Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Targeting Signaling Pathway by Curcumin in Osteosarcoma

Author(s): Parnia Rahnamay Farnood, Romina Danesh Pazhooh, Zatollah Asemi* and Bahman Yousefi*

Volume 16, Issue 1, 2023

Published on: 30 June, 2022

Article ID: e080422203286 Pages: 12

DOI: 10.2174/1874467215666220408104341

Price: $65

Abstract

The most prevalent primary bone malignancy among children and adolescents is osteosarcoma. The high mortality rate of osteosarcoma is due to lung metastasis. Despite the development of multi-agent chemotherapy and surgical resection, patients with osteosarcoma have a high metastasis rate and poor prognosis. Thus, it is necessary to identify novel therapeutic agents to improve the 5-year survival rate of these patients. Curcumin, a phytochemical compound derived from Curcuma longa, has been employed in treating several types of cancers through various mechanisms. Also, in vitro studies have demonstrated that curcumin could inhibit cell proliferation and induce apoptosis in osteosarcoma cells. Development in identifying signaling pathways involved in the pathogenesis of osteosarcoma has provided insight into finding new therapeutic targets for the treatment of this cancer. Targeting MAPK/ERK, PI3k/AKT, Wnt/β-catenin, Notch, and MircoRNA by curcumin has been evaluated to improve outcomes in patients with osteosarcoma. Although curcumin is a potent anti-cancer compound, it has rarely been studied in clinical settings due to its congenital properties such as hydrophobicity and poor bioavailability. In this review, we recapitulate and describe the effect of curcumin in regulating signaling pathways involved in osteosarcoma.

Keywords: Osteosarcoma, curcumin, signaling pathway, microRNA, apoptosis, tumorigenesis.

Graphical Abstract
[1]
Jo, V.Y.; Fletcher, C.D. WHO classification of soft tissue tumours: An update based on the 2013 (4th) edition. Pathology, 2014, 46(2), 95-104.
[http://dx.doi.org/10.1097/PAT.0000000000000050] [PMID: 24378391]
[2]
Sampo, M.; Koivikko, M.; Taskinen, M.; Kallio, P.; Kivioja, A.; Tarkkanen, M. Böhling, T. Incidence, epidemiology and treatment results of osteosarcoma in Finland - a nationwide population-based study. Acta Oncol., 2011, 50(8), 1206-1214.
[http://dx.doi.org/10.3109/0284186X.2011.615339] [PMID: 22023116]
[3]
Bielack, S.S.; Kempf-Bielack, B.; Delling, G.; Exner, G.U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W.; Zoubek, A.; Jürgens, H.; Winkler, K. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol., 2002, 20(3), 776-790.
[http://dx.doi.org/10.1200/JCO.2002.20.3.776] [PMID: 11821461]
[4]
Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. Clin. Oncol., 2015, 33(27), 3029-3035.
[http://dx.doi.org/10.1200/JCO.2014.59.4895] [PMID: 26304877]
[5]
Meyers, P.A.; Gorlick, R. Osteosarcoma. Pediatr. Clin. North Am., 1997, 44(4), 973-989.
[http://dx.doi.org/10.1016/S0031-3955(05)70540-X] [PMID: 9286295]
[6]
Zhao, X.; Wu, Q.; Gong, X.; Liu, J.; Ma, Y. Osteosarcoma: A review of current and future therapeutic approaches. Biomed. Eng. Online, 2021, 20(1), 24.
[http://dx.doi.org/10.1186/s12938-021-00860-0] [PMID: 33653371]
[7]
Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: Focus on molecular mechanisms. Cancer Cell Int., 2019, 19, 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[8]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), E2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[9]
Xu, C.; Wang, M.; Guo, W.; Sun, W.; Liu, Y. Curcumin in osteosarcoma therapy: Combining with immunotherapy, chemotherapeutics, bone tissue engineering materials and potential synergism with photodynamic therapy. Front. Oncol., 2021, 11, 672490.
[http://dx.doi.org/10.3389/fonc.2021.672490] [PMID: 34094974]
[10]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[11]
Liu, H.L.; Chen, Y.; Cui, G.H.; Zhou, J.F. Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol. Sin., 2005, 26(5), 603-609.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00081.x] [PMID: 15842781]
[12]
Fujiwara, H.; Hosokawa, M.; Zhou, X.; Fujimoto, S.; Fukuda, K.; Toyoda, K.; Nishi, Y.; Fujita, Y.; Yamada, K.; Yamada, Y.; Seino, Y.; Inagaki, N. Curcumin inhibits glucose production in isolated mice hepatocytes. Diabetes Res. Clin. Pract., 2008, 80(2), 185-191.
[http://dx.doi.org/10.1016/j.diabres.2007.12.004] [PMID: 18221818]
[13]
Kunnumakkara, A.B.; Anand, P.; Aggarwal, B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett., 2008, 269(2), 199-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.009] [PMID: 18479807]
[14]
Shi, M.; Cai, Q.; Yao, L.; Mao, Y.; Ming, Y.; Ouyang, G. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol. Int., 2006, 30(3), 221-226.
[http://dx.doi.org/10.1016/j.cellbi.2005.10.024] [PMID: 16376585]
[15]
Zheng, M.; Ekmekcioglu, S.; Walch, E.T.; Tang, C.H.; Grimm, E.A. Inhibition of nuclear factor-kappaB and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res., 2004, 14(3), 165-171.
[http://dx.doi.org/10.1097/01.cmr.0000129374.76399.19] [PMID: 15179184]
[16]
Lin, S.S.; Huang, H.P.; Yang, J.S.; Wu, J.Y.; Hsia, T.C.; Lin, C.C.; Lin, C.W.; Kuo, C.L.; Gibson Wood, W.; Chung, J.G. DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway. Cancer Lett., 2008, 272(1), 77-90.
[http://dx.doi.org/10.1016/j.canlet.2008.06.031] [PMID: 18701210]
[17]
Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272.
[http://dx.doi.org/10.3892/etm.2018.6345] [PMID: 30116377]
[18]
Lee, D.S.; Lee, M.K.; Kim, J.H. Curcumin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells. Anticancer Res., 2009, 29(12), 5039-5044.
[PMID: 20044614]
[19]
Zhao, Z.; Li, C.; Xi, H.; Gao, Y.; Xu, D. Curcumin induces apoptosis in pancreatic cancer cells through the induction of forkhead box O1 and inhibition of the PI3K/Akt pathway. Mol. Med. Rep., 2015, 12(4), 5415-5422.
[http://dx.doi.org/10.3892/mmr.2015.4060] [PMID: 26166196]
[20]
Deng, Y.I.; Verron, E.; Rohanizadeh, R. Molecular mechanisms of anti-metastatic activity of curcumin. Anticancer Res., 2016, 36(11), 5639-5647.
[http://dx.doi.org/10.21873/anticanres.11147] [PMID: 27793885]
[21]
Saghatelyan, T.; Tananyan, A.; Janoyan, N.; Tadevosyan, A.; Petrosyan, H.; Hovhannisyan, A.; Hayrapetyan, L.; Arustamyan, M.; Arnhold, J.; Rotmann, A.R.; Hovhannisyan, A.; Panossian, A. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine, 2020, 70, 153218.
[http://dx.doi.org/10.1016/j.phymed.2020.153218] [PMID: 32335356]
[22]
Leow, P.C.; Bahety, P.; Boon, C.P.; Lee, C.Y.; Tan, K.L.; Yang, T.; Ee, P.L. Functionalized curcumin analogs as potent modulators of the Wnt/β-catenin signaling pathway. Eur. J. Med. Chem., 2014, 71, 67-80.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.073] [PMID: 24275249]
[23]
Lima, F.T.; Seba, V.; Silva, G.; Torrezan, G.S.; Polaquini, C.R.; Pinhanelli, V.C.; Baek, S.J.; Fachin, A.L.; Regasini, L.O.; Marins, M. The curcumin analog CH-5 exerts anticancer effects in human osteosarcoma cells via modulation of transcription factors p53/Sp1. Int. J. Mol. Sci., 2018, 19(7), E1909.
[http://dx.doi.org/10.3390/ijms19071909] [PMID: 29966255]
[24]
Aziz, M.N.M.; Rahim, N.F.C.; Hussin, Y.; Yeap, S.K.; Masarudin, M.J.; Mohamad, N.E.; Akhtar, M.N.; Osman, M.A.; Cheah, Y.K.; Alitheen, N.B. Anti-metastatic and anti-angiogenic effects of curcumin analog DK1 on human osteosarcoma cells in vitro. Pharmaceuticals (Basel), 2021, 14(6), 532.
[http://dx.doi.org/10.3390/ph14060532] [PMID: 34204873]
[25]
Li, L.; Braiteh, F.S.; Kurzrock, R. Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer, 2005, 104(6), 1322-1331.
[http://dx.doi.org/10.1002/cncr.21300] [PMID: 16092118]
[26]
Martínez-Castillo. M.; Villegas-Sepúlveda, N.; Meraz-Rios, M.A.; Hernández-Zavala, A.; Berumen, J.; Coleman, M.A.; Orozco, L.; Cordova, E.J. Curcumin differentially affects cell cycle and cell death in acute and chronic myeloid leukemia cells. Oncol. Lett., 2018, 15(5), 6777-6783.
[PMID: 29616136]
[27]
Sun, S.H.; Huang, H.C.; Huang, C.; Lin, J.K. Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by curcumin. Eur. J. Pharmacol., 2012, 690(1-3), 22-30.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.036] [PMID: 22705896]
[28]
Lu, J.J.; Cai, Y.J.; Ding, J. Curcumin induces DNA damage and caffeine-insensitive cell cycle arrest in colorectal carcinoma HCT116 cells. Mol. Cell. Biochem., 2011, 354(1-2), 247-252.
[http://dx.doi.org/10.1007/s11010-011-0824-3] [PMID: 21526346]
[29]
Cao, A.; Li, Q.; Yin, P.; Dong, Y.; Shi, H.; Wang, L.; Ji, G.; Xie, J.; Wu, D. Curcumin induces apoptosis in human gastric carcinoma AGS cells and colon carcinoma HT-29 cells through mitochondrial dysfunction and endoplasmic reticulum stress. Apoptosis, 2013, 18(11), 1391-1402.
[http://dx.doi.org/10.1007/s10495-013-0871-1] [PMID: 23881281]
[30]
Subramaniam, D.; Ramalingam, S.; Linehan, D.C.; Dieckgraefe, B.K.; Postier, R.G.; Houchen, C.W.; Jensen, R.A.; Anant, S. RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS One, 2011, 6(2), e16958.
[http://dx.doi.org/10.1371/journal.pone.0016958] [PMID: 21347286]
[31]
Jackson, S.J.; Murphy, L.L.; Venema, R.C.; Singletary, K.W.; Young, A.J. Curcumin binds tubulin, induces mitotic catastrophe, and impedes normal endothelial cell proliferation. Food Chem. Toxicol., 2013, 60, 431-438.
[http://dx.doi.org/10.1016/j.fct.2013.08.008] [PMID: 23939039]
[32]
Chakraborti, S.; Das, L.; Kapoor, N.; Das, A.; Dwivedi, V.; Poddar, A.; Chakraborti, G.; Janik, M.; Basu, G.; Panda, D.; Chakrabarti, P.; Surolia, A.; Bhattacharyya, B. Curcumin recognizes a unique binding site of tubulin. J. Med. Chem., 2011, 54(18), 6183-6196.
[http://dx.doi.org/10.1021/jm2004046] [PMID: 21830815]
[33]
Qadir, M.I.; Naqvi, S.T.; Muhammad, S.A. Curcumin: A polyphenol with molecular targets for cancer control. Asian Pac. J. Cancer Prev., 2016, 17(6), 2735-2739.
[PMID: 27356682]
[34]
Engin, F.; Bertin, T.; Ma, O.; Jiang, M.M.; Wang, L.; Sutton, R.E.; Donehower, L.A.; Lee, B. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum. Mol. Genet., 2009, 18(8), 1464-1470.
[http://dx.doi.org/10.1093/hmg/ddp057] [PMID: 19228774]
[35]
Tanaka, M.; Setoguchi, T.; Hirotsu, M.; Gao, H.; Sasaki, H.; Matsunoshita, Y.; Komiya, S. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br. J. Cancer, 2009, 100(12), 1957-1965.
[http://dx.doi.org/10.1038/sj.bjc.6605060] [PMID: 19455146]
[36]
Li, Y.; Zhang, J.; Ma, D.; Zhang, L.; Si, M.; Yin, H.; Li, J. Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. FEBS J., 2012, 279(12), 2247-2259.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08607.x] [PMID: 22521131]
[37]
Shafabakhsh, R.; Asemi, Z. Quercetin: A natural compound for ovarian cancer treatment. J. Ovarian Res., 2019, 12(1), 55.
[http://dx.doi.org/10.1186/s13048-019-0530-4] [PMID: 31202269]
[38]
Lao, C.D.; Ruffin, M.T., IV; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6, 10.
[http://dx.doi.org/10.1186/1472-6882-6-10] [PMID: 16545122]
[39]
Devassy, J.G.; Nwachukwu, I.D.; Jones, P.J. Curcumin and cancer: Barriers to obtaining a health claim. Nutr. Rev., 2015, 73(3), 155-165.
[http://dx.doi.org/10.1093/nutrit/nuu064] [PMID: 26024538]
[40]
Anand, P.; Sundaram, C.; Jhurani, S.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett., 2008, 267(1), 133-164.
[http://dx.doi.org/10.1016/j.canlet.2008.03.025] [PMID: 18462866]
[41]
Lu, K.H.; Wu, H.H.; Lin, R.C.; Lin, Y.C.; Lu, P.W.; Yang, S.F.; Yang, J.S. Curcumin analogue L48H37 suppresses human osteosarcoma U2OS and MG-63 Cells’ migration and invasion in culture by inhibition of uPA via the JAK/STAT signaling pathway. Molecules, 2020, 26(1), E30.
[http://dx.doi.org/10.3390/molecules26010030] [PMID: 33374783]
[42]
Er, E.; Oliver, L.; Cartron, P.F.; Juin, P.; Manon, S.; Vallette, F.M. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim. Biophys. Acta, 2006, 1757(9-10), 1301-1311.
[http://dx.doi.org/10.1016/j.bbabio.2006.05.032] [PMID: 16836974]
[43]
Mukherjee Nee Chakraborty, S.; Ghosh, U.; Bhattacharyya, N.P.; Bhattacharya, R.K.; Dey, S.; Roy, M. Curcumin-induced apoptosis in human leukemia cell HL-60 is associated with inhibition of telomerase activity. Mol. Cell. Biochem., 2007, 297(1-2), 31-39.
[http://dx.doi.org/10.1007/s11010-006-9319-z] [PMID: 17096185]
[44]
Walters, D.K.; Muff, R.; Langsam, B.; Born, W.; Fuchs, B. Cytotoxic effects of curcumin on osteosarcoma cell lines. Invest. New Drugs, 2008, 26(4), 289-297.
[http://dx.doi.org/10.1007/s10637-007-9099-7] [PMID: 18071634]
[45]
Lu, K.H.; Su, S.C.; Lin, C.W.; Hsieh, Y.H.; Lin, Y.C.; Chien, M.H.; Reiter, R.J.; Yang, S.F. Melatonin attenuates osteosarcoma cell invasion by suppression of C-C motif chemokine ligand 24 through inhibition of the c-Jun N-terminal kinase pathway. J. Pineal Res., 2018, 65(3), e12507.
[http://dx.doi.org/10.1111/jpi.12507] [PMID: 29766567]
[46]
Reddy, K.B.; Nabha, S.M.; Atanaskova, N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev., 2003, 22(4), 395-403.
[http://dx.doi.org/10.1023/A:1023781114568] [PMID: 12884914]
[47]
Hsieh, Y.S.; Chu, S.C.; Yang, S.F.; Chen, P.N.; Liu, Y.C.; Lu, K.H. Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis, 2007, 28(5), 977-987.
[http://dx.doi.org/10.1093/carcin/bgl221] [PMID: 17116726]
[48]
Fossey, S.L.; Bear, M.D.; Lin, J.; Li, C.; Schwartz, E.B.; Li, P.K.; Fuchs, J.R.; Fenger, J.; Kisseberth, W.C.; London, C.A. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines. BMC Cancer, 2011, 11, 112.
[http://dx.doi.org/10.1186/1471-2407-11-112] [PMID: 21443800]
[49]
Wang, Z.; Zhang, K.; Zhu, Y.; Wang, D.; Shao, Y.; Zhang, J. Curcumin inhibits hypoxia-induced proliferation and invasion of MG-63 osteosarcoma cells via downregulating Notch1. Mol. Med. Rep., 2017, 15(4), 1747-1752.
[http://dx.doi.org/10.3892/mmr.2017.6159] [PMID: 28138706]
[50]
Lee, S.Y.; Reichlin, A.; Santana, A.; Sokol, K.A.; Nussenzweig, M.C.; Choi, Y. TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. Immunity, 1997, 7(5), 703-713.
[http://dx.doi.org/10.1016/S1074-7613(00)80390-8] [PMID: 9390693]
[51]
Navet, B.; Ando, K.; Vargas-Franco, J.W.; Brion, R.; Amiaud, J.; Mori, K.; Yagita, H.; Mueller, C.G.; Verrecchia, F.; Dumars, C.; Heymann, M.F.; Heymann, D.; Lézot, F. The intrinsic and extrinsic implications of RANKL/RANK signaling in osteosarcoma: From tumor initiation to lung metastases. Cancers (Basel), 2018, 10(11), E398.
[http://dx.doi.org/10.3390/cancers10110398] [PMID: 30355966]
[52]
ÖZGÜR, Biological evaluation of curcumin as a natural RANKL inhibitor in osteosarcoma. Türk Doğa ve Fen Dergisi, 2018, 9(1), 1-5.
[53]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[54]
Schlessinger, J. Receptor tyrosine kinases: Legacy of the first two decades. Cold Spring Harb. Perspect. Biol., 2014, 6(3), a008912.
[http://dx.doi.org/10.1101/cshperspect.a008912] [PMID: 24591517]
[55]
Tanoue, T.; Nishida, E. Molecular recognitions in the MAP kinase cascades. Cell. Signal., 2003, 15(5), 455-462.
[http://dx.doi.org/10.1016/S0898-6568(02)00112-2] [PMID: 12639708]
[56]
Yang, S.H.; Sharrocks, A.D.; Whitmarsh, A.J. Transcriptional regulation by the MAP kinase signaling cascades. Gene, 2003, 320, 3-21.
[http://dx.doi.org/10.1016/S0378-1119(03)00816-3] [PMID: 14597384]
[57]
Kurtzeborn, K.; Kwon, H.N.; Kuure, S. MAPK/ERK Signaling in regulation of renal differentiation. Int. J. Mol. Sci., 2019, 20(7), E1779.
[http://dx.doi.org/10.3390/ijms20071779] [PMID: 30974877]
[58]
Sasaki, K.; Hitora, T.; Nakamura, O.; Kono, R.; Yamamoto, T. The role of MAPK pathway in bone and soft tissue tumors. Anticancer Res., 2011, 31(2), 549-553.
[PMID: 21378337]
[59]
Noh, K.; Kim, K.O.; Patel, N.R.; Staples, J.R.; Minematsu, H.; Nair, K.; Lee, F.Y. Targeting inflammatory kinase as an adjuvant treatment for osteosarcomas. J. Bone Joint Surg. Am., 2011, 93(8), 723-732.
[http://dx.doi.org/10.2106/JBJS.J.00302] [PMID: 21508279]
[60]
Chandhanayingyong, C.; Kim, Y.; Staples, J.R.; Hahn, C.; Lee, F.Y. MAPK/ERK Signaling in osteosarcomas, ewing sarcomas and chondrosarcomas: Therapeutic implications and future directions. Sarcoma, 2012, 2012, 404810.
[http://dx.doi.org/10.1155/2012/404810] [PMID: 22577336]
[61]
Miao, J.H.; Wang, S.Q.; Zhang, M.H.; Yu, F.B.; Zhang, L.; Yu, Z.X.; Kuang, Y. Knockdown of galectin-1 suppresses the growth and invasion of osteosarcoma cells through inhibition of the MAPK/ERK pathway. Oncol. Rep., 2014, 32(4), 1497-1504.
[http://dx.doi.org/10.3892/or.2014.3358] [PMID: 25069486]
[62]
Hu, C.; Zhu, X.; Zhang, T.; Deng, Z.; Xie, Y.; Yan, F.; Cai, L. Tanshinone IIA inhibits osteosarcoma growth through a Src kinase-dependent mechanism. Evid. Based Complement. Alternat. Med., 2021, 2021, 5563691.
[http://dx.doi.org/10.1155/2021/5563691] [PMID: 34422073]
[63]
Wu, J.; Wu, S.; Shi, L.; Zhang, S.; Ren, J.; Yao, S.; Yun, D.; Huang, L.; Wang, J.; Li, W.; Wu, X.; Qiu, P.; Liang, G. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer. Eur. J. Med. Chem., 2017, 125, 1321-1331.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.027] [PMID: 27886548]
[64]
Yang, S.J.; Lee, S.A.; Park, M.G.; Kim, J.S.; Yu, S.K.; Kim, C.S.; Kim, J.S.; Kim, S.G.; Oh, J.S.; Kim, H.J.; Chun, H.S.; Kim, Y.H.; Kim, D.K. Induction of apoptosis by diphenyldifluoroketone in osteogenic sarcoma cells is associated with activation of caspases. Oncol. Rep., 2014, 31(5), 2286-2292.
[http://dx.doi.org/10.3892/or.2014.3066] [PMID: 24604218]
[65]
Lin, H.; Chen, X.; Zhang, C.; Yang, T.; Deng, Z.; Song, Y.; Huang, L.; Li, F.; Li, Q.; Lin, S.; Jin, D. EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomed. Pharmacother., 2021, 136, 111202.
[http://dx.doi.org/10.1016/j.biopha.2020.111202] [PMID: 33453607]
[66]
Aoki, M.; Fujishita, T. Oncogenic roles of the PI3K/AKT/mTOR axis. Curr. Top. Microbiol. Immunol., 2017, 407, 153-189.
[http://dx.doi.org/10.1007/82_2017_6] [PMID: 28550454]
[67]
Keremu, A.; Maimaiti, X.; Aimaiti, A.; Yushan, M.; Alike, Y.; Yilihamu, Y.; Yusufu, A. NRSN2 promotes osteosarcoma cell proliferation and growth through PI3K/Akt/MTOR and Wnt/β-catenin signaling. Am. J. Cancer Res., 2017, 7(3), 565-573.
[PMID: 28401012]
[68]
Canfield, K.; Li, J.; Wilkins, O.M.; Morrison, M.M.; Ung, M.; Wells, W.; Williams, C.R.; Liby, K.T.; Vullhorst, D.; Buonanno, A.; Hu, H.; Schiff, R.; Cook, R.S.; Kurokawa, M. Receptor tyrosine kinase ERBB4 mediates acquired resistance to ERBB2 inhibitors in breast cancer cells. Cell Cycle, 2015, 14(4), 648-655.
[http://dx.doi.org/10.4161/15384101.2014.994966] [PMID: 25590338]
[69]
Li, X.; Huang, Q.; Wang, S.; Huang, Z.; Yu, F.; Lin, J. HER4 promotes the growth and metastasis of osteosarcoma via the PI3K/AKT pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52(4), 345-362.
[http://dx.doi.org/10.1093/abbs/gmaa004] [PMID: 32181480]
[70]
Kuijjer, M.L.; van den Akker, B.E.; Hilhorst, R.; Mommersteeg, M.; Buddingh, E.P.; Serra, M.; Bürger, H.; Hogendoorn, P.C.; Cleton-Jansen, A.M. Kinome and mRNA expression profiling of high-grade osteosarcoma cell lines implies Akt signaling as possible target for therapy. BMC Med. Genomics, 2014, 7, 4.
[http://dx.doi.org/10.1186/1755-8794-7-4] [PMID: 24447333]
[71]
Tang, N.; Song, W.X.; Luo, J.; Haydon, R.C.; He, T.C. Osteosarcoma development and stem cell differentiation. Clin. Orthop. Relat. Res., 2008, 466(9), 2114-2130.
[http://dx.doi.org/10.1007/s11999-008-0335-z] [PMID: 18563507]
[72]
Zhou, R.; Zhang, Z.; Zhao, L.; Jia, C.; Xu, S.; Mai, Q.; Lu, M.; Huang, M.; Wang, L.; Wang, X.; Jin, D.; Bai, X. Inhibition of mTOR signaling by oleanolic acid contributes to its anti-tumor activity in osteosarcoma cells. J. Orthop. Res., 2011, 29(6), 846-852.
[http://dx.doi.org/10.1002/jor.21311] [PMID: 21246613]
[73]
Zhang, J.; Yu, X.H.; Yan, Y.G.; Wang, C.; Wang, W.J. PI3K/Akt signaling in osteosarcoma. Clin. Chim. Acta, 2015, 444, 182-192.
[http://dx.doi.org/10.1016/j.cca.2014.12.041] [PMID: 25704303]
[74]
Beevers, C.S.; Zhou, H.; Huang, S. Hitting the golden TORget: Curcumin’s effects on mTOR signaling. Anticancer. Agents Med. Chem., 2013, 13(7), 988-994.
[http://dx.doi.org/10.2174/1871520611313070004] [PMID: 23272912]
[75]
Huang, S. Inhibition of PI3K/Akt/mTOR signaling by natural products. Anticancer. Agents Med. Chem., 2013, 13(7), 967-970.
[http://dx.doi.org/10.2174/1871520611313070001] [PMID: 23272914]
[76]
Croce, J.C.; McClay, D.R. Evolution of the Wnt pathways. Methods Mol. Biol., 2008, 469, 3-18.
[http://dx.doi.org/10.1007/978-1-60327-469-2_1] [PMID: 19109698]
[77]
Willert, K.; Brown, J.D.; Danenberg, E.; Duncan, A.W.; Weissman, I.L.; Reya, T.; Yates, J.R., III; Nusse, R. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003, 423(6938), 448-452.
[http://dx.doi.org/10.1038/nature01611] [PMID: 12717451]
[78]
Tabatabai, R.; Linhares, Y.; Bolos, D.; Mita, M.; Mita, A. Targeting the Wnt pathway in cancer: A review of novel therapeutics. Target. Oncol., 2017, 12(5), 623-641.
[http://dx.doi.org/10.1007/s11523-017-0507-4] [PMID: 28653295]
[79]
Cai, Y.; Cai, T.; Chen, Y. Wnt pathway in osteosarcoma, from oncogenic to therapeutic. J. Cell. Biochem., 2014, 115(4), 625-631.
[http://dx.doi.org/10.1002/jcb.24708] [PMID: 24190862]
[80]
Ma, Y.; Ren, Y.; Han, E.Q.; Li, H.; Chen, D.; Jacobs, J.J.; Gitelis, S.; O’Keefe, R.J.; Konttinen, Y.T.; Yin, G.; Li, T.F. Inhibition of the Wnt-β-catenin and Notch signaling pathways sensitizes osteosarcoma cells to chemotherapy. Biochem. Biophys. Res. Commun., 2013, 431(2), 274-279.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.118] [PMID: 23291185]
[81]
Zhao, S.; Kurenbekova, L.; Gao, Y.; Roos, A.; Creighton, C.J.; Rao, P.; Hicks, J.; Man, T.K.; Lau, C.; Brown, A.M.; Jones, S.N.; Lazar, A.J.; Ingram, D.; Lev, D.; Donehower, L.A.; Yustein, J.T. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma. Oncogene, 2015, 34(39), 5069-5079.
[http://dx.doi.org/10.1038/onc.2014.429] [PMID: 25579177]
[82]
Rickel, K.; Fang, F.; Tao, J. Molecular genetics of osteosarcoma. Bone, 2017, 102, 69-79.
[http://dx.doi.org/10.1016/j.bone.2016.10.017] [PMID: 27760307]
[83]
Pridgeon, M.G.; Grohar, P.J.; Steensma, M.R.; Williams, B.O. Wnt signaling in ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. Curr. Osteoporos. Rep., 2017, 15(4), 239-246.
[http://dx.doi.org/10.1007/s11914-017-0377-9] [PMID: 28647886]
[84]
Du, X.; Yang, J.; Yang, D.; Tian, W.; Zhu, Z. The genetic basis for inactivation of Wnt pathway in human osteosarcoma. BMC Cancer, 2014, 14(1), 450.
[http://dx.doi.org/10.1186/1471-2407-14-450] [PMID: 24942472]
[85]
Chen, C.; Zhao, M.; Tian, A.; Zhang, X.; Yao, Z.; Ma, X. Aberrant activation of Wnt/β-catenin signaling drives proliferation of bone sarcoma cells. Oncotarget, 2015, 6(19), 17570-17583.
[http://dx.doi.org/10.18632/oncotarget.4100] [PMID: 25999350]
[86]
Rajasekaran, M.R.; Kanoo, S.; Fu, J.; Bhargava, V.; Mittal, R.K. Wnt-β catenin signaling pathway: A major player in the injury induced fibrosis and dysfunction of the external anal sphincter. Sci. Rep., 2017, 7(1), 963.
[http://dx.doi.org/10.1038/s41598-017-01131-6] [PMID: 28424479]
[87]
Abdel-Magid, A.F. Wnt/β-Catenin signaling pathway inhibitors: A promising cancer therapy. ACS Med. Chem. Lett., 2014, 5(9), 956-957.
[http://dx.doi.org/10.1021/ml500276a] [PMID: 25264477]
[88]
Zhou, L.; Lu, Y.; Liu, J.S.; Long, S.Z.; Liu, H.L.; Zhang, J.; Zhang, T. The role of miR-21/RECK in the inhibition of osteosarcoma by curcumin. Mol. Cell. Probes, 2020, 51, 101534.
[http://dx.doi.org/10.1016/j.mcp.2020.101534] [PMID: 32081769]
[89]
Hoang, B.H.; Kubo, T.; Healey, J.H.; Sowers, R.; Mazza, B.; Yang, R.; Huvos, A.G.; Meyers, P.A.; Gorlick, R. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int. J. Cancer, 2004, 109(1), 106-111.
[http://dx.doi.org/10.1002/ijc.11677] [PMID: 14735475]
[90]
Leow, P.C.; Tian, Q.; Ong, Z.Y.; Yang, Z.; Ee, P.L. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells. Invest. New Drugs, 2010, 28(6), 766-782.
[http://dx.doi.org/10.1007/s10637-009-9311-z] [PMID: 19730790]
[91]
Allenspach, E.J.; Maillard, I.; Aster, J.C.; Pear, W.S. Notch signaling in cancer. Cancer Biol. Ther., 2002, 1(5), 466-476.
[http://dx.doi.org/10.4161/cbt.1.5.159] [PMID: 12496471]
[92]
Hughes, D.P. How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat. Res., 2009, 152, 479-496.
[http://dx.doi.org/10.1007/978-1-4419-0284-9_28] [PMID: 20213410]
[93]
Kopan, R.; Ilagan, M.X. The canonical notch signaling pathway: Unfolding the activation mechanism. Cell, 2009, 137(2), 216-233.
[http://dx.doi.org/10.1016/j.cell.2009.03.045] [PMID: 19379690]
[94]
Angulo, P.; Kaushik, G.; Subramaniam, D.; Dandawate, P.; Neville, K.; Chastain, K.; Anant, S. Natural compounds targeting major cell signaling pathways: A novel paradigm for osteosarcoma therapy. J. Hematol. Oncol., 2017, 10(1), 10.
[http://dx.doi.org/10.1186/s13045-016-0373-z] [PMID: 28061797]
[95]
Tsuru, A.; Setoguchi, T.; Matsunoshita, Y.; Nagao-Kitamoto, H.; Nagano, S.; Yokouchi, M.; Maeda, S.; Ishidou, Y.; Yamamoto, T.; Komiya, S. Hairy/enhancer-of-split related with YRPW motif protein 1 promotes osteosarcoma metastasis via matrix metallopeptidase 9 expression. Br. J. Cancer, 2015, 112(7), 1232-1240.
[http://dx.doi.org/10.1038/bjc.2015.84] [PMID: 25742474]
[96]
Anderson, M.E. Update on survival in osteosarcoma. Orthop. Clin. North Am., 2016, 47(1), 283-292.
[http://dx.doi.org/10.1016/j.ocl.2015.08.022] [PMID: 26614941]
[97]
Roca, C.; Adams, R.H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev., 2007, 21(20), 2511-2524.
[http://dx.doi.org/10.1101/gad.1589207] [PMID: 17938237]
[98]
Harrington, L.S.; Sainson, R.C.; Williams, C.K.; Taylor, J.M.; Shi, W.; Li, J.L.; Harris, A.L. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc. Res., 2008, 75(2), 144-154.
[http://dx.doi.org/10.1016/j.mvr.2007.06.006] [PMID: 17692341]
[99]
Garcia, A.; Kandel, J.J. Notch: A key regulator of tumor angiogenesis and metastasis. Histol. Histopathol., 2012, 27(2), 151-156.
[PMID: 22207549]
[100]
Luo, Z.; Shang, X.; Zhang, H.; Wang, G.; Massey, P.A.; Barton, S.R.; Kevil, C.G.; Dong, Y. Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am. J. Pathol., 2019, 189(8), 1495-1500.
[http://dx.doi.org/10.1016/j.ajpath.2019.05.005] [PMID: 31345466]
[101]
Bray, S.J. Notch signalling: A simple pathway becomes complex. Nat. Rev. Mol. Cell Biol., 2006, 7(9), 678-689.
[http://dx.doi.org/10.1038/nrm2009] [PMID: 16921404]
[102]
Liao, S.; Xia, J.; Chen, Z.; Zhang, S.; Ahmad, A.; Miele, L.; Sarkar, F.H.; Wang, Z. Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-κB signaling pathways. J. Cell. Biochem., 2011, 112(4), 1055-1065.
[http://dx.doi.org/10.1002/jcb.23019] [PMID: 21308734]
[103]
Yuan, X.; Wu, H.; Han, N.; Xu, H.; Chu, Q.; Yu, S.; Chen, Y.; Wu, K. Notch signaling and EMT in non-small cell lung cancer: Biological significance and therapeutic application. J. Hematol. Oncol., 2014, 7, 87.
[http://dx.doi.org/10.1186/s13045-014-0087-z] [PMID: 25477004]
[104]
Subramaniam, D.; Ponnurangam, S.; Ramamoorthy, P.; Standing, D.; Battafarano, R.J.; Anant, S.; Sharma, P. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One, 2012, 7(2), e30590.
[http://dx.doi.org/10.1371/journal.pone.0030590] [PMID: 22363450]
[105]
Wu, G.Q.; Chai, K.Q.; Zhu, X.M.; Jiang, H.; Wang, X.; Xue, Q.; Zheng, A.H.; Zhou, H.Y.; Chen, Y.; Chen, X.C.; Xiao, J.Y.; Ying, X.H.; Wang, F.W.; Rui, T.; Liao, Y.J.; Xie, D.; Lu, L.Q.; Huang, D.S. Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget, 2016, 7(18), 26535-26550.
[http://dx.doi.org/10.18632/oncotarget.8532] [PMID: 27049834]
[106]
Yang, J.; Wang, C.; Zhang, Z.; Chen, X.; Jia, Y.; Wang, B.; Kong, T. Curcumin inhibits the survival and metastasis of prostate cancer cells via the Notch-1 signaling pathway. APMIS, 2017, 125(2), 134-140.
[http://dx.doi.org/10.1111/apm.12650] [PMID: 28120490]
[107]
Yamaguchi, H.; Nojima, T.; Yagi, T.; Matsuno, T.; Sasaki, T.; Isu, K.; Ubayama, Y.; Yamawaki, S.; Gotch, M. The alteration in the pattern of pulmonary metastasis with adjuvant chemotherapy in osteosarcoma. Int. Orthop., 1988, 12(4), 305-308.
[http://dx.doi.org/10.1007/BF00317829] [PMID: 3220623]
[108]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[109]
Mikulić D.; Ilić I.; Cepulić M.; Orlić D.; Giljević J.S.; Fattorini, I.; Seiwerth, S. Tumor angiogenesis and outcome in osteosarcoma. Pediatr. Hematol. Oncol., 2004, 21(7), 611-619.
[http://dx.doi.org/10.1080/08880010490501015] [PMID: 15626017]
[110]
Weiss, K.R.; Cooper, G.M.; Jadlowiec, J.A.; McGough, III, R.L.; Huard, J. VEGF and BMP expression in mouse osteosarcoma cells. Clin. Orthop. Relat. Res., 2006, 450(450), 111-117.
[http://dx.doi.org/10.1097/01.blo.0000229333.98781.56] [PMID: 16906080]
[111]
Won, Y.W.; Lee, M.; Kim, H.A.; Bull, D.A.; Kim, S.W. Post-translational regulated and hypoxia-responsible VEGF plasmid for efficient secretion. J. Control. Release, 2012, 160(3), 525-531.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.010] [PMID: 22450332]
[112]
Roorda, B.D.; Ter Elst, A.; Scherpen, F.J.; Meeuwsen-de Boer, T.G.; Kamps, W.A.; de Bont, E.S. VEGF-A promotes lymphoma tumour growth by activation of STAT proteins and inhibition of p27(KIP1) via paracrine mechanisms. Eur. J. Cancer, 2010, 46(5), 974-982.
[http://dx.doi.org/10.1016/j.ejca.2009.12.027] [PMID: 20064707]
[113]
Ohba, T.; Cates, J.M.; Cole, H.A.; Slosky, D.A.; Haro, H.; Ando, T.; Schwartz, H.S.; Schoenecker, J.G. Autocrine VEGF/VEGFR1 signaling in a subpopulation of cells associates with aggressive osteosarcoma. Mol. Cancer Res., 2014, 12(8), 1100-1111.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0037] [PMID: 24759089]
[114]
Fukuhara, M.; Uchida, E.; Tajiri, T.; Aimoto, T.; Naito, Z.; Ishiwata, T. Re-expression of reduced VEGF activity in liver metastases of experimental pancreatic cancer. J. Nippon Med. Sch., 2005, 72(3), 155-164.
[http://dx.doi.org/10.1272/jnms.72.155] [PMID: 16046832]
[115]
Yu, X.W.; Wu, T.Y.; Yi, X.; Ren, W.P.; Zhou, Z.B.; Sun, Y.Q.; Zhang, C.Q. Prognostic significance of VEGF expression in osteosarcoma: A meta-analysis. Tumour Biol., 2014, 35(1), 155-160.
[http://dx.doi.org/10.1007/s13277-013-1019-1] [PMID: 23907576]
[116]
Lu, X.Y.; Lu, Y.; Zhao, Y.J.; Jaeweon, K.; Kang, J.; Xiao-Nan, L.; Ge, G.; Meyer, R.; Perlaky, L.; Hicks, J.; Chintagumpala, M.; Cai, W.W.; Ladanyi, M.; Gorlick, R.; Lau, C.C.; Pati, D.; Sheldon, M.; Rao, P.H. Cell cycle regulator gene CDC5L, a potential target for 6p12-p21 amplicon in osteosarcoma. Mol. Cancer Res., 2008, 6(6), 937-946.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-2115] [PMID: 18567798]
[117]
Yang, J.; Yang, D.; Sun, Y.; Sun, B.; Wang, G.; Trent, J.C.; Araujo, D.M.; Chen, K.; Zhang, W. Genetic amplification of the Vascular Endothelial Growth Factor (VEGF) pathway genes, including VEGFA, in human osteosarcoma. Cancer, 2011, 117(21), 4925-4938.
[http://dx.doi.org/10.1002/cncr.26116] [PMID: 21495021]
[118]
Mei, J.; Gao, Y.; Zhang, L.; Cai, X.; Qian, Z.; Huang, H.; Huang, W. VEGF-siRNA silencing induces apoptosis, inhibits proliferation and suppresses vasculogenic mimicry in osteosarcoma in vitro. Exp. Oncol., 2008, 30(1), 29-34.
[PMID: 18438338]
[119]
Zhao, J.; Zhang, Z.R.; Zhao, N.; Ma, B.A.; Fan, Q.Y. VEGF silencing inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via PI3K/AKT signaling pathway. Int. J. Clin. Exp. Med., 2015, 8(8), 12411-12417.
[http://dx.doi.org/10.1007/s12013-015-0692-7] [PMID: 26550152]
[120]
Bhandarkar, S.S.; Arbiser, J.L. Curcumin as an inhibitor of angiogenesis. Adv. Exp. Med. Biol., 2007, 595, 185-195.
[http://dx.doi.org/10.1007/978-0-387-46401-5_7] [PMID: 17569211]
[121]
El-Azab, M.; Hishe, H.; Moustafa, Y.; El-Awady, S. Anti-angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma-bearing mice. Eur. J. Pharmacol., 2011, 652(1-3), 7-14.
[http://dx.doi.org/10.1016/j.ejphar.2010.11.008] [PMID: 21114990]
[122]
Moradi-Marjaneh, R.; Hassanian, S.M.; Rahmani, F.; Aghaee-Bakhtiari, S.H.; Avan, A.; Khazaei, M. Phytosomal curcumin elicits anti-tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer. Curr. Pharm. Des., 2018, 24(39), 4626-4638.
[http://dx.doi.org/10.2174/1381612825666190110145151] [PMID: 30636578]
[123]
Wang, T.Y.; Chen, J.X. Effects of curcumin on vessel formation insight into the pro- and antiangiogenesis of curcumin. Evid. Based Complement. Alternat. Med., 2019, 2019, 1390795.
[http://dx.doi.org/10.1155/2019/1390795] [PMID: 31320911]
[124]
Griffiths-Jones, S.; Grocock, R.J.; van Dongen, S.; Bateman, A.; Enright, A.J. miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res., 2006, 34(Database issue), D140-D144.
[http://dx.doi.org/10.1093/nar/gkj112] [PMID: 16381832]
[125]
Wagner, A.; Mayr, C.; Bach, D.; Illig, R.; Plaetzer, K.; Berr, F.; Pichler, M.; Neureiter, D.; Kiesslich, T. MicroRNAs associated with the efficacy of photodynamic therapy in biliary tract cancer cell lines. Int. J. Mol. Sci., 2014, 15(11), 20134-20157.
[http://dx.doi.org/10.3390/ijms151120134] [PMID: 25380521]
[126]
Chen, P.; Wang, H.; Yang, F.; Chen, H.; He, W.; Wang, J. Curcumin promotes osteosarcoma cell death by activating miR-125a/ERRα signal pathway. J. Cell. Biochem., 2017, 118(1), 74-81.
[http://dx.doi.org/10.1002/jcb.25612] [PMID: 27231954]
[127]
Fang, Y.; Zhang, Z.; Wang, Q.; Zhao, J. Expression and clinical significance of cyclooxygenase-2 and microRNA-143 in osteosarcoma. Exp. Ther. Med., 2015, 9(6), 2374-2378.
[http://dx.doi.org/10.3892/etm.2015.2420] [PMID: 26136990]
[128]
Maire, G.; Martin, J.W.; Yoshimoto, M.; Chilton-MacNeill, S.; Zielenska, M.; Squire, J.A. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. Cancer Genet., 2011, 204(3), 138-146.
[http://dx.doi.org/10.1016/j.cancergen.2010.12.012] [PMID: 21504713]
[129]
Jia, F.; Zhang, Z.; Zhang, X. MicroRNA-338-3p inhibits tumor growth and metastasis in osteosarcoma cells by targeting RUNX2/CDK4 and inhibition of MAPK pathway. J. Cell. Biochem., 2019, 120(4), 6420-6430.
[http://dx.doi.org/10.1002/jcb.27929] [PMID: 30484892]
[130]
Won, K.Y.; Kim, Y.W.; Kim, H.S.; Lee, S.K.; Jung, W.W.; Park, Y.K. MicroRNA-199b-5p is involved in the Notch signaling pathway in osteosarcoma. Hum. Pathol., 2013, 44(8), 1648-1655.
[http://dx.doi.org/10.1016/j.humpath.2013.01.016] [PMID: 23574781]
[131]
Momtazi, A.A.; Shahabipour, F.; Khatibi, S.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Curcumin as a MicroRNA regulator in cancer: A review. Rev. Physiol. Biochem. Pharmacol., 2016, 171, 1-38.
[http://dx.doi.org/10.1007/112_2016_3] [PMID: 27457236]
[132]
Ufkin, M.L.; Peterson, S.; Yang, X.; Driscoll, H.; Duarte, C.; Sathyanarayana, P. miR-125a regulates cell cycle, proliferation, and apoptosis by targeting the ErbB pathway in acute myeloid leukemia. Leuk. Res., 2014, 38(3), 402-410.
[http://dx.doi.org/10.1016/j.leukres.2013.12.021] [PMID: 24484870]
[133]
Chen, D.; Li, Y.; Su, Z.; Yu, Z.; Yu, W.; Li, Y.; Gui, Y.; Yang, S.; Lai, Y. Identification of miR 125a 5p as a tumor suppressor of renal cell carcinoma, regulating cellular proliferation, migration and apoptosis. Mol. Med. Rep., 2015, 11(2), 1278-1283.
[http://dx.doi.org/10.3892/mmr.2014.2848] [PMID: 25370896]
[134]
Yin, F.; Zhang, J.N.; Wang, S.W.; Zhou, C.H.; Zhao, M.M.; Fan, W.H.; Fan, M.; Liu, S. MiR-125a-3p regulates glioma apoptosis and invasion by regulating Nrg1. PLoS One, 2015, 10(1), e0116759.
[http://dx.doi.org/10.1371/journal.pone.0116759] [PMID: 25560389]
[135]
Yu, D.; An, F.; He, X.; Cao, X. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138. Int. J. Clin. Exp. Pathol., 2015, 8(11), 14946-14952.
[PMID: 26823826]
[136]
Bhatia, M.; Bhalerao, M.; Cruz-Martins, N.; Kumar, D. Curcumin and cancer biology: Focusing regulatory effects in different signalling pathways. Phytother. Res., 2021, 35(9), 4913-4929.
[http://dx.doi.org/10.1002/ptr.7121] [PMID: 33837579]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy