a006866] [PMID: 22908191]
[26]
Macatonia SE, Lau R, Patterson S, Pinching AJ, Knight SC. Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology 1990; 71(1): 38-45.
[PMID: 2145214]
[27]
Huot N, Bosinger SE, Paiardini M, Reeves RK, Müller-Trutwin M. Lymph node cellular and viral dynamics in natural hosts and impact for HIV cure strategies. Front Immunol 2018; 9: 780.
[http://dx.doi.org/10.3389/fimmu.2018.00780] [PMID: 29725327]
[28]
Kodama A, Tanaka R, Saito M, Ansari AA, Tanaka Y. A novel and simple method for generation of human dendritic cells from unfrac-tionated peripheral blood mononuclear cells within 2 days: Its application for induction of HIV-1-reactive CD4(+) T cells in the hu-PBL SCID mice. Front Microbiol 2013; 4: 292.
[http://dx.doi.org/10.3389/fmicb.2013.00292] [PMID: 24098298]
[29]
Martinson JA, Roman-Gonzalez A, Tenorio AR, et al. Dendritic cells from HIV-1 infected individuals are less responsive to toll-like re-ceptor (TLR) ligands. Cell Immunol 2007; 250(1-2): 75-84.
[http://dx.doi.org/10.1016/j.cellimm.2008.01.007] [PMID: 18334250]
[30]
Ebner S, Ratzinger G, Krösbacher B, et al. Production of IL-12 by human monocyte-derived dendritic cells is optimal when the stimulus is given at the onset of maturation, and is further enhanced by IL-4. J Immunol 2001; 166(1): 633-41.
[31]
Smed-Sörensen A, Loré K, Vasudevan J, et al. Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 2005; 79(14): 8861-9.
[http://dx.doi.org/10.1128/JVI.79.14.8861-8869.2005] [PMID: 15994779]
[32]
Altfeld M, Fadda L, Frleta D, Bhardwaj N. DCs and NK cells: Critical effectors in the immune response to HIV-1. Nat Rev Immunol 2011; 11(3): 176-86.
[http://dx.doi.org/10.1038/nri2935] [PMID: 21350578]
[33]
Alaoui L, Palomino G, Zurawski S, et al. Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs. Cell Mol Life Sci 2018; 75(10): 1871-87.
[http://dx.doi.org/10.1007/s00018-017-2712-9] [PMID: 29134249]
[34]
Bashirova AA, Martin-Gayo E, Jones DC, et al. LILRB2 interaction with HLA class I correlates with control of HIV-1 infection. PLoS Genet 2014; 10(3): e1004196.
[http://dx.doi.org/10.1371/journal.pgen.1004196] [PMID: 24603468]
[35]
Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: Emerging roles of DC crosstalk in cancer immunity. Front Immunol 2019; 10: 1014.
[http://dx.doi.org/10.3389/fimmu.2019.01014] [PMID: 31143179]
[36]
Mittag D, Proietto AI, Loudovaris T, et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 2011; 186(11): 6207-17.
[http://dx.doi.org/10.4049/jimmunol.1002632]
[37]
Bachem A, Güttler S, Hartung E, et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 2010; 207(6): 1273-81.
[http://dx.doi.org/10.1084/jem.20100348] [PMID: 20479115]
[38]
Di Blasio S, Wortel IM, van Bladel DA, et al. Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immu-nogenic cell death. OncoImmunology 2016; 5(8): e1192739.
[http://dx.doi.org/10.1080/2162402X.2016.1192739] [PMID: 27622063]
[39]
Bertram KM, Botting RA, Baharlou H, et al. Identification of HIV transmitting CD11c+ human epidermal dendritic cells. Nat Commun 2019; 10(1): 2759.
[http://dx.doi.org/10.1038/s41467-019-10697-w] [PMID: 31227717]
[40]
van Montfoort N, van der Aa E, Woltman AM. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines. Front Immunol 2014; 5: 182.
[http://dx.doi.org/10.3389/fimmu.2014.00182] [PMID: 24795724]
[41]
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113: 67-74.
[http://dx.doi.org/10.1016/j.molimm.2018.03.027] [PMID: 29636181]
[42]
Huang XL, Fan Z, Colleton BA, et al. Processing and presentation of exogenous HLA class I peptides by dendritic cells from human im-munodeficiency virus type 1-infected persons. J Virol 2005; 79(5): 3052-62.
[http://dx.doi.org/10.1128/JVI.79.5.3052-3062.2005] [PMID: 15709025]
[43]
Ménager MM. TSPAN7, effector of actin nucleation required for dendritic cell-mediated transfer of HIV-1 to T cells. Biochem Soc Trans 2017; 45(3): 703-8.
[http://dx.doi.org/10.1042/BST20160439] [PMID: 28620031]
[44]
Wu L, Martin TD, Han Y-C, Breun SKJ. KewalRamani VN. Trans-dominant cellular inhibition of DC-SIGN-mediated HIV-1 transmission. Retrovirology 2004; 1(1): 14.
[http://dx.doi.org/10.1186/1742-4690-1-14] [PMID: 15222882]
[45]
Prasad A, Kulkarni R, Jiang S, Groopman JE. Cocaine enhances DC to T-cell HIV-1 transmission by activating DC-SIGN/LARG/LSP1 complex and facilitating infectious synapse formation. Sci Rep 2017; 7(1): 40648.
[http://dx.doi.org/10.1038/srep40648] [PMID: 28094782]
[46]
McDonald D, Wu L, Bohks SM. KewalRamani VN, Unutmaz D, Hope TJ. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 2003; 300(5623): 1295-7.
[http://dx.doi.org/10.1126/science.1084238] [PMID: 12730499]
[47]
Rappocciolo G, Jais M, Piazza P, et al. Alterations in cholesterol metabolism restrict HIV-1 trans infection in nonprogressors. MBio 2014; 5(3): e01031-13.
[http://dx.doi.org/10.1128/mBio.01031-13] [PMID: 24781743]
[48]
Dufloo J, Bruel T, Schwartz O. HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology 2018; 15(1): 51.
[http://dx.doi.org/10.1186/s12977-018-0434-1] [PMID: 30055632]
[49]
Tsunetsugu-Yokota Y, Muhsen M. Development of human dendritic cells and their role in HIV infection: Antiviral immunity versus HIV transmission. Front Microbiol 2013; 4: 178.
[http://dx.doi.org/10.3389/fmicb.2013.00178] [PMID: 23847602]
[50]
Dustin ML. The immunological synapse. Cancer Immunol Res 2014; 2(11): 1023-33.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0161] [PMID: 25367977]
[51]
Garcia E, Pion M, Pelchen-Matthews A, et al. HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspan-in sorting to the immunological synapse. Traffic 2005; 6(6): 488-501.
[http://dx.doi.org/10.1111/j.1600-0854.2005.00293.x] [PMID: 15882445]
[52]
Dutartre H, Clavière M, Journo C, Mahieux R. Cell-free versus cell-to-cell infection by human immunodeficiency virus type 1 and human T-Lymphotropic virus type 1: Exploring the link among viral source, viral trafficking, and viral replication. J Virol 2016; 90(17): 7607-17.
[http://dx.doi.org/10.1128/JVI.00407-16] [PMID: 27334587]
[53]
Dong C, Janas AM, Wang JH, Olson WJ, Wu L. Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virol 2007; 81(20): 11352-62.
[http://dx.doi.org/10.1128/JVI.01081-07] [PMID: 17686876]
[54]
Kim JT, Chang E, Sigal A, Baltimore D. Dendritic cells efficiently transmit HIV to T Cells in a tenofovir and raltegravir insensitive manner. PLoS One 2018; 13(1): e0189945.
[http://dx.doi.org/10.1371/journal.pone.0189945] [PMID: 29293546]
[55]
Akiyama H, Miller C, Patel HV, et al. Virus particle release from glycosphingolipid-enriched microdomains is essential for dendritic cell-mediated capture and transfer of HIV-1 and henipavirus. J Virol 2014; 88(16): 8813-25.
[http://dx.doi.org/10.1128/JVI.00992-14] [PMID: 24872578]
[56]
Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome: From internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 2000; 113(Pt 19): 3365-74.
[http://dx.doi.org/10.1242/jcs.113.19.3365] [PMID: 10984428]
[57]
Gauvreau ME, Côté MH, Bourgeois-Daigneault MC, et al. Sorting of MHC class II molecules into exosomes through a ubiquitin-independent pathway. Traffic 2009; 10(10): 1518-27.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00948.x] [PMID: 19566897]
[58]
Schwab A, Meyering SS, Lepene B, et al. Extracellular vesicles from infected cells: Potential for direct pathogenesis. Front Microbiol 2015; 6: 1132.
[http://dx.doi.org/10.3389/fmicb.2015.01132] [PMID: 26539170]
[59]
Dias MVS, Costa CS, daSilva LLP. The ambiguous roles of extracellular vesicles in HIV replication and pathogenesis. Front Microbiol 2018; 9: 2411.
[http://dx.doi.org/10.3389/fmicb.2018.02411] [PMID: 30364166]
[60]
Chiozzini C, Arenaccio C, Olivetta E, et al. Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir. Arch Virol 2017; 162(9): 2565-77.
[http://dx.doi.org/10.1007/s00705-017-3391-4] [PMID: 28474225]
[61]
Zhang L, Ju Y, Chen S, Ren L. Recent progress on exosomes in RNA virus infection. Viruses 2021; 13(2): 256.
[http://dx.doi.org/10.3390/v13020256] [PMID: 33567490]
[62]
Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 2002; 16(1): 135-44.
[http://dx.doi.org/10.1016/S1074-7613(02)00259-5] [PMID: 11825572]
[63]
Izquierdo-Useros N, Lorizate M, McLaren PJ, Telenti A, Kräusslich HG, Martinez-Picado J. HIV-1 capture and transmission by dendritic cells: The role of viral glycolipids and the cellular receptor Siglec-1. PLoS Pathog 2014; 10(7): e1004146.
[http://dx.doi.org/10.1371/journal.ppat.1004146] [PMID: 25033082]
[64]
Pino M, Erkizia I, Benet S, et al. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology 2015; 12(1): 37.
[http://dx.doi.org/10.1186/s12977-015-0160-x] [PMID: 25947229]
[65]
Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TB. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 2010; 11(5): 419-26.
[http://dx.doi.org/10.1038/ni.1858] [PMID: 20364151]
[66]
Gao D, Wu J, Wu YT, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 2013; 341(6148): 903-6.
[http://dx.doi.org/10.1126/science.1240933] [PMID: 23929945]
[67]
Gringhuis SI, Hertoghs N, Kaptein TM, et al. HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3. Nat Immunol 2017; 18(2): 225-35.
[http://dx.doi.org/10.1038/ni.3647] [PMID: 28024153]
[68]
Geijtenbeek TB, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000; 100(5): 587-97.
[http://dx.doi.org/10.1016/S0092-8674(00)80694-7] [PMID: 10721995]
[69]
Iglesias-Ussel MD, Romerio F. HIV reservoirs: The new frontier. AIDS Rev 2011; 13(1): 13-29.
[PMID: 21412386]
[70]
Chauveau L, Donahue DA, Monel B, et al. HIV fusion in dendritic cells occurs mainly at the surface and is limited by low CD4 levels. J Virol 2017; 91(21): e01248-17.
[http://dx.doi.org/10.1128/JVI.01248-17] [PMID: 28814521]
[71]
Granelli-Piperno A, Delgado E, Finkel V, Paxton W, Steinman RM. Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J Virol 1998; 72(4): 2733-7.
[http://dx.doi.org/10.1128/JVI.72.4.2733-2737.1998] [PMID: 9525591]
[72]
McIlroy D, Autran B, Cheynier R, et al. Infection frequency of dendritic cells and CD4+ T lymphocytes in spleens of human immunodefi-ciency virus-positive patients. J Virol 1995; 69(8): 4737-45.
[http://dx.doi.org/10.1128/jvi.69.8.4737-4745.1995] [PMID: 7609039]
[73]
Engering A, Geijtenbeek TBH, van Vliet SJ, et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presenta-tion to T cells. J Immunol 2002; 168(5): 2118-26.
[http://dx.doi.org/10.4049/jimmunol.168.5.2118] [PMID: 11859097]
[74]
Moris A, Nobile C, Buseyne F, Porrot F, Abastado JP, Schwartz O. DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood 2004; 103(7): 2648-54.
[http://dx.doi.org/10.1182/blood-2003-07-2532] [PMID: 14576049]
[75]
Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TB. C-type lectin DC-SIGN modulates Toll-like recep-tor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 2007; 26(5): 605-16.
[http://dx.doi.org/10.1016/j.immuni.2007.03.012] [PMID: 17462920]
[76]
Van Gulck E, Vlieghe E, Vekemans M, et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 2012; 26(4): F1-F12.
[http://dx.doi.org/10.1097/QAD.0b013e32834f33e8] [PMID: 22156965]
[77]
Lévy Y, Thiébaut R, Montes M, et al. Dendritic cell-based therapeutic vaccine elicits polyfunctional HIV-specific T-cell immunity associ-ated with control of viral load. Eur J Immunol 2014; 44(9): 2802-10.
[http://dx.doi.org/10.1002/eji.201344433] [PMID: 25042008]
[78]
Apostólico JS, Lunardelli VA, Yamamoto MM, et al. Dendritic cell targeting effectively boosts T cell responses elicited by an HIV multie-pitope DNA vaccine. Front Immunol 2017; 8: 101.
[http://dx.doi.org/10.3389/fimmu.2017.00101] [PMID: 28223987]
[79]
Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000; 18(1): 245-73.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.245] [PMID: 10837059]
[80]
Qu C, Brinck-Jensen N-S, Zang M, Chen K. Monocyte-derived dendritic cells: Targets as potent antigen-presenting cells for the design of vaccines against infectious diseases. Int J Infect Dis 2014; 19: 1-5.
[http://dx.doi.org/10.1016/j.ijid.2013.09.023] [PMID: 24216295]
[81]
da Silva LT, Santillo BT, de Almeida A, Duarte AJDS, Oshiro TM. Using dendritic cell-based immunotherapy to treat HIV: How can this strategy be improved? Front Immunol 2018; 9: 2993.
[http://dx.doi.org/10.3389/fimmu.2018.02993] [PMID: 30619346]
[82]
Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 116(16): e74-80.
[http://dx.doi.org/10.1182/blood-2010-02-258558] [PMID: 20628149]
[83]
Ko EJ, Robert-Guroff M. Dendritic cells in HIV/SIV prophylactic and therapeutic vaccination. Viruses 2019; 12(1): E24.
[http://dx.doi.org/10.3390/v12010024] [PMID: 31878130]
[84]
Macri C, Dumont C, Johnston AP, Mintern JD. Targeting dendritic cells: A promising strategy to improve vaccine effectiveness. Clin Transl Immunology 2016; 5(3): e66.
[http://dx.doi.org/10.1038/cti.2016.6] [PMID: 27217957]
[85]
Nchinda G, Kuroiwa J, Oks M, et al. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J Clin Invest 2008; 118(4): 1427-36.
[http://dx.doi.org/10.1172/JCI34224] [PMID: 18324335]
[86]
Nchinda G, Amadu D, Trumpfheller C, Mizenina O, Uberla K, Steinman RM. Dendritic cell targeted HIV gag protein vaccine provides help to a DNA vaccine including mobilization of protective CD8+ T cells. Proc Natl Acad Sci USA 2010; 107(9): 4281-6.
[http://dx.doi.org/10.1073/pnas.1000621107] [PMID: 20160099]
[87]
Melchers M, Matthews K, de Vries RP, et al. A stabilized HIV-1 envelope glycoprotein trimer fused to CD40 ligand targets and activates dendritic cells. Retrovirology 2011; 8(1): 48.
[http://dx.doi.org/10.1186/1742-4690-8-48] [PMID: 21689404]
[88]
Coffman RL, Sher A, Seder RA. Vaccine adjuvants: Putting innate immunity to work. Immunity 2010; 33(4): 492-503.
[http://dx.doi.org/10.1016/j.immuni.2010.10.002] [PMID: 21029960]
[89]
Apostólico JS, Lunardelli VA, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: Classification, modus operandi, and licensing. J Immunol Res 2016; 2016: 1459394.
[http://dx.doi.org/10.1155/2016/1459394] [PMID: 27274998]
[90]
Apostólico JS, Lunardelli VAS, Yamamoto MM, Cunha-Neto E, Boscardin SB, Rosa DS. Poly (I: C) potentiates T cell immunity to a den-dritic cell targeted HIV-multiepitope vaccine. Front Immunol 2019; 10: 843.
[http://dx.doi.org/10.3389/fimmu.2019.00843] [PMID: 31105693]
[91]
Engelhard VH. Structure of peptides associated with MHC class I molecules. Curr Opin Immunol 1994; 6(1): 13-23.
[http://dx.doi.org/10.1016/0952-7915(94)90028-0] [PMID: 7513522]
[92]
Surenaud M, Montes M, Lindestam Arlehamn CS, et al. Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vac-cination. PLoS Pathog 2019; 15(9): e1008011.
[http://dx.doi.org/10.1371/journal.ppat.1008011] [PMID: 31498845]
[93]
Ansari AW, Meyer-Olson D, Schmidt RE. Selective expansion of pro-inflammatory chemokine CCL2-loaded CD14+CD16+ monocytes subset in HIV-infected therapy naïve individuals. J Clin Immunol 2013; 33(1): 302-6.
[http://dx.doi.org/10.1007/s10875-012-9790-0] [PMID: 22961048]
[94]
Gogolak P, Rethi B, Szatmari I, et al. Differentiation of CD1a- and CD1a+ monocyte-derived dendritic cells is biased by lipid environment and PPARgamma. Blood 2007; 109(2): 643-52.
[http://dx.doi.org/10.1182/blood-2006-04-016840] [PMID: 16968896]
[95]
Ao Z, Wang L, Azizi H, Olukitibi TA, Kobinger G, Yao X. Development and evaluation of an ebola virus glycoprotein mucin-like domain replacement system as a new dendritic cell-targeting vaccine approach against HIV-1. J Virol 2021; 95(15): e0236820.
[http://dx.doi.org/10.1128/JVI.02368-20] [PMID: 34011553]
[96]
Garcia-Bates TM, Palma ML, Anderko RR, et al. Dendritic cells focus CTL responses toward highly conserved and topologically important HIV-1 epitopes. EBioMedicine 2021; 63: 103175.
[http://dx.doi.org/10.1016/j.ebiom.2020.103175] [PMID: 33450518]
[97]
Filin IY, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Recent advances in experimental dendritic cell vaccines for cancer. Front Oncol 2021; 11(3863): 730824.
[http://dx.doi.org/10.3389/fonc.2021.730824] [PMID: 34631558]
[98]
Paiardini M, Müller-Trutwin M. HIV-associated chronic immune activation. Immunol Rev 2013; 254(1): 78-101.
[http://dx.doi.org/10.1111/imr.12079] [PMID: 23772616]
[99]
Kulikova EV, Kurilin VV, Shevchenko JA, et al. Dendritic cells transfected with a DNA construct encoding tumour-associated antigen epitopes induce a cytotoxic immune response against autologous tumour cells in a culture of mononuclear cells from colorectal cancer patients. Scand J Immunol 2015; 82(2): 110-7.
[http://dx.doi.org/10.1111/sji.12311] [PMID: 25966778]
[100]
Coelho AVC, de Moura RR, Kamada AJ, et al. Dendritic cell-based immunotherapies to fight HIV: How far from a success story? A systematic review and meta-analysis. Int J Mol Sci 2016; 17(12): 1985.
[http://dx.doi.org/10.3390/ijms17121985] [PMID: 27898045]
[101]
Routy JP, Boulassel MR, Yassine-Diab B, et al. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol 2010; 134(2): 140-7.
[http://dx.doi.org/10.1016/j.clim.2009.09.009] [PMID: 19889582]
[102]
Cobb A, Roberts LK, Palucka AK, et al. Development of a HIV-1 lipopeptide antigen pulsed therapeutic dendritic cell vaccine. J Immunol Methods 2011; 365(1-2): 27-37.
[http://dx.doi.org/10.1016/j.jim.2010.11.002] [PMID: 21093448]
[103]
Allard SD, De Keersmaecker B, de Goede AL, et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immuned 2012; 142(3): 252-68.
[104]
Jacobson JM, Routy J-P, Welles S, et al. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: A randomized, double-blind, placebo-controlled clinical trial. Acquire Immune 2016; 72(1): 31.
[http://dx.doi.org/10.1097/QAI.0000000000000926]
[105]
García F, Climent N, Guardo AC, et al. A dendritic cell–based vaccine elicits T cell responses associated with control of HIV-1 replication. Defic Syndr 2013; 5(166): 166ra2.
[http://dx.doi.org/10.1126/scitranslmed.3004682]
[106]
Macatangay BJ, Riddler SA, Wheeler ND, et al. Therapeutic vaccination with dendritic cells loaded with autologous HIV type 1–infected apoptotic cells. J Infect Dis 2016; 213(9): 1400-9.
[107]
Whiteside TL, Piazza P, Reiter A, et al. Production of a dendritic cell-based vaccine containing inactivated autologous virus for therapy of patients with chronic human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 2009; 16(2): 233-40.
[http://dx.doi.org/10.1128/CVI.00066-08]
[108]
Gandhi RT, Kwon DS, Macklin EA, et al. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: Results of a randomized, placebo-controlled clinical trial. J Acquire Immune Defic Syndr 2016; 71(3): 246.
[http://dx.doi.org/10.1097/QAI.0000000000000852]
[109]
Gay CL, Kuruc JD, Falcinelli SD, et al. Assessing the impact of AGS-004, a dendritic cell-based immunotherapy, and vorinostat on persistent HIV-1 Infection. Sci Rep 2020; 10(1): 1-13.
[http://dx.doi.org/10.1038/s41598-020-61878-3]
[110]
Pastor-Ibáñez R, Díez-Fuertes F, Sánchez-Palomino S, et al. Impact of transcriptome and gut microbiome on the response of HIV-1 infected individuals to a dendritic cell-based HIV therapeutic vaccine. Vaccines (Basel) 2021; 9(7): 694.
[http://dx.doi.org/10.3390/vaccines9070694] [PMID: 34202658]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy