Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Sustainable and Renewable Nano-biocomposites for Sensors and Actuators: A Review on Preparation and Performance

Author(s): Manickam Ramesh*, Lakshminarasimhan Rajeshkumar, Devarajan Balaji and Venkateswaran Bhuvaneswari

Volume 19, Issue 1, 2023

Published on: 14 November, 2022

Page: [38 - 69] Pages: 32

DOI: 10.2174/1573411018666220421112916

Price: $65

Abstract

Background: Nanomaterials derived from sustainable and biodegradable polymers are currently the most attractive materials. Polymeric nano-biocomposites (PNBCs) are a specific class of materials derived by combining nanosized fillers with polymer materials, and the most commonly used nano-fillers are hydroxyapatite, organic or inorganic metal nanoparticles, clays, etc.

Methods: Many recent research works have focused on utilizing biopolymer-based hydrogel materials for the fabrication of analyte sensors and electrode modifiers due to their high permeability and faster mobilization of electrons. Such biopolymer hydrogels utilize newer printing methods in electrode prototyping, which renders portable, flexible, and advanced bioelectronics sensors with high-performance characteristics. Few researchers have also stated the use of polyaniline reinforced biocomposites for fabricating electrochemical sensors and actuators because of their unique properties, making them a potential material choice for electronics applications.

Results: Nanoparticles of polyaniline improve the detection limit and sensitivity of the sensor even when used for recognizing a single molecule. Bionanocomposites possess excellent thermo-mechanical properties in the designed nanocomposite, even at low nanoparticle concentrations. These materials possess higher hardness and stability, giving rise to excellent mechanical characteristics. Furthermore, incorporating nanoparticles into a biopolymeric matrix can enhance its electrical conductivity, barrier properties, and consistency. Also, the powerful interaction between biopolymers and functional groups of nanoparticles increases the strength of bionanocomposites.

Conclusion: Nano-biocomposites-based biosensors were found to possess high specificity, sensitivity, and a wider target spectrum. The current review discusses the use of sustainable and renewable biocomposites for the preparation of biosensors and actuators, their properties like sensitivity, the limit of detection, advantages over the synthetic material, and environmental hazards.

Keywords: Biocomposites, sensors, actuators, polymers, biomolecules, environmental hazards.

Graphical Abstract
[1]
Bajracharya, S.; Sharma, M.; Mohanakrishna, G.; Dominguez Benneton, X.; Strik, D.P.B.T.B.; Sarma, P.M.; Pant, D. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity waste remediation, resource recovery, chemical production and beyond. Renew. Energy, 2016, 98, 153-170.
[http://dx.doi.org/10.1016/j.renene.2016.03.002]
[2]
Neethirajan, S.; Ragavan, V.; Weng, X.; Chand, R. Biosensors for sustainable food engineering: Challenges and perspectives. Biosensors (Basel), 2018, 8(1), 23.
[http://dx.doi.org/10.3390/bios8010023] [PMID: 29534552]
[3]
Firestein, K.L.; Leybo, D.V.; Steinman, A.E.; Kovalskii, A.M.; Matveev, A.T.; Manakhov, A.M.; Sukhorukova, I.V.; Slukin, P.V.; Fursova, N.K.; Ignatov, S.G.; Golberg, D.V.; Shtansky, D.V. BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents. Beilstein J. Nanotechnol., 2018, 9, 250-261.
[http://dx.doi.org/10.3762/bjnano.9.27] [PMID: 29441270]
[4]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[5]
Olmos, D.; Pontes-Quero, G.M.; Corral, A.; González-Gaitano, G.; González-Benito, J. Preparation and characterization of antimicrobial films based on LDPE/Ag nanoparticles with potential uses in food and health industries. Nanomaterials (Basel), 2018, 8(2), 60.
[http://dx.doi.org/10.3390/nano8020060] [PMID: 29364193]
[6]
Karimi-Maleh, H.; Cellat, K. Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium-Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250, 123042.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[7]
Kumar, S.A.; Maivizhi Selvi, P.; Rajeshkumar, L. Delamination in drilling of sisal/banana reinforced composites produced by hand lay-up process. Appl. Mech. Mater., 2017, 867, 29-33.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.867.29]
[8]
Hyacinthe, J.N.; Buscemi, L.; Lê, T.P.; Lepore, M.; Hirt, L.; Mishkovsky, M. Evaluating the potential of hyperpolarised [1-13 C] L-lactate as a neuroprotectant metabolic biosensor for stroke. Sci. Rep., 2020, 10(1), 1-1.
[http://dx.doi.org/10.1038/s41598-020-62319-x] [PMID: 31913322]
[9]
Saber, N.B.; Mezni, A.; Alrooqi, A.; Altalhi, T. A review of ternary nanostructures based noble metal/semiconductor for environmental and renewable energy applications. J. Mater. Res. Technol., 2020, 9(6), 15233-15262.
[http://dx.doi.org/10.1016/j.jmrt.2020.10.090]
[10]
Aljaafari, A.; Parveen, N.; Ahmad, F.; Alam, M.W.; Ansari, S.A. Self-assembled cube-like copper oxide derived from a metal-organic framework as a high-performance electrochemical supercapacitive electrode material. Sci. Rep., 2019, 9(1), 9140.
[http://dx.doi.org/10.1038/s41598-019-45557-6] [PMID: 31235726]
[11]
Ramesh, M.; Deepa, C.; Kumar, L.R.; Sanjay, M.R.; Siengchin, S. Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: A critical review. J. Ind. Text., 2020.
[http://dx.doi.org/10.1177/1528083720924730]
[12]
Ali, A.S.; Hemraj, Y.; Muhammad, A.; Kicheon, Y.; Jae-Joon, L. Solvothermal growth of 3D flower-like CoS@FTO as high-performance counter electrode for dye-sensitized solar cell. J. Mater. Sci. Mater. Electron., 2019, 30(7), 6929-6935.
[http://dx.doi.org/10.1007/s10854-019-01008-6]
[13]
Sawant, S.Y.; Yeol, K.J.; Hiep, H.T.; Ali, A.S.; Hwan, C.M. Electrochemically active biofilm-assisted biogenic synthesis of an Ag-decorated ZnO@C coreeshell ternary plasmonic photocatalyst with enhanced visible photocatalytic activity. New J. Chem., 2018, 42(3), 1995-2005.
[http://dx.doi.org/10.1039/C7NJ03936K]
[14]
Ansari, S.A.; Cho, M.H. Simple and large-scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications. Sci. Rep., 2017, 7(1), 43055.
[http://dx.doi.org/10.1038/srep43055] [PMID: 28240228]
[15]
Balaji, D.; Ramesh, M.; Kannan, T.; Deepan, S.; Bhuvaneswari, V.; Rajeshkumar, L. Experimental investigation on mechanical properties of banana/snake grass fiber reinforced hybrid composites. Mater. Today Proc., 2021, 42, 350-355.
[http://dx.doi.org/10.1016/j.matpr.2020.09.548]
[16]
Ali, A.S.; Hwan, C.M. Growth of three dimensional flower-like SnS2 on g-C3N4 sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material. Sustain. Energy Fuels, 2017, 1(3), 510-519.
[http://dx.doi.org/10.1039/C6SE00049E]
[17]
Ramesh, M.; Deepa, C.; Tamil Selvan, M.; Rajeshkumar, L.; Balaji, D.; Bhuvaneswari, V. Mechanical and water absorption properties of Calotropis gigantea plant fibers reinforced polymer composites. Mater. Today Proc., 2020, 46, 3367-3372.
[http://dx.doi.org/10.1016/j.matpr.2020.11.480]
[18]
Ansari, S.A.; Cho, M.H. Highly visible lightresponsive, narrow band gap TiO2 nanoparticles modified byelemental red phosphorus for photocatalysis andphotoelectrochemical applications. Sci. Rep., 2016, 6(1), 25405.
[http://dx.doi.org/10.1038/srep25405] [PMID: 27146098]
[19]
Ribeiro, F.W.P.; Barroso, M.F.; Morais, S.; Viswanathan, S.; de Lima-Neto, P.; Correia, A.N.; Oliveira, M.B.P.P.; Delerue-Matos, C. Simple laccase-based biosensor for formetanate hydrochloride quantification in fruits. Bioelectrochemistry, 2014, 95, 7-14.
[http://dx.doi.org/10.1016/j.bioelechem.2013.09.005] [PMID: 24161938]
[20]
Chauhan, N.; Pundir, C.S. An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides. Electrochim. Acta, 2012, 67, 79-86.
[http://dx.doi.org/10.1016/j.electacta.2012.02.012]
[21]
Han, E.; Yang, Y.; He, Z.; Cai, J.; Zhang, X.; Dong, X. Development of tyrosinase biosensor based on quantum dots/chitosan nanocomposite for detection of phenolic compounds. Anal. Biochem., 2015, 486, 102-106.
[http://dx.doi.org/10.1016/j.ab.2015.07.001] [PMID: 26159737]
[22]
Sinha, R.; Ganesana, M.; Andreescu, S.; Stanciu, L. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides. Anal. Chim. Acta, 2010, 661(2), 195-199.
[http://dx.doi.org/10.1016/j.aca.2009.12.020] [PMID: 20113735]
[23]
Lim, S.H.; Wei, J.; Lin, J.; Li, Q.; Kuayou, J. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosens. Bioelectron., 2005, 20(11), 2341-2346.
[http://dx.doi.org/10.1016/j.bios.2004.08.005] [PMID: 15797337]
[24]
Li, J.; Li, X.; Zhao, Q.; Jiang, Z.; Tadé, M.; Wang, S.; Liu, S. Polydopamine-assisted decoration of TiO2 nanotube arrays with enzyme to construct a novel photoelectrochemical sensing platform. Sens. Actuators B Chem., 2018, 255, 133-139.
[http://dx.doi.org/10.1016/j.snb.2017.06.168]
[25]
Saeedfar, K.; Heng, L.Y.; Ling, T.L.; Rezayi, M. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate. Sensors (Basel), 2013, 13(12), 16851-16866.
[http://dx.doi.org/10.3390/s131216851] [PMID: 24322561]
[26]
Comba, F.N.; Romero, M.R.; Garay, F.S.; Baruzzi, A.M. Mucin and carbon nanotube-based biosensor for detection of glucose in human plasma. Anal. Biochem., 2018, 550, 34-40.
[http://dx.doi.org/10.1016/j.ab.2018.04.006] [PMID: 29649474]
[27]
Hassan, R.Y.A.; Kamel, A.M.; Hashem, M.S.; Hassan, H.N.A.; Abd El-Ghaffar, M.A. A new disposable biosensor platform: carbon nanotube/poly (o-toluidine) nanocomposite for direct biosensing of urea. J. Solid State Electrochem., 2018, 22(6), 1817-1823.
[http://dx.doi.org/10.1007/s10008-017-3857-z]
[28]
Wang, Y.; Liu, X.; Xu, X.; Yang, Y.; Huang, L.; He, Z.; Xu, Y.; Chen, J.; Feng, Z. Preparation and characterization of reduced graphene oxide/Fe3O4 nanocomposite by a facile in-situ deposition method for glucose biosensor applications. Mater. Res. Bull., 2018, 101, 340-346.
[http://dx.doi.org/10.1016/j.materresbull.2018.01.035]
[29]
Kaçar, C.; Erden, P.E. Kılıç, E. Ceren, PınarEsra Erden, EsmaKılıç. Amperometric l-lysine biosensor based on carboxylated multiwalled carbon nanotubes-SnO2 nanoparticles-graphene composite. Appl. Surf. Sci., 2017, 419, 916-923.
[http://dx.doi.org/10.1016/j.apsusc.2017.05.120]
[30]
Nieto, C.H.D.; Granero, A.M.; Lopez, J.C.; Pierini, G.D.; Levin, G.J.; Fernández, H.; Zon, M.A. Development of a third generation biosensor to determine hydrogen peroxide based on a composite of soybean peroxidase/chemically reduced graphene oxide deposited on glassy carbon electrodes. Sens. Actuators B Chem., 2018, 263, 377-386.
[http://dx.doi.org/10.1016/j.snb.2018.02.094]
[31]
Rahman, M.A.; Kwon, N-H.; Won, M-S.; Choe, E.S.; Shim, Y-B. Functionalized conducting polymer as an enzyme-immobilizing substrate: An amperometric glutamate microbiosensor for in vivo measurements. Anal. Chem., 2005, 77(15), 4854-4860.
[http://dx.doi.org/10.1021/ac050558v] [PMID: 16053298]
[32]
Prasad, B.B.; Pandey, I. Electrochemically imprinted molecular recognition sites on multiwalled carbon-nanotubes/pencil graphite electrode surface for enantioselective detection of d-and l-aspartic acid. Electrochim. Acta, 2013, 88, 24-34.
[http://dx.doi.org/10.1016/j.electacta.2012.10.095]
[33]
Xu, Q.; Wang, S-F. Electrocatalytic oxidation and direct determination of L-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Mikrochim. Acta, 2005, 151(1-2), 47-52.
[http://dx.doi.org/10.1007/s00604-005-0408-6]
[34]
Huang, J.; Xu, W.; Gong, Y.; Weng, S.; Lin, X. Selective and reliable electrochemical sensor based on polythionine/AuNPs composites for epinephrine detection in serum. Int. J. Electrochem. Sci., 2016, 11, 8193-8203.
[http://dx.doi.org/10.20964/2016.10.56]
[35]
da Silva, G.; Quésia, N.V.B. Estela de PieriTroiani, Ronaldo CensiFaria, R. Electrochemical determination of norepinephrine on cathodically pretreated poly (1, 5‐diaminonaphthalene) modified electrode. Electroanalysis, 2011, 23(6), 1359-1364.
[http://dx.doi.org/10.1002/elan.201100001]
[36]
Wang, W.; Xu, G.; Cui, X.T.; Sheng, G.; Luo, X. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens. Bioelectron., 2014, 58, 153-156.
[http://dx.doi.org/10.1016/j.bios.2014.02.055] [PMID: 24632460]
[37]
Ulubay, S.; Dursun, Z. Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta, 2010, 80(3), 1461-1466.
[http://dx.doi.org/10.1016/j.talanta.2009.09.054] [PMID: 20006114]
[38]
Liu, S.; Xing, X.; Yu, J.; Lian, W.; Li, J.; Cui, M.; Huang, J. A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination. Biosens. Bioelectron., 2012, 36(1), 186-191.
[http://dx.doi.org/10.1016/j.bios.2012.04.011] [PMID: 22560161]
[39]
Gupta, P.; Goyal, R.N. Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta, 2014, 120, 17-22.
[http://dx.doi.org/10.1016/j.talanta.2013.11.075] [PMID: 24468336]
[40]
Geto, A.; Tessema, M.; Admassie, S. Determination of histamine in fish muscle at multi-walled carbon nanotubes coated conducting polymer modified glassy carbon electrode. Synth. Met., 2014, 191, 135-140.
[http://dx.doi.org/10.1016/j.synthmet.2014.03.005]
[41]
He, C.; Wang, Z.; Wang, Y.; Hu, R.; Li, G. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro. Biosens. Bioelectron., 2016, 85, 679-683.
[http://dx.doi.org/10.1016/j.bios.2016.05.077] [PMID: 27254787]
[42]
Aynacı E.; Yaşar, A.; Arslan, F. An amperometric biosensor for acetylcholine determination prepared from acetylcholinesterase-choline oxidase immobilized in polypyrrole-polyvinylsulpfonate film. Sens. Actuators B Chem., 2014, 202, 1028-1036.
[http://dx.doi.org/10.1016/j.snb.2014.06.049]
[43]
Alvin Koh, W.C.; Rahman, M.A.; Choe, E.S.; Lee, D.K.; Shim, Y-B. A cytochrome c modified-conducting polymer microelectrode for monitoring in vivo changes in nitric oxide. Biosens. Bioelectron., 2008, 23(9), 1374-1381.
[http://dx.doi.org/10.1016/j.bios.2007.12.008] [PMID: 18242975]
[44]
Moon, J-M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y-B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron., 2018, 102, 540-552.
[http://dx.doi.org/10.1016/j.bios.2017.11.069] [PMID: 29220802]
[45]
Yourong, W.; Yan, H.; E’feng, W. The electrochemical oxidation and the quantitative determination of hydrogen sulfide on a solid polymer electrolyte-based system. J. Electroanal. Chem. (Lausanne), 2001, 497(1-2), 163-167.
[http://dx.doi.org/10.1016/S0022-0728(00)00449-6]
[46]
Sacramento, A.S.; Moreira, F.T.C.; Guerreiro, J.L.; Tavares, A.P.; Sales, M.G.F. Novel biomimetic composite material for potentiometric screening of acetylcholine, a neurotransmitter in Alzheimer’s disease. Mater. Sci. Eng. C, 2017, 79, 541-549.
[http://dx.doi.org/10.1016/j.msec.2017.05.098] [PMID: 28629051]
[47]
Sun, J.; Shu, X.; Tian, Y.; Tong, Z.; Bai, S.; Luo, R.; Li, D.; Liu, C.C. Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuators B Chem., 2017, 241, 658-664.
[http://dx.doi.org/10.1016/j.snb.2016.10.047]
[48]
Wang, L.; Huang, H.; Xiao, S.; Cai, D.; Liu, Y.; Liu, B.; Wang, D.; Wang, C.; Li, H.; Wang, Y.; Li, Q.; Wang, T. Enhanced sensitivity and stability of room-temperature NH₃ sensors using core-shell CeO₂ nanoparticles@cross-linked PANI with p-n heterojunctions. ACS Appl. Mater. Interfaces, 2014, 6(16), 14131-14140.
[http://dx.doi.org/10.1021/am503286h] [PMID: 25036558]
[49]
Zhang, J.; Liu, X.; Wu, S.; Xu, H.; Cao, B. One-pot fabrication of uniform polypyrrole/Au nanocomposites and investigation for gas sensing. Sens. Actuators B Chem., 2013, 186, 695-700.
[http://dx.doi.org/10.1016/j.snb.2013.06.063]
[50]
Abdulla, S.; Mathew, T.L.; Pullithadathil, B. Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuators B Chem., 2015, 221, 1523-1534.
[http://dx.doi.org/10.1016/j.snb.2015.08.002]
[51]
Park, E.; Kwon, O.S.; Park, S.J.; Lee, J.S.; You, S.; Jang, J. One-pot synthesis of silver nanoparticles decorated poly(3,4- ethylenedioxythiophene) nanotubes for chemical sensor application. J. Mater. Chem., 2012, 22(4), 1521-1526.
[http://dx.doi.org/10.1039/C1JM13237G]
[52]
Chang, Q.; Zhao, K.; Chen, X.; Li, M.; Liu, J. Preparation of gold/polyaniline/multiwall carbon nanotube nanocomposites and application in ammonia gas detection. J. Mater. Sci., 2008, 43(17), 5861-5866.
[http://dx.doi.org/10.1007/s10853-008-2827-3]
[53]
Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B Chem., 2013, 178, 485-493.
[http://dx.doi.org/10.1016/j.snb.2013.01.014]
[54]
Yan, X.B.; Han, Z.J.; Yang, Y.; Tay, B.K. NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sens. Actuators B Chem., 2007, 123(1), 107-113.
[http://dx.doi.org/10.1016/j.snb.2006.07.031]
[55]
Dunst, K.; Karczewski, J.; Jasinski, P. Nitrogen dioxide sensing properties of PEDOT polymer films. Sens. Actuators B Chem., 2017, 247, 108-113.
[http://dx.doi.org/10.1016/j.snb.2017.03.003]
[56]
Kumar, C.; Rawat, G.; Kumar, H.; Kumar, Y.; Ratan, S.; Prakash, R.; Jit, S. Poly (3, 3′′′-dialkylquaterthiophene) based flexible nitrogen dioxide gas sensor. IEEE Sens. Lett., 2018, 2(1), 1-4.
[http://dx.doi.org/10.1109/LSENS.2018.2799851]
[57]
Bai, S.; Guo, J.; Sun, J.; Tang, P.; Chen, A.; Luo, R.; Li, D. Enhancement of NO2-sensing performance at room temperature by graphene-modified polythiophene. Ind. Eng. Chem. Res., 2016, 55(19), 5788-5794.
[http://dx.doi.org/10.1021/acs.iecr.6b00418]
[58]
Mane, A.T.; Navale, S.T.; Sen, S.; Aswal, D.K.; Gupta, S.K.; Patil, V.B. Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Org. Electron., 2015, 16, 195-204.
[http://dx.doi.org/10.1016/j.orgel.2014.10.045]
[59]
Nalage, S.R.; Mane, A.T.; Pawar, R.C.; Lee, C.S.; Patil, V.B. Polypyrrole-NiO hybrid nanocomposite films: Highly selective, sensitive, and reproducible NO2 sensors. Ionics, 2014, 20(11), 1607-1616.
[http://dx.doi.org/10.1007/s11581-014-1122-3]
[60]
Yun, J.; Jeon, S.; Il Kim, H. Improvement of NO gas sensing properties of polyaniline/MWCNT composite by photocatalytic effect of TiO2. J. Nanomater., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/184345]
[61]
Shirsat, M.D.; Bangar, M.A.; Deshusses, M.A.; Myung, N.V.; Mulchandani, A. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl. Phys. Lett., 2009, 94(8), 083502.
[http://dx.doi.org/10.1063/1.3070237]
[62]
Raut, B.T.; Chougule, M.A.; Nalage, S.R.; Dalavi, D.S.; Mali, S.; Patil, P.S.; Patil, V.B. CSA doped polyaniline/CdS organic-inorganic nanohybrid: Physical and gas sensing properties. Ceram. Int., 2012, 38(7), 5501-5506.
[http://dx.doi.org/10.1016/j.ceramint.2012.03.064]
[63]
Mousavi, S.; Kang, K.; Park, J.; Park, I. A room temperature hydrogen sulfide gas sensor based on electrospun polyaniline-polyethylene oxide nanofibers directly written on flexible substrates. RSC Advances, 2016, 6(106), 104131-104138.
[http://dx.doi.org/10.1039/C6RA20710C]
[64]
Kate, K.H.; Damkale, S.R.; Khanna, P.K.; Jain, G.H. Nano-silver mediated polymerization of pyrrole: Synthesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite. J. Nanosci. Nanotechnol., 2011, 11(9), 7863-7869.
[http://dx.doi.org/10.1166/jnn.2011.4708] [PMID: 22097498]
[65]
Ayesh, A.I.; Abu-Hani, A.F.S.; Mahmoud, S.T.; Haik, Y. Selective H2S sensor based on CuO nanoparticles embedded in organic membranes. Sens. Actuators B Chem., 2016, 231, 593-600.
[http://dx.doi.org/10.1016/j.snb.2016.03.078]
[66]
Geng, L. Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S. Synth. Met., 2010, 160(15-16), 1708-1711.
[http://dx.doi.org/10.1016/j.synthmet.2010.06.005]
[67]
Waghuley, S.A. Tin dioxide/polypyrrole multilayer chemiresistor as a hydrogen sulfide gas sensor. J. Electron Dev., 2011, 10, 433-437.
[68]
Misra, S.C.K.; Mathur, P.; Srivastava, B.K. Vacuum-deposited nanocrystalline polyaniline thin film sensors for detection of carbon monoxide. Sens. Actuators A Phys., 2004, 114(1), 30-35.
[http://dx.doi.org/10.1016/j.sna.2004.02.026]
[69]
Goto, T.; Hyodo, T.; Ueda, T.; Kamada, K.; Kaneyasu, K.; Shimizu, Y. CO-sensing properties of potentiometric gas sensors using an anion-conducting polymer electrolyte and au-loaded metal oxide electrodes. Electrochim. Acta, 2015, 166, 232-243.
[http://dx.doi.org/10.1016/j.electacta.2015.03.045]
[70]
Wanna, Y.; Pratontep, S.; Wisitsoraat, A.; Tuantranont, A. Development of nanofibers composite Polyaniline/CNT fabricated by electro spinning technique for CO gas sensor. Proc. IEEE Sens., 2006, 342-345.
[http://dx.doi.org/10.1109/ICSENS.2007.355476]
[71]
Paul, S.; Chavan, N.N.; Radhakrishnan, S. Polypyrrole functionalized with ferrocenyl derivative as a rapid carbon monoxide sensor. Synth. Met., 2009, 159(5-6), 415-418.
[http://dx.doi.org/10.1016/j.synthmet.2008.10.013]
[72]
Farea, M.A.; Mohammed, H.Y.; Shirsat, S.M.; Sayyad, P.W.; Ingle, N.N.; Al-Gahouari, T.; Mahadik, M.M.; Bodkhe, G.A.; Shirsat, M.D. Hazardous gases sensors based on conducting polymer composites. Chem. Phys. Lett., 2021, 776, 138703.
[http://dx.doi.org/10.1016/j.cplett.2021.138703]
[73]
Roy, A.; Ray, A.; Sadhukhan, P.; Naskar, K.; Lal, G.; Bhar, R.; Sinha, C.; Das, S. Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): Room temperature resistive carbon monoxide (CO) sensor. Synth. Met., 2018, 245, 182-189.
[http://dx.doi.org/10.1016/j.synthmet.2018.08.024]
[74]
Jian, K.S.; Chang, C.J.; Wu, J.J.; Chang, Y.C.; Tsay, C.Y.; Chen, J.H.; Horng, T.L.; Lee, G.J.; Karuppasamy, L.; Anandan, S.; Chen, C.Y. High response CO sensor based on a polyaniline/SnO2 nanocomposite. Polymers (Basel), 2019, 11(1), 184.
[http://dx.doi.org/10.3390/polym11010184]
[75]
Kim, I.; Dong, K.Y.; Ju, B.K.; Choi, H.H. Gas sensor for CO and NH3 using polyaniline/CNTs composite at room temperature.In 2010 10th IEEE Conf. Nanotechnology. Nano, 2010, 2010, 466-469.
[http://dx.doi.org/10.1109/NANO.2010.5697782]
[76]
Zhang, J.; Tian, B.; Wang, L.; Xing, M.; Lei, J. Mechanism of photocatalysis. In: Photocatalysis; Springer: Singapore, 2018; pp. 1-15.
[77]
Ali, A.S.; Mansoob, K.M.; Omaish, A.M.; Jintae, L.; Hwan, C.M. Visible light-drivenphotocatalytic and photoelectrochemical studies ofAg-SnO2 nanocomposites synthesized using anelectrochemically active biofilm. RSC Advances, 2014, 4(49), 26013-26021.
[http://dx.doi.org/10.1039/C4RA03448A]
[78]
Bhuvaneswari, V.; Priyadharshini, M.; Deepa, C.; Balaji, D.; Rajeshkumar, L.; Ramesh, M. Deep learning for material synthesis and manufacturing systems: A review. Mater. Today Proc., 2021, 46(9), 3263-3269.
[http://dx.doi.org/10.1016/j.matpr.2020.11.351]
[79]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[80]
Ramesh, M.; Rajeshkumar, L.; Deepa, C.; Tamil Selvan, M.; Kushvaha, V.; Asrofi, M. Impact of silane treatment on characterization of ipomoea staphylina plant fiber reinforced epoxy composites. J. Nat. Fibers, 2021, 1-12.
[http://dx.doi.org/10.1080/15440478.2021.1902896]
[81]
Khalil, A.M.; Hassan, M.L.; Ward, A.A. Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydr. Polym., 2017, 157, 503-511.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.008] [PMID: 27987955]
[82]
Ul-Islam, M.; Khattak, W.A.; Ullah, M.W.; Khan, S.; Park, J.K. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose, 2014, 21(1), 433-447.
[http://dx.doi.org/10.1007/s10570-013-0109-y]
[83]
Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Seo, J. Nano zinc oxide-sodium alginate antibacterial cellulose fibres. Carbohydr. Polym., 2016, 135, 349-355.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.078] [PMID: 26453887]
[84]
Jiang, F.; Hsieh, Y.L. Synthesis of cellulose nanofibril boundsilvernanoprism for surface-enhanced Raman scattering. Biomacromolecules, 2014, 15(10), 3680-16.
[http://dx.doi.org/10.1021/bm5011799]
[85]
Ramesh, M.; Rajeshkumar, L.; Balaji, D. Influence of process parameters on the properties of additively manufactured fiber-reinforced polymer composite materials: A review. J. Mater. Eng. Perform., 2021, 30(7), 4792-4807.
[http://dx.doi.org/10.1007/s11665-021-05832-y]
[86]
Bouvree, A.; Feller, J.F.; Castro, M.; Grohens, Y.; Rinaudo, M. Conductive polymer nano-biocomposites (CPC): Chitosan-carbon nanoparticle a good candidate to design polar vapour sensors. Sens. Actuators B Chem., 2009, 138(1), 138-147.
[http://dx.doi.org/10.1016/j.snb.2009.02.022]
[87]
Qi, H.; Mäder, E.; Liu, J. Unique water sensors based on carbon nanotube-cellulose composites. Sens. Actuators B Chem., 2013, 185, 225-230.
[http://dx.doi.org/10.1016/j.snb.2013.04.116]
[88]
Ramesh, M.; Deepa, C.; Niranjana, K.; Rajeshkumar, L.; Bhoopathi, R.; Balaji, D. Influence of Haritaki (Terminalia chebula) nano-powder on thermo-mechanical, water absorption and morphological properties of Tindora (Coccinia grandis) tendrils fiber reinforced epoxy composites. J. Nat. Fibers, 2021, 1-17.
[http://dx.doi.org/10.1080/15440478.2021.1921660]
[89]
Hu, S.; Hsieh, Y.L. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydr. Polym., 2015, 131, 134-141.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.060] [PMID: 26256169]
[90]
Kaushik, M.; Moores, A. Review: Nanocelluloses as versatilesupports for metal nanoparticles and their applications in catalysis. Green Chem., 2016, 18(3), 622-637.
[http://dx.doi.org/10.1039/C5GC02500A]
[91]
Liu, Y.; Gong, J.; Wu, W.; Fang, Y.; Wang, Q.; Gu, H. Gu, H. A novel bio-nanocomposite based on hemoglobin and carboxyl graphene for enhancing the ability of carrying oxygen. Sens. Actuators B Chem., 2016, 222, 588-597.
[http://dx.doi.org/10.1016/j.snb.2015.08.101]
[92]
Pour-Esmaeil, S.; Qazvini, N.T.; Mahdavi, H. Interpenetrating polymer networks (IPN) based on gelatin/poly (ethylene glycol) dimethacrylate/clay nanocomposites: Structureproperties relationship. Mater. Chem. Phys., 2014, 143(3), 1396-1403.
[http://dx.doi.org/10.1016/j.matchemphys.2013.11.052]
[93]
Wongpanit, P.; Sanchavanakit, N.; Pavasant, P.; Bunaprasert, T.; Tabata, Y.; Rujiravanit, R. Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges. Eur. Polym. J., 2007, 43(10), 4123-4135.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.07.004]
[94]
Moreira, C.D.; Carvalho, S.M.; Mansur, H.S.; Pereira, M.M. Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater. Sci. Eng. C, 2016, 58, 1207-1216.
[http://dx.doi.org/10.1016/j.msec.2015.09.075] [PMID: 26478423]
[95]
Ebrahimi, S.; Montazeri, A.; Rafii-Tabar, H. Molecular dynamics study of the interfacial mechanical properties of the graphenecollagen biological nanocomposite. Comput. Mater. Sci., 2013, 69, 29-39.
[http://dx.doi.org/10.1016/j.commatsci.2012.11.030]
[96]
Sharma, C.; Dinda, A.K.; Potdar, P.D.; Chou, C.F.; Mishra, N.C. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C, 2016, 64, 416-427.
[http://dx.doi.org/10.1016/j.msec.2016.03.060] [PMID: 27127072]
[97]
Pek, Y.S.; Gao, S.; Arshad, M.S.; Leck, K.J.; Ying, J.Y. Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials, 2008, 29(32), 4300-4305.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.030] [PMID: 18706690]
[98]
Ji, J.; Bar-On, B.; Wagner, H.D. Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers. J. Mech. Behav. Biomed. Mater., 2012, 13, 185-193.
[http://dx.doi.org/10.1016/j.jmbbm.2012.04.016] [PMID: 22906988]
[99]
Pakdel, E.; Daoud, W.A.; Wang, X. Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite. Appl. Surf. Sci., 2013, 275, 397-402.
[http://dx.doi.org/10.1016/j.apsusc.2012.10.141]
[100]
Bakhtiari, L.; Rezaie, H.R.; Hosseinalipour, S.M.; Shokrgozar, M.A. Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram. Int., 2010, 36(8), 2421-2426.
[http://dx.doi.org/10.1016/j.ceramint.2010.07.012]
[101]
Martucci, J.F.; Ruseckaite, R.A. Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polym. Degrad. Stabil., 2015, 116, 36-44.
[http://dx.doi.org/10.1016/j.polymdegradstab.2015.03.005]
[102]
Saska, S.; Teixeira, L.N.; de Castro Raucci, L.M.S.; Scarel-Caminaga, R.M.; Franchi, L.P.; Dos Santos, R.A.; Santagneli, S.H.; Capela, M.V.; de Oliveira, P.T.; Takahashi, C.S.; Gaspar, A.M.M.; Messaddeq, Y.; Ribeiro, S.J.L.; Marchetto, R. Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int. J. Biol. Macromol., 2017, 103, 467-476.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.086] [PMID: 28527999]
[103]
Keskin, Z.; Sendemir Urkmez, A.; Hames, E.E. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater. Sci. Eng. C, 2017, 75, 1144-1153.
[http://dx.doi.org/10.1016/j.msec.2017.03.035] [PMID: 28415399]
[104]
Tavakoli, E.; Mehdikhani-Nahrkhalaji, M.; Hashemi-Beni, B.; Zargar-Kharazi, A.; Kharaziha, M. Preparation, characterization and mechanical assessment of poly (lactide-co-glycolide)/hyaluronic acid/fibrin/bioactive glass nano-composite scaffolds for cartilage tissue engineering applications. Adv. Mater. Sci., 2015, 11, 124-130.
[http://dx.doi.org/10.1016/j.mspro.2015.11.126]
[105]
Zhu, H.; Li, R.; Wu, X.; Chen, K.; Che, J. Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting. Eur. Polym. J., 2017, 86, 15461.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.11.023]
[106]
Desimone, M.F.; Hélary, C.; Rietveld, I.B.; Bataille, I.; Mosser, G.; Giraud-Guille, M-M.; Livage, J.; Coradin, T. Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization. Acta Biomater., 2010, 6(10), 3998-4004.
[http://dx.doi.org/10.1016/j.actbio.2010.05.014] [PMID: 20493975]
[107]
Zhai, M.; Xu, Y.; Zhou, B.; Jing, W. Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: Characterization and biomedical application. J. Photochem. Photobiol. B, 2018, 180, 253-258.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.018] [PMID: 29476966]
[108]
Kotharangannagari, V.K.; Krishnan, K. Biodegradable hybrid nanocomposites of starch/lysine and ZnO nanoparticles with shape memory properties. Mater. Des., 2016, 109, 590-595.
[http://dx.doi.org/10.1016/j.matdes.2016.07.046]
[109]
Mondragon, G.; Pena-Rodriguez, C.; Gonzalez, A.; Eceiza, A.; Arbelaiz, A. Bionanocomposites based on gelatin matrix and nanocellulose. Eur. Polym. J., 2015, 62, 1-9.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.003]
[110]
Noorbakhsh-Soltani, S.M.; Zerafat, M.M.; Sabbaghi, S. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr. Polym., 2018, 189, 48-55.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.012] [PMID: 29580425]
[111]
Yang, W.; Kenny, J.M.; Puglia, D. Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Ind. Crops Prod., 2015, 74, 348-356.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.032]
[112]
Arancibia, M.Y.; Lopez-Caballero, M.E.; Gomez-Guillen, M.C.; Montero, P. Release of volatile compounds and biodegradability of active soy protein lignin blend films with added citronella essential oil. Food. Con., 2014, 44, 7-15.
[113]
Uranga, J.; Puertas, A.I.; Etxabide, A.; Duenas, M.T.; Guerrero, P.; de la Caba, K. Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocoll., 2019, 86, 95-103.
[http://dx.doi.org/10.1016/j.foodhyd.2018.02.018]
[114]
Farahnaky, A.; Dadfar, S.M.; Shahbazi, M. Physical and mechanical properties of gelatinclay nanocomposite. J. Food Eng., 2014, 122, 78-83.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.06.016]
[115]
Wongsasulak, S.; Kit, K.M.; McClements, D.J.; Yoovidhya, T.; Weiss, J. The effect of solution properties on the morphology of ultrafine electrospun egg albumen PEO composite fibers. Polymer (Guildf.), 2007, 48(2), 448-457.
[http://dx.doi.org/10.1016/j.polymer.2006.11.025]
[116]
Zhang, L.; Han, G.; Liu, Y.; Tang, J.; Tang, W. Immobilizing haemoglobin on gold/graphene chitosan nanocomposite as efficient hydrogen peroxide biosensor. Sens. Actuators B Chem., 2014, 197, 164-171.
[http://dx.doi.org/10.1016/j.snb.2014.02.077]
[117]
Jin, Z.; Dong, Y.; Dong, N.; Yang, Z.; Wang, Q.; Lei, Z.; Su, B. One-step synthesis of magnetic nanocomposite Fe3O4/C based on the waste chicken feathers by a green solvothermal method. Mater. Lett., 2017, 186, 322-325.
[http://dx.doi.org/10.1016/j.matlet.2016.10.029]
[118]
Mallakpour, S.; Shamsaddinimotlagh, S. Ultrasonic-promoted rapid preparation of PVC/TiO2-BSA nanocomposites: Characterization and photocatalytic degradation of methylene blue. Ultrason. Sonochem., 2018, 41, 361-374.
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.052] [PMID: 29137762]
[119]
Pathania, D.; Thakur, M.; Sharma, G.; Mishra, A.; Tin, I.V. Phosphate/poly (gelatin-cl-alginate) nanocomposite: Photocatalysis and fabrication of potentiometric sensor for Pb (II). Mater. Today Nano, 2018, 14, 282-293.
[120]
Mallakpour, S.; Darvishzadeh, M. Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: Optical, thermal, mechanical and morphological properties. Ultrason. Sonochem., 2018, 41, 85-99.
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.022] [PMID: 29137802]
[121]
Akbari, A.; Yegani, R.; Pourabbas, B. Synthesis of high dispersible hydrophilic poly (ethylene glycol)/vinyl silane grafted silica nanoparticles to fabricate protein repellent polyethylene nanocomposite. Eur. Polym. J., 2016, 81, 86-97.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.05.011]
[122]
Hemsri, S.; Thongpin, C.; Supatti, N.; Manomai, P.; Socharoentham, A. Bio-based blends of wheat gluten and maleated natural rubber: Morphology, mechanical properties and water absorption. Energy Procedia, 2016, 89, 264-273.
[http://dx.doi.org/10.1016/j.egypro.2016.05.034]
[123]
Oun, A.A.; Shankar, S.; Rhim, J.W. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit. Rev. Food Sci. Nutr., 2020, 60(3), 435-460.
[http://dx.doi.org/10.1080/10408398.2018.1536966] [PMID: 31131614]
[124]
Wang, M.S.; Jiang, F.; Hsieh, Y.L.; Nitin, N. Cellulose nanofibrils improve dispersibility and stability of silver nanoparticles and induce production of bacterial extracellular polysaccharides. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(37), 6226-6235.
[http://dx.doi.org/10.1039/C4TB00630E] [PMID: 32262140]
[125]
Ramesh, M.; Deepa, C.; Rajeshkumar, L.; Tamilselvan, K.; Balaji, D. Influence of fiber surface treatment on the tribological properties of Calotropis gigantea plant fiber reinforced polymer composites. Polym. Compos., 2021, 42(9), 4308-4317.
[http://dx.doi.org/10.1002/pc.26149]
[126]
Hoeng, F.; Denneulin, A.; Neuman, C.; Bras, J. Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. J. Nanopart. Res., 2015, 17(6), 244-258.
[http://dx.doi.org/10.1007/s11051-015-3044-z]
[127]
Cai, J.; Kimura, S.; Wada, M.; Kuga, S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules, 2009, 10(1), 87-94.
[http://dx.doi.org/10.1021/bm800919e] [PMID: 19053296]
[128]
Li, F.; Mascheroni, E.; Piergiovanni, L. The potential of nanocellulosein the packaging field: A review. Packag. Technol. Sci., 2015, 28(6), 475-508.
[http://dx.doi.org/10.1002/pts.2121]
[129]
Ramesh, M.; Rajeshkumar, L.; Bhoopathi, R. Carbon substrates: A review on fabrication, properties and applications. Carbon Lett., 2021, 31(4), 557-580.
[http://dx.doi.org/10.1007/s42823-021-00264-z]
[130]
Yao, K.; Dong, Y.Y.; Bian, J.; Ma, M.G.; Li, J.F. Understanding the mechanism of ultrasound on the synthesis of cellulose/Cu(OH)2/CuO hybrids. Ultrason. Sonochem., 2015, 24, 27-35.
[http://dx.doi.org/10.1016/j.ultsonch.2014.12.002] [PMID: 25499465]
[131]
Li, S.M.; Jia, N.; Ma, M.G.; Zhang, Z.; Liu, Q.H.; Sun, R.C. Cellulose-silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr. Polym., 2011, 86(2), 441-447.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.060]
[132]
Ma, M.G.; Qing, S.J.; Li, S.M.; Zhu, J.F.; Fu, L.H.; Sun, R.C. Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO. Carbohydr. Polym., 2013, 91(1), 162-168.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.025] [PMID: 23044118]
[133]
Singh, A.; Sinsinbar, G.; Choudhary, M.; Kumar, V.; Pasricha, R.; Verma, H.N.; Singh, S.P.; Arora, K. Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens. Actuators B Chem., 2013, 185, 675-684.
[http://dx.doi.org/10.1016/j.snb.2013.05.014]
[134]
Shankar, S.; Wang, L.F.; Rhim, J.W. Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydr. Polym., 2017, 169, 264-271.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.025] [PMID: 28504145]
[135]
Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, K.; Nogi, M.; Nakagaito, A.N.; Mangalam, A.; Simonsen, J.; Benight, A.S.; Bismarck, A.; Berglund, L.A.; Peijs, T. 1000 at 1000: reflecting on Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci., 2020, 45(1), 1-5.
[http://dx.doi.org/10.1007/s10853-009-3874-0] [PMID: 32836382]
[136]
Hubbe, M.; Tayeb, P.; Joyce, M.; Tyagi, P.; Kehoe, M.; Dimic-Misic, K.; Pal, L. Rheology of nanocellulose-rich aqueous suspensions: A review. BioResources, 2017, 12(4), 9556-9661.
[http://dx.doi.org/10.15376/biores.12.4.Hubbe]
[137]
Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. Engl., 2011, 50(24), 5438-5466.
[http://dx.doi.org/10.1002/anie.201001273] [PMID: 21598362]
[138]
Devarajan, B.; Saravanakumar, R.; Sivalingam, S.; Bhuvaneswari, V.; Karimi, F.; Rajeshkumar, L. Karimi, Fatemeh, Rajeshkumar, L. Catalyst derived from wastes for biofuel production: A critical review and patent landscape analysis. Appl. Nanosci., 2021.
[http://dx.doi.org/10.1007/s13204-021-01948-8]
[139]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[140]
Taylor, I.M.; Robbins, E.M.; Catt, K.A.; Cody, P.A.; Happe, C.L.; Cui, X.T. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens. Bioelectron., 2017, 89(Pt 1), 400-410.
[http://dx.doi.org/10.1016/j.bios.2016.05.084] [PMID: 27268013]
[141]
Vreeland, R.F.; Atcherley, C.W.; Russell, W.S.; Xie, J.Y.; Lu, D.; Laude, N.D.; Porreca, F.; Heien, M.L. Biocompatible PEDOT: Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. Anal. Chem., 2015, 87(5), 2600-2607.
[http://dx.doi.org/10.1021/ac502165f] [PMID: 25692657]
[142]
Mohankumar, D.; Amarnath, V.; Bhuvaneswari, V.; Saran, S.P.; Saravanaraj, K. M Srinivasa Gogul, S Sridhar, G Kathiresan L Rajeshkumar. Extraction of plant based natural fibers - A mini review. IOP Conf. Ser.: Mater. Sci. Eng., 2021.
[143]
Sangamithirai, D.; Munusamy, S.; Narayanan, V.; Stephen, A. A strategy to promote the electroactive platform adopting poly(o-anisidine)-silver nanocomposites probed for the voltammetric detection of NADH and dopamine. Mater. Sci. Eng. C, 2017, 80, 425-437.
[http://dx.doi.org/10.1016/j.msec.2017.06.014] [PMID: 28866184]
[144]
Ruiz-Palomero, C.; Soriano, M.L.; Valcárcel, M. Gels based on nanocellulose with photosensitive ruthenium bipyridine moieties as sensors for silver nanoparticles in real samples. Sens. Actuators B Chem., 2016, 229, 31-37.
[http://dx.doi.org/10.1016/j.snb.2016.01.098]
[145]
Sharma, S.; Sudhakara, P.; Omran, A.A.B.; Singh, J.; Ilyas, R.A. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers (Basel), 2021, 13(17), 2898.
[http://dx.doi.org/10.3390/polym13172898] [PMID: 34502938]
[146]
Siro, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 2010, 17(3), 459-494.
[http://dx.doi.org/10.1007/s10570-010-9405-y]
[147]
Tayeb, A.H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose nanomaterials-binding properties and applications: A review. Molecules, 2018, 23(10), 2684.
[http://dx.doi.org/10.3390/molecules23102684] [PMID: 30340374]
[148]
Cai, J.; Niu, H.; Li, Z.; Du, Y.; Cizek, P.; Xie, Z.; Xiong, H.; Lin, T. High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS Appl. Mater. Interfaces, 2015, 7(27), 14946-14953.
[http://dx.doi.org/10.1021/acsami.5b03757] [PMID: 26087346]
[149]
Du, X.; Zhang, Z.; Liu, W.; Deng, Y. Nanocellulose-based conductive materials and their emerging applications in energy devices - A review. Nano Energy, 2017, 35, 299-320.
[http://dx.doi.org/10.1016/j.nanoen.2017.04.001]
[150]
Huang, J.; Zhu, H.; Chen, Y.; Preston, C.; Rohrbach, K.; Cumings, J.; Hu, L. Highly transparent and flexible nanopaper transistors. ACS Nano, 2013, 7(3), 2106-2113.
[http://dx.doi.org/10.1021/nn304407r] [PMID: 23350951]
[151]
Leijonmarck, S.; Cornell, A.; Lindbergh, G.; Wagberg, L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(15), 4671-4677.
[http://dx.doi.org/10.1039/c3ta01532g]
[152]
Ghrera, A.S.; Pandey, C.M.; Malhotra, B.D. Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection. Sens. Actuators B Chem., 2018, 266, 329-336.
[http://dx.doi.org/10.1016/j.snb.2018.03.118]
[153]
Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev., 2016, 116(16), 9305-9374.
[http://dx.doi.org/10.1021/acs.chemrev.6b00225] [PMID: 27459699]
[154]
Feller, J.F.; Guézénoc, H.; Bellégou, H.; Grohens, Y. Grohens, Y. Smart poly (styrene)/carbon black conductive polymer composites films for styrene vapour sensing. Macromol. Symp., 2005, 222(1), 273-280.
[http://dx.doi.org/10.1002/masy.200550436]
[155]
Feller, J.F.; Grohens, Y. Electrical response of poly (styrene)/carbon black conductive polymer composites (CPC) to methanol, toluene, chloroform and styrene vapors as a function of filler nature and matrix tacticity. Synth. Met., 2005, 154(1-3), 193-196.
[http://dx.doi.org/10.1016/j.synthmet.2005.07.050]
[156]
Polymer handbook; Brandrup, J.; Immergut, E.H.; Grulke, E.A.; Abe, A.; Bloch, D.R., Eds.; Wiley: New York, 1999.
[157]
Gu, H.Y.; Lu, S.Y.; Jiang, Q.Y.; Yu, C.M.; Li, G.; Chen, H-Y. Chen, H.Y. A novel nitric oxide cellular biosensor based on red blood cells immobilized on gold nanoparticles. Anal. Lett., 2006, 39(15), 2849-2859.
[http://dx.doi.org/10.1080/00032710600867457]
[158]
Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem., 2009, 81(6), 2378-2382.
[http://dx.doi.org/10.1021/ac802193c] [PMID: 19227979]
[159]
Li, R.; Liu, C.; Ma, J. Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr. Polym., 2011, 84(1), 631-637.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.041]
[160]
Kim, C-J.; Khan, W.; Kim, D-H.; Cho, K-S.; Park, S-Y. Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydr. Polym., 2011, 86(2), 903-909.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.041]
[161]
Yadav, M.; Rhee, K.; Jung, I.; Park, S. Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose, 2013, 20(2), 687-698.
[http://dx.doi.org/10.1007/s10570-012-9855-5]
[162]
Mittal, V.; Chaudhry, A.U.; Luckachan, G.E. Biopolymer-thermally reduced graphene nanocomposites: Structural characterization and properties. Mater. Chem. Phys., 2014, 147(1-2), 319-332.
[http://dx.doi.org/10.1016/j.matchemphys.2014.05.007]
[163]
Zhang, J.; Zhang, C.; Madbouly, S.A. In situ polymerization of bio-based thermosetting polyurethane/graphene oxide nanocomposites. J. Appl. Polym. Sci., 2015, 132, 41751.
[164]
Pinto, A.M.; Cabral, J.; Tanaka, D.A.P.; Mendes, A.M.; Magalhães, F.D. Effect of incorporation of graphene oxide and graphene nanoplatelets onmechanical and gas permeability properties of poly (lactic acid) films. Polym. Int., 2013, 62(1), 33-40.
[http://dx.doi.org/10.1002/pi.4290]
[165]
Ionita, M.; Pandele, M.A.; Iovu, H. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr. Polym., 2013, 94(1), 339-344.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.065] [PMID: 23544547]
[166]
Gao, J.; Chen, F.; Wang, K.; Deng, H.; Zhang, Q.; Bai, H.; Fu, Q. A promising alternative to conventional polyethylene with poly (propylene carbonate) reinforced by graphene oxide nanosheets. J. Mater. Chem., 2011, 21(44), 17627-17630.
[http://dx.doi.org/10.1039/c1jm14300j]
[167]
Wang, X.; Bai, H.; Yao, Z.; Liu, A.; Shi, G. Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem., 2010, 20(41), 9032-9036.
[http://dx.doi.org/10.1039/c0jm01852j]
[168]
Pan, Y.; Wu, T.; Bao, H.; Li, L. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr. Polym., 2011, 83(4), 1908-1915.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.054]
[169]
Ge, S.; Yan, M.; Lu, J.; Zhang, M.; Yu, F.; Yu, J.; Song, X.; Yu, S. Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis. Biosens. Bioelectron., 2012, 31(1), 49-54.
[http://dx.doi.org/10.1016/j.bios.2011.09.038] [PMID: 22019101]
[170]
Liu, Y.; Dong, X.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev., 2012, 41(6), 2283-2307.
[http://dx.doi.org/10.1039/C1CS15270J] [PMID: 22143223]
[171]
He, Q.; Wu, S.; Yin, Z.; Zhang, H. Zhang, H. Graphene-based electronic sensors. Chem. Sci. (Camb.), 2012, 3(6), 1764-1772.
[http://dx.doi.org/10.1039/c2sc20205k]
[172]
Ji, Q.; Honma, I.; Paek, S.M.; Akada, M.; Hill, J.P.; Vinu, A.; Ariga, K. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. Int. Ed. Engl., 2010, 49(50), 9737-9739.
[http://dx.doi.org/10.1002/anie.201004929] [PMID: 21077075]
[173]
Palanisamy, S.; Vilian, A.E.; Chen, S.M. Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor. Int. J. Electrochem. Sci., 2012, 7(3), 2153-2163.
[174]
Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron., 2010, 25(5), 1070-1074.
[http://dx.doi.org/10.1016/j.bios.2009.09.024] [PMID: 19883999]
[175]
Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N.G.; Wu, T.; Li, L.; Li, J.; Gan, L.H. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 2011, 7(11), 1569-1578.
[http://dx.doi.org/10.1002/smll.201100191] [PMID: 21538871]
[176]
Bandi, R.; Alle, M.; Park, C.W.; Han, S.Y.; Kwon, G.J.; Kim, N.H.; Kim, J.C.; Lee, S-H. Lee, S.H. Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sens. Actuators B Chem., 2021, 330, 129330.
[http://dx.doi.org/10.1016/j.snb.2020.129330]
[177]
Alle, M.; Park, S.C.; Bandi, R.; Lee, S.H.; Kim, J.C. Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: Recyclable nanozyme for the colorimetric glucose detection. Carbohydr. Polym., 2021, 253, 117239.
[http://dx.doi.org/10.1016/j.carbpol.2020.117239] [PMID: 33278995]
[178]
Trinder, P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol., 1969, 22(2), 158-161.
[http://dx.doi.org/10.1136/jcp.22.2.158] [PMID: 5776547]
[179]
Saito, T.; Nishiyama, Y.; Putaux, J.L.; Vignon, M.; Isogai, A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 2006, 7(6), 1687-1691.
[http://dx.doi.org/10.1021/bm060154s] [PMID: 16768384]
[180]
Shaktawat, V.; Jain, N.; Dixit, M.; Saxena, N.S.; Sharma, K.; Sharma, T.P. Temperature dependence of conductivity of polypyrrole doped with sulphuric acid. Indian J. Pure Appl. Phy., 2008, 46, 427-430.
[181]
Wang, Y.; Wang, J.; Zhang, X.F.; Liu, Y.Q. Synthesis, characterization and properties of PANI/(La-Nd Doped BaFe12O19) composites. Key Eng. Mater., 2017, 727, 327-334.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.727.327]
[182]
Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 2017, 36, 268-285.
[http://dx.doi.org/10.1016/j.nanoen.2017.04.040]
[183]
Le, T.H.; Kim, Y.; Yoon, H. Electrical and electrochemical properties of conducting polymers. Polymers (Basel), 2017, 9(4), 150.
[http://dx.doi.org/10.3390/polym9040150] [PMID: 30970829]
[184]
Pandey, S.; Goswami, G.K.; Nanda, K.K. Green synthesis of polysaccharide/gold nanoparticle nanocomposite: An efficient ammonia sensor. Carbohydr. Polym., 2013, 94(1), 229-234.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.009] [PMID: 23544533]
[185]
Mathur, R.B.; Singh, B.P.; Tiwari, P.K.; Gupta, T.K.; Choudhary, V. Enhancement in the thermomechanical properties of carbon fibre-carbon nanotubes-epoxy hybrid composites. Int. J. Nanotechnol., 2012, 9(10-12), 1040-1049.
[http://dx.doi.org/10.1504/IJNT.2012.049465]
[186]
Du, C.; Pan, N. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology, 2006, 17(21), 5314-5318.
[http://dx.doi.org/10.1088/0957-4484/17/21/005]
[187]
Boccaccini, A.R.; Cho, J.; Roether, J.A.; Thomas, B.J.; Minay, E.J.; Shaffer, M.S. Electrophoretic deposition of carbon nanotubes. Carbon, 2006, 44(15), 3149-3160.
[http://dx.doi.org/10.1016/j.carbon.2006.06.021]
[188]
Ghrera, A.S.; Pandey, C.M.; Ali, M.A.; Malhotra, B.D. Quantum dot-based microfluidic biosensor for cancer detection. Appl. Phys. Lett., 2015, 106(19), 193703.
[http://dx.doi.org/10.1063/1.4921203]
[189]
Srivastava, S.; Ali, M.A.; Solanki, P.R.; Chavhan, P.M.; Pandey, M.K.; Mulchandani, A.; Srivastava, A.; Malhotra, B.D. Mediator-free microfluidics biosensor based on titania-zirconia nanocomposite for urea detection. RSC Advances, 2013, 3(1), 228-235.
[http://dx.doi.org/10.1039/C2RA21461J]
[190]
Fischer, M.J. Amine coupling through EDC/NHS: A practical approach. Methods Mol. Biol., 2010, 627, 55-73.
[191]
Ruiz-Hitzky, E.; Aranda, P.; Darder, M. Bionanocomposites; Kirk-Othmer Encyclopedia of Chemical Technology, 2000, pp. 1-28.
[192]
Rhim, J.W.; Park, H.M.; Ha, C.S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci., 2013, 38(10-11), 1629-1652.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008]
[193]
Rather, D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Classes of materials used in medicine, biomaterials science;Ed.; Ratner, B.D. An Introduction to Materials in Medicine, 2nd editon; Elsevier , 2004.
[194]
Ribeiro, L.N.; Alcântara, A.C.; Darder, M.; Aranda, P.; Herrmann, P.S., Jr; Araújo-Moreira, F.M.; García-Hernández, M.; Ruiz-Hitzky, E. Bionanocomposites containing magnetic graphite as potential systems for drug delivery. Int. J. Pharm., 2014, 477(1-2), 553-563.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.033] [PMID: 25455784]
[195]
Godovsky, D.Y. Device applications of polymer-nanocomposites. In: Biopolymers PVA hydrogels, anionic polymerisation nanocomposites; Springer, 2000; pp. 163-205.
[http://dx.doi.org/10.1007/3-540-46414-X_4]
[196]
Kim, J.Y.; Kim, M.; Kim, H.; Joo, J.; Choi, J.H. Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Opt. Mater., 2003, 21(1-3), 147-151.
[http://dx.doi.org/10.1016/S0925-3467(02)00127-1]
[197]
Berninger, T.; Bliem, C.; Piccinini, E.; Azzaroni, O.; Knoll, W. Cascading reaction of arginase and urease on a graphene-based FET for ultrasensitive, real-time detection of arginine. Biosens. Bioelectron., 2018, 115, 104-110.
[http://dx.doi.org/10.1016/j.bios.2018.05.027] [PMID: 29803864]
[198]
Costa, L.M.M.; Olyveira, G.M.; Cherion, B.M.; Leao, A.L.; Souza, S.F.; Ferreira, M. Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendronadstringens bark extract for medical applications. Ind. Crops Prod., 2013, 41, 198-202.
[http://dx.doi.org/10.1016/j.indcrop.2012.04.025]
[199]
Haafiz, M.K.M.; Hassan, A.; Khalil, H.P.S.A.; Khan, I.; Inuwa, I.M.; Islam, M.S. Bionanocomposite based on cellulose nanowhisker from oil palm biomass-filled poly(lactic acid). Polym. Test., 2015, 48, 133-139.
[http://dx.doi.org/10.1016/j.polymertesting.2015.10.003]
[200]
Sanuja, S.; Agalya, A.; Umapathy, M.J. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int. J. Biol. Macromol., 2015, 74, 76-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.036] [PMID: 25499891]
[201]
Woehl, M.A.; Canestraro, C.D.; Mikowski, A.; Sierakowski, M.R.; Ramos, L.P.; Wypych, F. Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: Effect of enzymatic treatment on mechanical properties. Carbohydr. Polym., 2010, 80(3), 866-873.
[http://dx.doi.org/10.1016/j.carbpol.2009.12.045]
[202]
Hosseini, S.; Aeinehvand, M.M.; Uddin, S.M.; Benzina, A.; Rothan, H.A.; Yusof, R.; Koole, L.H.; Madou, M.J.; Djordjevic, I.; Ibrahim, F. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection. Sci. Rep., 2015, 5(1), 16485.
[http://dx.doi.org/10.1038/srep16485] [PMID: 26548806]
[203]
Li, Y.; Cu, Y.T.; Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol., 2005, 23(7), 885-889.
[http://dx.doi.org/10.1038/nbt1106] [PMID: 15951805]
[204]
Nafchi, A.M.; Nassiri, R.; Sheibani, S.; Ariffin, F.; Karim, A.A. Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr. Polym., 2013, 96(1), 233-239.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.055] [PMID: 23688475]
[205]
Zhang, Y.; Shen, Y.; Han, D.; Wang, Z.; Song, J.; Li, F.; Niu, L. Carbon nanotubes and glucose oxidase bionanocomposite bridged by ionic liquid-like unit: Preparation and electrochemical properties. Biosens. Bioelectron., 2007, 23(3), 438-443.
[http://dx.doi.org/10.1016/j.bios.2007.06.010] [PMID: 17720471]
[206]
Celis, R.; Adelino, M.A.; Hermosín, M.C.; Cornejo, J. Montmorillonite-chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J. Hazard. Mater., 2012, 209-210, 67-76.
[http://dx.doi.org/10.1016/j.jhazmat.2011.12.074] [PMID: 22284171]
[207]
Jayanthi Kalaivani, G.; Suja, S.K. TiO₂ (rutile) embedded inulin-A versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Carbohydr. Polym., 2016, 143, 51-60.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.054] [PMID: 27083343]
[208]
Sefcovicova, J.; Filip, J.; Gemeiner, P.; Vikartovska, A.; Patoprsty, V.; Tkac, J. High performance microbial 3-D bionanocomposite as a bioanode for a mediated biosensor device. Electrochem. Commun., 2011, 13(9), 966-968.
[http://dx.doi.org/10.1016/j.elecom.2011.06.013]
[209]
Namasivayam, S.K.R.; Aruna, A. Gokila. Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res. J. Biotechnol., 2014, 9, 19-27.
[210]
Taleb, K.A.; Rusmirovic, J.D.; Rancic, M.P.; Nikolic, J.B.; Drmanic, S.Z.; Velickovic, Z.S.; Marinkovic, A. Efficient pollutants removal by amino-modified nenocellulose impregnated with iron oxide. J. Serb. Chem. Soc., 2016, 81(10), S316-S323.
[http://dx.doi.org/10.2298/JSC160529063T]
[211]
Ruan, C.; Li, T.; Niu, Q.; Lu, M.; Lou, J.; Gao, W.; Sun, W. Electrochemical myoglobin biosensor based on graphene/ionic liquid/chitosan bionanocomposites: Direct electrochemistry and electrocatalysis. Electrochim. Acta, 2012, 64, 183-189.
[http://dx.doi.org/10.1016/j.electacta.2012.01.005]
[212]
Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Ahmad, S.; Malhotraa, B.D. Chitosan iron-oxide based immunosensor for ochratoxin-A. Electrochem. Commun., 2008, 10, 1364-1368.
[http://dx.doi.org/10.1016/j.elecom.2008.07.007]
[213]
Jiang, C.R.; Hung, Y.C.; Chen, C.M.; Shieh, G.S. Inferring genetic interactions via a data-driven second order model. Front. Genet., 2012, 3, 71.
[http://dx.doi.org/10.3389/fgene.2012.00071] [PMID: 22563331]
[214]
Coativy, G.; Gautier, N.; Pontoire, B.; Buléon, A.; Lourdin, D.; Leroy, E. Shape memory starch-clay bionanocomposites. Carbohydr. Polym., 2015, 116, 307-313.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.024] [PMID: 25458305]
[215]
Martins, M.L.; Saeki, M.J.; Telling, M.T.F.; Parra, J.P.R.L.L.; Landsgesell, S.; Smith, R.I.; Bordallo, H.N. Development and characterization of a new bio-nanocomposites (bio-NCP) for diagonosis and treatment of breast cancer. J. Alloys Compd., 2014, 584, 514-519.
[http://dx.doi.org/10.1016/j.jallcom.2013.09.128]
[216]
Liu, P.; Bai, F.Q.; Liu, D.W.; Peng, H.P.; Hua, Y.; Zheng, Y.J. One-pot green synthesis of mussel-inspired myoglobin-gold nanoparticles-polydopamine-graphene polymeric bionanocomposite for biosensors application. J. Electroanal. Chem. (Lausanne), 2016, 764, 104-109.
[http://dx.doi.org/10.1016/j.jelechem.2016.01.020]
[217]
Perveen, S.; Zafar, S.; Iqbal, N. Applications of bionanocomposites in agriculture. In: Bionanocomposites; Elsevier, 2020; pp. 485-504.
[http://dx.doi.org/10.1016/B978-0-12-816751-9.00018-0]
[218]
Perrone, M.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Laquintana, V.; Douglas, J.; Franco, M.; Liberati, E.; Russo, V.; Tongiani, S.; Denora, N.; Bernkop-Schnürch, A. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery. Eur. J. Pharm. Biopharm., 2017, 119(119), 161-169.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.011] [PMID: 28610879]
[219]
Besford, Q.A.; Wojnilowicz, M.; Suma, T.; Bertleff-Zieschang, N.; Caruso, F.; Cavalieri, F. Lactosylated glycogen nanoparticles for targeting prostate cancer cells. ACS Appl. Mater. Interfaces, 2017, 9(20), 16869-16879.
[http://dx.doi.org/10.1021/acsami.7b02676] [PMID: 28362077]
[220]
Bozanic, D.K.; Luyt, A.S.; Trandafilovic, L.V.; Djokovic, V. Glycogen and gold nanoparticle bioconjugates: Controlled plasmon resonance via glycogen-induced nanoparticle aggregation. RSC Advances, 2013, 3(23), 8705-8713.
[http://dx.doi.org/10.1039/c3ra40189h]
[221]
Bozanic, D.K.; Dimitrijevic-Brankovic, S.; Bibic, N.; Luyt, A.S.; Djokovic, V. Silver nanoparticles encapsulated in glycogen biopolymer: Morphology, optical and antimicrobial properties. Carbohydr. Polym., 2011, 83(2), 883-890.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.070]
[222]
Shafiq, F.; Akram, N.A.; Mahmood, A.; Ahmad, A.; Ashraf, M.; Iqbal, M.; Raza, S.H. Glycogen-based bionanocomposites. In: Bionanocomposites; Elsevier, 2020.
[http://dx.doi.org/10.1016/B978-0-12-816751-9.00011-8]
[223]
Patra, P.; Rameshbabu, A.P.; Das, D.; Dhara, S.; Panda, A.B.; Pal, S. Stimuli-responsive, biocompatible hydrogel derived from glycogen and poly (N-isopropylacrylamide) for colon targeted delivery of ornidazole and 5-amino salicylic acid. Polym. Chem., 2016, 7(34), 5426-5435.
[http://dx.doi.org/10.1039/C6PY01128D]
[224]
Joz Majidi, H.; Babaei, A.; Arab Bafrani, Z.; Shahrampour, D.; Zabihi, E.; Jafari, S.M. Investigating the best strategy to diminish the toxicity and enhance the antibacterial activity of graphene oxide by chitosan addition. Carbohydr. Polym., 2019, 225, 115220.
[http://dx.doi.org/10.1016/j.carbpol.2019.115220] [PMID: 31521313]
[225]
Wang, J.; Liu, C.; Shuai, Y.; Cui, X.; Nie, L. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf. B Biointerfaces, 2014, 113, 223-229.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.009] [PMID: 24096158]
[226]
Xiong, C.; Zhong, W.; Zou, Y.; Luo, J.; Yang, W. Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes. Electrochim. Acta, 2016, 211, 941-949.
[http://dx.doi.org/10.1016/j.electacta.2016.06.117]
[227]
Azizi-Lalabadi, M.; Jafari, S.M. Bio-nanocomposites of graphene with biopolymers; fabrication, properties, and applications. Adv. Colloid Interface Sci., 2021, 292, 102416.
[http://dx.doi.org/10.1016/j.cis.2021.102416] [PMID: 33872984]
[228]
Peng, W.; Huang, G.; Yang, S.; Guo, C.; Shi, J. Performance of biopolymer/graphene oxide gels for the effective adsorption of U (VI) from aqueous solution. J. Radioanal. Nucl. Chem., 2019, 322(2), 861-868.
[http://dx.doi.org/10.1007/s10967-019-06727-y]
[229]
Ruiz-Hitzky, E.; Aranda, P.; Darder, M.; Rytwo, G. Hybrid materials based on clays for environmental and biomedical applications. J. Mater. Chem., 2010, 20(42), 9306-9321.
[http://dx.doi.org/10.1039/c0jm00432d]
[230]
Suvarnaphaet, P.; Pechprasarn, S. Graphene-based materials for biosensors: A review. Sensors (Basel), 2017, 17(10), 2161.
[http://dx.doi.org/10.3390/s17102161] [PMID: 28934118]
[231]
Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; Rajendran, S.; Ayati, A.; Fu, L.; Sanati, A.L.; Tanhaei, B.; Sen, F.; Shabani-Nooshabadi, M.; Asrami, P.N.; Al-Othman, A. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron., 2021, 184, 113252.
[http://dx.doi.org/10.1016/j.bios.2021.113252] [PMID: 33895688]
[232]
Albers, P.W.; Parker, S.F. Applications of neutron scattering in technical catalysis: Characterisation of hydrogenous species on/in unsupported and supported palladium. Top. Catal., 2021, 24(9-12), 1-11.
[http://dx.doi.org/10.1007/s11244-021-01424-1]
[233]
Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Chitosan-clay bionanocomposites; Environmental Silicate Nano-biocomposites. Green. Ener. Technol, 2012, 365-391.
[234]
Othman, S.H. Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. Agric. Agric. Sci. Procedia, 2014, 2, 296-303.
[http://dx.doi.org/10.1016/j.aaspro.2014.11.042]
[235]
Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J.I.A. Kinloch, R.J. Young. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci., 2017, 90, 75-127.
[http://dx.doi.org/10.1016/j.pmatsci.2017.07.004]
[236]
Tajik, S.; Orooji, Y.; Karimi, F.; Ghazanfari, Z.; Beitollahi, H.; Shokouhimehr, M.; Varma, R.S.; Jang, H.W. High performance of screen-printed graphite electrode modified with Ni-Mo-MOF for voltammetric determination of amaranth. J. Food Meas. Charact., 2021, 15(5), 4617-4622.
[http://dx.doi.org/10.1007/s11694-021-01027-0]
[237]
Duan, Z.; Jiang, Y.; Zhao, Q.; Huang, Q.; Wang, S.; Zhang, Y.; Wu, Y.; Liu, B.; Zhen, Y.; Tai, H. Daily writing carbon ink: Novel application on humidity sensor with wide detection range, low detection limit and high detection resolution. Sens. Actuators B Chem., 2021, 339, 129884.
[http://dx.doi.org/10.1016/j.snb.2021.129884]
[238]
Nerkar, D.; Jaware, S.E.; Padhye, G.G. Fabrication of a novel flexible room temperature hydrogen sulfide (H2S) gas sensor based on polypyrrole films. Int. J. Sci. Res., 2016, 5, 106-111.
[239]
Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors (Basel), 2014, 14(5), 7881-7939.
[http://dx.doi.org/10.3390/s140507881] [PMID: 24784036]
[240]
Giraldo, J.P.; Landry, M.P.; Faltermeier, S.M.; McNicholas, T.P.; Iverson, N.M.; Boghossian, A.A.; Reuel, N.F.; Hilmer, A.J.; Sen, F.; Brew, J.A.; Strano, M.S. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater., 2014, 13(4), 400-408.
[http://dx.doi.org/10.1038/nmat3890] [PMID: 24633343]
[241]
Iverson, N.M.; Barone, P.W.; Shandell, M.; Trudel, L.J.; Sen, S.; Sen, F.; Ivanov, V.; Atolia, E.; Farias, E.; McNicholas, T.P.; Reuel, N.; Parry, N.M.; Wogan, G.N.; Strano, M.S. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol., 2013, 8(11), 873-880.
[http://dx.doi.org/10.1038/nnano.2013.222] [PMID: 24185942]
[242]
Devarajan, B.; Bhuvaneswari, V.; Priya, A.K.; Nambirajan, G.; Joenas, J.; Nishanth, P.; Rajeshkumar, L.; Kathiresan, G.; Amarnath, V. Renewable energy resources: Case studies. IOP Conf. Ser.: Mater. Sci. Eng., 2021, 1145(1), 012026.
[243]
Wu, X.; Xing, Y.; Zeng, K.; Huber, K.; Zhao, J.X. Study of fluorescence quenching ability of graphene oxide with a layer of rigid and tunable silica spacer. Langmuir, 2018, 34(2), 603-611.
[http://dx.doi.org/10.1021/acs.langmuir.7b03465] [PMID: 29275632]
[244]
Zhang, D.; Wang, D.; Li, P.; Zhou, X.; Zong, X.; Dong, G. Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators B Chem., 2018, 255, 1869-1877.
[http://dx.doi.org/10.1016/j.snb.2017.08.212]
[245]
Memarzadeh, R.; Javadpour, S.; Panahi, F.; Shim, Y-B. Low temperature carbon monoxide sensor based on Co(salen) doped PEDOT: PSS. , 2020; pp. 1105-1108.
[http://dx.doi.org/10.5162/IMCS2012/P1.8.1]
[246]
Chang, L.; He, X.; Chen, L.; Zhang, Y. A novel fluorescent turn-on biosensor based on QDs@GSH-GO fluorescence resonance energy transfer for sensitive glutathione S-transferase sensing and cellular imaging. Nanoscale, 2017, 9(11), 3881-3888.
[http://dx.doi.org/10.1039/C6NR09944K] [PMID: 28256653]
[247]
Dixit, V.; Misra, S.C.K.; Sharma, B.S. Carbon monoxide sensitivity of vacuum deposited polyaniline semiconducting thin films. Sens. Actuators B Chem., 2005, 104(1), 90-93.
[http://dx.doi.org/10.1016/j.snb.2004.05.001]
[248]
Chauhan, P.S.; Kant, R.; Rai, A.; Gupta, A.; Bhattacharya, S. Facile synthesis of ZnO/GO nanoflowers over Si substrate for improved photocatalytic decolorization of MB dye and industrial wastewater under solar irradiation. Mater. Sci. Semicond. Process., 2019, 89, 6-17.
[http://dx.doi.org/10.1016/j.mssp.2018.08.022]
[249]
Cheng, Y.; Sun, C.; Liu, R.; Yang, J.; Dai, J.; Zhai, T.; Lou, X.; Xia, F. A multifunctional peptide‐conjugated AIEgen for efficient and sequential targeted gene delivery into the nucleus. Angew. Chem. Int. Ed. Engl., 2019, 58(15), 5049-5053.
[http://dx.doi.org/10.1002/anie.201901527] [PMID: 30767348]
[250]
Pachauri, V.; Ingebrandt, S. Biologically sensitive field-effect transistors: From ISFETs to NanoFETs. Essays Biochem., 2016, 60(1), 81-90.
[http://dx.doi.org/10.1042/EBC20150009] [PMID: 27365038]
[251]
Ramesh, M.; Balaji, D.; Rajeshkumar, L.; Bhuvaneswari, V.; Saravanakumar, R. Khan A.; A.M.; Asiri. Tribological behavior of glass/sisal fiber reinforced polyester composites. In: Vegetable fiber composites and their technological applications. Composites Science and Technology; Jawaid, M.; Khan, A., Eds.; Springer: Singapore, 2021; pp. 445-459.
[http://dx.doi.org/10.1007/978-981-16-1854-3_20]
[252]
Tabrizi, A.G.; Arsalani, N.; Mohammadi, A.; Ghadimi, L.S.; Ahadzadeh, I. High-performance asymmetric supercapacitor based on hierarchical nanocomposites of polyaniline nanoarrays on graphene oxide and its derived N-doped carbon nanoarrays grown on graphene sheets. J. Colloid Interface Sci., 2018, 531, 369-381.
[http://dx.doi.org/10.1016/j.jcis.2018.07.065] [PMID: 30041114]
[253]
Xue, X-Z.; Zhang, J-Y.; Zhou, D.; Liu, J-K. In-situ bonding technology and excellent anticorrosion activity of graphene oxide/hydroxyapatite nanocomposite pigment. Dyes Pigments, 2019, 160, 109-118.
[http://dx.doi.org/10.1016/j.dyepig.2018.07.057]
[254]
Nia, N.A.; Foroughi, M.M.; Jahani, S. Simultaneous determination of theobromine, theophylline, and caffeine using a modified electrode with petal-like MnO2 nanostructure. Talanta, 2021, 222, 121563.
[http://dx.doi.org/10.1016/j.talanta.2020.121563] [PMID: 33167259]
[255]
Zhang, W.; Han, C.; Jia, B.; Saint, C.; Nadagouda, M.; Falaras, P.; Sygellou, L.; Vogiazi, V.; Dionysiou, D.D. Mallikarjunanadagouda, polycarpos falaras, labrini sygellou, vasileiavogiazi, dionysios d. dionysiou. A 3D graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electrochim. Acta, 2017, 236, 319-327.
[http://dx.doi.org/10.1016/j.electacta.2017.03.161]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy