Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Reviewed and updated Algorithm for Genetic Characterization of Syndromic Obesity Phenotypes

Author(s): Raquel Rodríguez-López*, Fátima Gimeno-Ferrer, David Albuquerque do Santos, Irene Ferrer-Bolufer, Carola Guzmán Luján, Otilia Zomeño Alcalá, Amor García-Banacloy, Virginia Ballesteros Cogollos and Carlos Sánchez Juan

Volume 23, Issue 3, 2022

Published on: 31 May, 2022

Page: [147 - 162] Pages: 16

DOI: 10.2174/1389202923666220426093436

Price: $65

Abstract

Background: Individuals with a phenotype of early-onset severe obesity associated with intellectual disability can have molecular diagnoses ranging from monogenic to complex genetic traits. Severe overweight is the major sign of a syndromic physical appearance and predicting the influence of a single gene and/or polygenic risk profile is extremely complicated among the majority of the cases. At present, considering rare monogenic bases as the principal etiology for the majority of obesity cases associated with intellectual disability is scientifically poor. The diversity of the molecular bases responsible for the two entities makes the appliance of the current routinely powerful genomics diagnostic tools essential.

Objective: Clinical investigation of these difficult-to-diagnose patients requires pediatricians and neurologists to use optimized descriptions of signs and symptoms to improve genotype correlations.

Methods: The use of modern integrated bioinformatics strategies which are conducted by experienced multidisciplinary clinical teams. Evaluation of the phenotype of the patient’s family is also of importance.

Results: The next step involves discarding the monogenic canonical obesity syndromes and considering infrequent unique molecular cases, and/or then polygenic bases. Adequate management of the application of the new technique and its diagnostic phases is essential for achieving good cost/efficiency balances.

Conclusion: With the current clinical management, it is necessary to consider the potential coincidence of risk mutations for obesity in patients with genetic alterations that induce intellectual disability. In this review, we describe an updated algorithm for the molecular characterization and diagnosis of patients with a syndromic obesity phenotype.

Keywords: Syndromic obesity, classical obesity syndrome, non-canonical obesity syndrome, whole-genome array, nonsyndromic monogenic obesity, exome sequencing.

Next »
Graphical Abstract
[1]
Campbell Am, L.V. Genetics of obesity. Aust. Fam. Physician, 2017, 46(7), 456-459.
[PMID: 28697287]
[2]
Pratt, H.D.; Greydanus, D.E. Intellectual disability (mental retardation) in children and adolescents. Prim. Care, 2007, 34(2), 375-386.
[http://dx.doi.org/10.1016/j.pop.2007.04.010] [PMID: 17666233]
[3]
Kaur, Y.; de Souza, R.J.; Gibson, W.T.; Meyre, D. A systematic review of genetic syndromes with obesity. Obes. Rev. an Off J. Int. Assoc. Study. Obes, 2017, 18(6), 603-634.
[4]
Singh, R.K.; Kumar, P.; Mahalingam, K. Molecular genetics of human obesity: A comprehensive review. C. R. Biol., 2017, 340(2), 87-108.
[http://dx.doi.org/10.1016/j.crvi.2016.11.007] [PMID: 28089486]
[5]
Dasouki, M.J.; Youngs, E.L.; Hovanes, K. Structural chromosome abnormalities associated with obesity: Report of four new subjects and review of literature. Curr. Genomics, 2011, 12(3), 190-203.
[http://dx.doi.org/10.2174/138920211795677930] [PMID: 22043167]
[6]
Weihrauch-Blüher, S.; Wiegand, S. Risk factors and implications of childhood obesity. Curr. Obes. Rep., 2018, 7(4), 254-259.
[http://dx.doi.org/10.1007/s13679-018-0320-0] [PMID: 30315490]
[7]
Albuquerque, D.; Nóbrega, C.; Manco, L.; Padez, C. The contribution of genetics and environment to obesity. Br. Med. Bull., 2017, 123(1), 159-173.
[http://dx.doi.org/10.1093/bmb/ldx022] [PMID: 28910990]
[8]
Vasileva, L.V.; Marchev, A.S.; Georgiev, M.I. Causes and solutions to “globesity”: The new fa(s)t alarming global epidemic. J. Publ. Br. Ind. Biol. Res. Assoc, 2018, 121, 173-193.
[http://dx.doi.org/10.1016/j.fct.2018.08.071] [PMID: 30176311]
[9]
Albuquerque, D.; Stice, E.; Rodríguez-López, R.; Manco, L.; Nóbrega, C. Current review of genetics of human obesity: From molecular mechanisms to an evolutionary perspective. Mol. Genet. Genomics, 2015, 290(4), 1191-1221.
[http://dx.doi.org/10.1007/s00438-015-1015-9] [PMID: 25749980]
[10]
Maïano, C. Prevalence and risk factors of overweight and obesity among children and adolescents with intellectual disabilities. Obes. Rev., 2011, 12(3), 189-197.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00744.x] [PMID: 20406413]
[11]
Delrue, M.A.; Michaud, J.L. Fat chance: Genetic syndromes with obesity. Clin. Genet., 2004, 66(2), 83-93.
[http://dx.doi.org/10.1111/j.0009-9163.2004.00300.x] [PMID: 15253756]
[12]
D’Angelo, C.S.; Kohl, I.; Varela, M.C.; de Castro, C.I.; Kim, C.A.; Bertola, D.R.; Lourenço, C.M.; Perez, A.B.; Koiffmann, C.P. Obesity with associated developmental delay and/or learning disability in patients exhibiting additional features: Report of novel pathogenic copy number variants. Am. J. Med. Genet. A., 2013, 161A(3), 479-486.
[http://dx.doi.org/10.1002/ajmg.a.35761] [PMID: 23401328]
[13]
Lespinasse, J.; Bugge, M.; Réthoré, M.O.; North, M.O.; Lundsteen, C.; Kirchhoff, M. De novo Complex Chromosomal Rearrangements (CCR) involving chromosome 1, 5, and 6 resulting in microdeletion for 6q14 in a female carrier with psychotic disorder. Am. J. Med. Genet. A., 2004, 128A(2), 199-203.
[http://dx.doi.org/10.1002/ajmg.a.30064] [PMID: 15214017]
[14]
Menten, B.; Buysse, K.; Vandesompele, J.; De Smet, E.; De Paepe, A.; Speleman, F.; Mortier, G. Identification of an unbalanced X-autosome translocation by array CGH in a boy with a syndromic form of chondrodysplasia punctata brachytelephalangic type. Eur. J. Med. Genet., 2005, 48(3), 301-309.
[http://dx.doi.org/10.1016/j.ejmg.2005.04.014] [PMID: 16179225]
[15]
Probst, F.J.; Roeder, E.R.; Enciso, V.B.; Ou, Z.; Cooper, M.L.; Eng, P.; Li, J.; Gu, Y.; Stratton, R.F.; Chinault, A.C.; Shaw, C.A.; Sutton, V.R.; Cheung, S.W.; Nelson, D.L. Chromosomal Microarray Analysis (CMA) detects a large X chromosome deletion including FMR1, FMR2, and IDS in a female patient with mental retardation. Am. J. Med. Genet. A., 2007, 143A(12), 1358-1365.
[http://dx.doi.org/10.1002/ajmg.a.31781] [PMID: 17506108]
[16]
Vuillaume, M-L.; Naudion, S.; Banneau, G.; Diene, G.; Cartault, A.; Cailley, D.; Bouron, J.; Toutain, J.; Bourrouillou, G.; Vigouroux, A.; Bouneau, L.; Nacka, F.; Kieffer, I.; Arveiler, B.; Knoll-Gellida, A.; Babin, P.J.; Bieth, E.; Jouret, B.; Julia, S.; Sarda, P.; Geneviève, D.; Faivre, L.; Lacombe, D.; Barat, P.; Tauber, M.; Delrue, M.A.; Rooryck, C. New candidate loci identified by array-CGH in a cohort of 100 children presenting with syndromic obesity. Am. J. Med. Genet. A., 2014, 164A(8), 1965-1975.
[http://dx.doi.org/10.1002/ajmg.a.36587] [PMID: 24782328]
[17]
Zung, A.; Rienstein, S.; Rosensaft, J.; Aviram-Goldring, A.; Zadik, Z. Proximal 19q trisomy: A new syndrome of morbid obesity and mental retardation. Horm. Res., 2007, 67(3), 105-110.
[PMID: 17057406]
[18]
D’Angelo, C.S.; Koiffmann, C.P. Copy number variants in obesity-related syndromes: Review and perspectives on novel molecular approaches. J. Obes., 2012, 2012845480
[http://dx.doi.org/10.1155/2012/845480] [PMID: 23316347]
[19]
Marenne, G.; Hendricks, A.E.; Perdikari, A.; Bounds, R.; Payne, F.; Keogh, J.M.; Lelliott, C.J.; Henning, E.; Pathan, S.; Ashford, S.; Bochukova, E.G.; Mistry, V.; Daly, A.; Hayward, C.; Wareham, N.J.; O’Rahilly, S.; Langenberg, C.; Wheeler, E.; Zeggini, E.; Farooqi, I.S.; Barroso, I. Exome sequencing identifies genes and gene sets contributing to severe childhood obesity, linking PHIP variants to repressed POMC transcription. Cell Metab., 2020, 31(6), 1107-1119.e12.
[http://dx.doi.org/10.1016/j.cmet.2020.05.007] [PMID: 32492392]
[20]
D’Angelo, C.S.; Varela, M.C.; de Castro, C.I.; Otto, P.A.; Perez, A.B.A.; Lourenço, C.M.; Kim, C.A.; Bertola, D.R.; Kok, F.; Garcia-Alonso, L.; Koiffmann, C.P. Chromosomal microarray analysis in the genetic evaluation of 279 patients with syndromic obesity. Mol. Cytogenet., 2018, 11(1), 14.
[http://dx.doi.org/10.1186/s13039-018-0363-7] [PMID: 29441128]
[21]
D’Angelo, C.S.; Varela, M.C.; de Castro, C.Ie.; Kim, C.A.; Bertola, D.R.; Lourenço, C.M.; Perez, A.B.; Koiffmann, C.P. Investigation of selected genomic deletions and duplications in a cohort of 338 patients presenting with syndromic obesity by multiplex ligation-dependent probe amplification using synthetic probes. Mol. Cytogenet., 2014, 7(1), 75.
[http://dx.doi.org/10.1186/s13039-014-0075-6] [PMID: 25411582]
[22]
Jiao, H.; Arner, P.; Gerdhem, P.; Strawbridge, R.J.; Näslund, E.; Thorell, A.; Hamsten, A.; Kere, J.; Dahlman, I. Exome sequencing followed by genotyping suggests SYPL2 as a susceptibility gene for morbid obesity. Eur. J. Hum. Genet., 2015, 23(9), 1216-1222.
[http://dx.doi.org/10.1038/ejhg.2014.255] [PMID: 25406998]
[23]
Elibol, B.; Kilic, U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front. Endocrinol. (Lausanne), 2018, 9, 614.
[http://dx.doi.org/10.3389/fendo.2018.00614] [PMID: 30374331]
[24]
Martins, I.J. Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. Adv. Aging Res., 2016, 5(1), 9-26.
[http://dx.doi.org/10.4236/aar.2016.51002]
[25]
Martins, I.J. Single gene inactivation with implications to diabetes and multiple organ dysfunction syndrome. J. Clin. Epigenetics, 2017, 3(3), 24.
[26]
Bachmann-Gagescu, R.; Mefford, H.C.; Cowan, C.; Glew, G.M.; Hing, A.V.; Wallace, S.; Bader, P.I.; Hamati, A.; Reitnauer, P.J.; Smith, R.; Stockton, D.W.; Muhle, H.; Helbig, I.; Eichler, E.E.; Ballif, B.C.; Rosenfeld, J.; Tsuchiya, K.D. Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. Genet. Med., 2010, 12(10), 641-647.
[http://dx.doi.org/10.1097/GIM.0b013e3181ef4286] [PMID: 20808231]
[27]
Gimeno-Ferrer, F.; Albuquerque, D.; Guzmán Luján, C.; Marcaida Benito, G.; Torreira Banzas, C.; Repáraz-Andrade, A.; Ballesteros Cogollos, V.; Aleu Pérez-Gramunt, M.; Galán Gómez, E.; Quintela, I.; Rodríguez-López, R. The effect of copy number variations in chromosome 16p on body weight in patients with intellectual disability. J. Hum. Genet., 2019, 64(3), 221-231.
[http://dx.doi.org/10.1038/s10038-018-0545-5] [PMID: 30518945]
[28]
Pettersson, M.; Viljakainen, H.; Loid, P.; Mustila, T.; Pekkinen, M.; Armenio, M.; Andersson-Assarsson, J.C.; Mäkitie, O.; Lindstrand, A. Copy number variants are enriched in individuals with early-onset obesity and highlight novel pathogenic pathways. J. Clin. Endocrinol. Metab., 2017, 102(8), 3029-3039.
[http://dx.doi.org/10.1210/jc.2017-00565] [PMID: 28605459]
[29]
Redaelli, S.; Maitz, S.; Crosti, F.; Sala, E.; Villa, N.; Spaccini, L.; Selicorni, A.; Rigoldi, M.; Conconi, D.; Dalprà, L.; Roversi, G.; Bentivegna, A. Refining the phenotype of recurrent rearrangements of chromosome 16. Int. J. Mol. Sci., 2019, 20(5)E1095
[http://dx.doi.org/10.3390/ijms20051095] [PMID: 30836598]
[30]
Casas, M.; Chatzi, L.; Carsin, A.E.; Amiano, P.; Guxens, M.; Kogevinas, M.; Koutra, K.; Lertxundi, N.; Murcia, M.; Rebagliato, M.; Riaño, I.; Rodríguez-Bernal, C.L.; Roumeliotaki, T.; Sunyer, J.; Mendez, M.; Vrijheid, M. Maternal pre-pregnancy overweight and obesity, and child neuropsychological development: Two Southern European birth cohort studies. Int. J. Epidemiol., 2013, 42(2), 506-517.
[http://dx.doi.org/10.1093/ije/dyt002] [PMID: 23569191]
[31]
Memo, L.; Gnoato, E.; Caminiti, S.; Pichini, S.; Tarani, L. Fetal alcohol spectrum disorders and fetal alcohol syndrome: The state of the art and new diagnostic tools. Early Hum. Dev., 2013, 89(Suppl. 1), S40-S43.
[http://dx.doi.org/10.1016/S0378-3782(13)70013-6] [PMID: 23809349]
[32]
Scott-Goodwin, A.C.; Puerto, M.; Moreno, I. Toxic effects of prenatal exposure to alcohol, tobacco and other drugs. Reprod. Toxicol., 2016, 61, 120-130.
[http://dx.doi.org/10.1016/j.reprotox.2016.03.043] [PMID: 27037188]
[33]
Denny, L.; Coles, S.; Blitz, R. Fetal alcohol syndrome and fetal alcohol spectrum disorders. Am. Fam. Physician, 2017, 96(8), 515-522.
[PMID: 29094891]
[34]
Fernandez-Twinn, D.S.; Hjort, L.; Novakovic, B.; Ozanne, S.E.; Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia, 2019, 62(10), 1789-1801.
[http://dx.doi.org/10.1007/s00125-019-4951-9] [PMID: 31451874]
[35]
Charlin, A.; Vexliard, D.; Guerre, D.; Peuteuil, P. Severe retardation of affective origin, curable by environmental psychotherapy. Ethiological approach. Ann. Med. Psychol. (Paris), 1975, 1(3), 356-362.
[PMID: 1163920]
[36]
Hofstatter, L.; Hofstatter, L. Emotional problems of the child with mental retardation and his family. South. Med. J., 1969, 62(5), 583-587.
[http://dx.doi.org/10.1097/00007611-196905000-00019] [PMID: 5782190]
[37]
Köhler, S.; Vasilevsky, N.A.; Engelstad, M.; Foster, E.; McMurry, J.; Aymé, S.; Baynam, G.; Bello, S.M.; Boerkoel, C.F.; Boycott, K.M.; Brudno, M.; Buske, O.J.; Chinnery, P.F.; Cipriani, V.; Connell, L.E.; Dawkins, H.J.S.; DeMare, L.E.; Devereau, A.D.; de Vries, B.B.A.; Firth, H.V.; Freson, K.; Greene, D.; Hamosh, A.; Helbig, I.; Hum, C.; Jähn, J.A.; James, R.; Krause, R.; F, Laulederkind S.J.; Lochmüller, H.; Lyon, G.J.; Ogishima, S.; Olry, A.; Ouwehand, W.H.; Pontikos, N.; Rath, A.; Schaefer, F.; Scott, R.H.; Segal, M.; Sergouniotis, P.I.; Sever, R.; Smith, C.L.; Straub, V.; Thompson, R.; Turner, C.; Turro, E.; Veltman, M.W.; Vulliamy, T.; Yu, J.; von Ziegenweidt, J.; Zankl, A.; Züchner, S.; Zemojtel, T.; Jacobsen, J.O.; Groza, T.; Smedley, D.; Mungall, C.J.; Haendel, M.; Robinson, P.N. The human phenotype ontology in 2017. Nucleic Acids Res., 2017, 45(D1), D865-D876.
[http://dx.doi.org/10.1093/nar/gkw1039] [PMID: 27899602]
[38]
Chung, W.K. An overview of mongenic and syndromic obesities in humans. Pediatr. Blood Cancer, 2012, 58(1), 122-128.
[http://dx.doi.org/10.1002/pbc.23372] [PMID: 21994130]
[39]
Asim, A.; Kumar, A.; Muthuswamy, S.; Jain, S.; Agarwal, S. Down syndrome: An insight of the disease. J. Biomed. Sci., 2015, 22(1), 41.
[http://dx.doi.org/10.1186/s12929-015-0138-y] [PMID: 26062604]
[40]
de Vries, B.B.; Mohkamsing, S.; van den Ouweland, A.M.; Mol, E.; Gelsema, K.; van Rijn, M.; Tibben, A.; Halley, D.J.; Duivenvoorden, H.J.; Oostra, B.A.; Niermeijer, M.F. Screening for the fragile X syndrome among the mentally retarded: A clinical study. J. Med. Genet., 1999, 36(6), 467-470.
[PMID: 10874635]
[41]
González-Jiménez, E.; Aguilar Cordero, M.J.; Padilla López, C.A.; García García, I. Monogenic human obesity: Role of the leptin-melanocortin system in the regulation of food intake and body weight in humans. An. Sist. Sanit. Navar., 2012, 35(2), 285-293.
[PMID: 22948429]
[42]
Butler, M.G. Prader-Willi syndrome: Obesity due to genomic imprinting. Curr. Genomics, 2011, 12(3), 204-215.
[http://dx.doi.org/10.2174/138920211795677877] [PMID: 22043168]
[43]
Cassidy, S.B.; Dykens, E.; Williams, C.A. Prader-Willi and Angelman syndromes: Sister imprinted disorders. Am. J. Med. Genet., 2000, 97(2), 136-146.
[http://dx.doi.org/10.1002/1096-8628(200022)97:2<136:AID-AJMG5>3.0.CO;2-V] [PMID: 11180221]
[44]
Farooqi, I.S.; O’Rahilly, S. Monogenic obesity in humans. Annu. Rev. Med., 2005, 56(1), 443-458.
[http://dx.doi.org/10.1146/annurev.med.56.062904.144924] [PMID: 15660521]
[45]
Suspitsin, E.N.; Imyanitov, E.N. Bardet-Biedl syndrome. Mol. Syndromol., 2016, 7(2), 62-71.
[http://dx.doi.org/10.1159/000445491] [PMID: 27385962]
[46]
Monzó, C.; Gimeno-Ferrer, F.; Ferrer, J.C.; Amadoz, A.; Albuquerque, D.; Barros, F.; Marcaida, G.; Rodríguez-López, R. Alström syndrome caused by deletion in ALMS1 gene fixed in a Northern Pakistan recurrent haplotype. Indian J. Case Reports, 2017, 3(4), 171-174.
[47]
Álvarez-Satta, M.; Castro-Sánchez, S.; Valverde, D. Alström syndrome: Current perspectives. Appl. Clin. Genet., 2015, 8, 171-179.
[PMID: 26229500]
[48]
Rodríguez-López, R.; Pérez, J.M.; Balsera, A.M.; Rodríguez, G.G.; Moreno, T.H.; García de Cáceres, M.; Serrano, M.G.; Freijo, F.C.; Ruiz, J.R.; Angueira, F.B.; Pérez, P.M.; Estévez, M.N.; Gómez, E.G. The modifier effect of the BDNF gene in the phenotype of the WAGRO syndrome. Gene, 2013, 516(2), 285-290.
[http://dx.doi.org/10.1016/j.gene.2012.11.073] [PMID: 23266638]
[49]
Fischbach, B.V.; Trout, K.L.; Lewis, J.; Luis, C.A.; Sika, M. WAGR syndrome: A clinical review of 54 cases. Pediatrics, 2005, 116(4), 984-988.
[http://dx.doi.org/10.1542/peds.2004-0467] [PMID: 16199712]
[50]
Leclercq, V.; Benoit, V.; Lederer, D.; Delaunoy, M.; Ruiz, M.; de Halleux, C.; Robaux, O.; Wanty, C.; Maystadt, I. Case report: An infantile lethal form of Albright hereditary osteodystrophy due to a GNAS mutation. Clin. Case Rep., 2018, 6(10), 1933-1940.
[http://dx.doi.org/10.1002/ccr3.1739] [PMID: 30349702]
[51]
Le Scouarnec, S.; Gribble, S.M. Characterising chromosome rearrangements: Recent technical advances in molecular cytogenetics. Heredity, 2012, 108(1), 75-85.
[http://dx.doi.org/10.1038/hdy.2011.100] [PMID: 22086080]
[52]
Kaminsky, E.B.; Kaul, V.; Paschall, J.; Church, D.M.; Bunke, B.; Kunig, D.; Moreno-De-Luca, D.; Moreno-De-Luca, A.; Mulle, J.G.; Warren, S.T.; Richard, G.; Compton, J.G.; Fuller, A.E.; Gliem, T.J.; Huang, S.; Collinson, M.N.; Beal, S.J.; Ackley, T.; Pickering, D.L.; Golden, D.M.; Aston, E.; Whitby, H.; Shetty, S.; Rossi, M.R.; Rudd, M.K.; South, S.T.; Brothman, A.R.; Sanger, W.G.; Iyer, R.K.; Crolla, J.A.; Thorland, E.C.; Aradhya, S.; Ledbetter, D.H.; Martin, C.L. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med., 2011, 13(9), 777-784.
[http://dx.doi.org/10.1097/GIM.0b013e31822c79f9] [PMID: 21844811]
[53]
Weise, A.; Mrasek, K.; Klein, E.; Mulatinho, M.; Llerena, J.C., Jr; Hardekopf, D.; Pekova, S.; Bhatt, S.; Kosyakova, N.; Liehr, T. Microdeletion and microduplication syndromes. J. Histochem. Cytochem. Off J. Histochem. Soc, 2012, 60(5), 346-358.
[http://dx.doi.org/10.1369/0022155412440001] [PMID: 22396478]
[54]
Nowakowska, B. Clinical interpretation of copy number variants in the human genome. J. Appl. Genet., 2017, 58(4), 449-457.
[http://dx.doi.org/10.1007/s13353-017-0407-4] [PMID: 28963714]
[55]
Duzkale, H.; Shen, J.; McLaughlin, H.; Alfares, A.; Kelly, M.A.; Pugh, T.J.; Funke, B.H.; Rehm, H.L.; Lebo, M.S. A systematic approach to assessing the clinical significance of genetic variants. Clin. Genet., 2013, 84(5), 453-463.
[http://dx.doi.org/10.1111/cge.12257] [PMID: 24033266]
[56]
Egger, G.; Dixon, J. Beyond obesity and lifestyle: A review of 21st century chronic disease determinants. BioMed Res. Int., 2014, 2014731685
[http://dx.doi.org/10.1155/2014/731685] [PMID: 24804239]
[57]
Perrone, L.; Marzuillo, P.; Grandone, A.; del Giudice, E.M. Chromosome 16p11.2 deletions: Another piece in the genetic puzzle of childhood obesity. Ital. J. Pediatr., 2010, 36(1), 43.
[http://dx.doi.org/10.1186/1824-7288-36-43] [PMID: 20540750]
[58]
Goldenberg, P. An update on common chromosome microdeletion and microduplication syndromes. Pediatr. Ann., 2018, 47(5), e198-e203.
[http://dx.doi.org/10.3928/19382359-20180419-01] [PMID: 29750287]
[59]
Yazdi, F.T.; Clee, S.M.; Meyre, D. Obesity genetics in mouse and human: Back and forth, and back again. PeerJ, 2015, 3e856
[http://dx.doi.org/10.7717/peerj.856] [PMID: 25825681]
[60]
Zhang, Y.; Chua, S., Jr Leptin function and regulation. Compr. Physiol., 2017, 8(1), 351-369.
[http://dx.doi.org/10.1002/cphy.c160041] [PMID: 29357132]
[61]
Pan, W.W.; Myers, M.G.J., Jr Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci., 2018, 19(2), 95-105.
[http://dx.doi.org/10.1038/nrn.2017.168] [PMID: 29321684]
[62]
Nies, V.J.M.; Struik, D.; Wolfs, M.G.M.; Rensen, S.S.; Szalowska, E.; Unmehopa, U.A.; Fluiter, K.; van der Meer, T.P.; Hajmousa, G.; Buurman, W.A.; Greve, J.W.; Rezaee, F.; Shiri-Sverdlov, R.; Vonk, R.J.; Swaab, D.F.; Wolffenbuttel, B.H.R.; Jonker, J.W.; van Vliet-Ostaptchouk, J.V. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. Int. J. Obes., 2018, 42(3), 376-383.
[http://dx.doi.org/10.1038/ijo.2017.214] [PMID: 28852204]
[63]
Wang, Y.; Wang, A.; Donovan, S.M.; Terán-García, M. Individual genetic variations related to satiety and appetite control increase risk of obesity in preschool-age children in the STRONG kids program. Hum. Hered., 2013, 75(2-4), 152-159.
[http://dx.doi.org/10.1159/000353880] [PMID: 24081231]
[64]
Borman, A.D.; Pearce, L.R.; Mackay, D.S.; Nagel-Wolfrum, K.; Davidson, A.E.; Henderson, R.; Garg, S.; Waseem, N.H.; Webster, A.R.; Plagnol, V.; Wolfrum, U.; Farooqi, I.S.; Moore, A.T. A homozygous mutation in the TUB gene associated with retinal dystrophy and obesity. Hum. Mutat., 2014, 35(3), 289-293.
[http://dx.doi.org/10.1002/humu.22482] [PMID: 24375934]
[65]
Rubinstein, M.; Low, M.J. Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Lett., 2017, 591(17), 2593-2606.
[http://dx.doi.org/10.1002/1873-3468.12776] [PMID: 28771698]
[66]
Ren, D.; Zhou, Y.; Morris, D.; Li, M.; Li, Z.; Rui, L. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J. Clin. Invest., 2007, 117(2), 397-406.
[http://dx.doi.org/10.1172/JCI29417] [PMID: 17235396]
[67]
Ramos-Molina, B.; Martin, M.G.; Lindberg, I. PCSK1 variants and human obesity. Prog. Mol. Biol. Transl. Sci., 2016, 140, 47-74.
[http://dx.doi.org/10.1016/bs.pmbts.2015.12.001] [PMID: 27288825]
[68]
Alsters, S.I.M.; Goldstone, A.P.; Buxton, J.L.; Zekavati, A.; Sosinsky, A.; Yiorkas, A.M.; Holder, S.; Klaber, R.E.; Bridges, N.; van Haelst, M.M.; le Roux, C.W.; Walley, A.J.; Walters, R.G.; Mueller, M.; Blakemore, A.I.F. Truncating homozygous mutation of carboxypeptidase E (CPE) in a morbidly obese female with type 2 diabetes mellitus, intellectual disability and hypogonadotrophic hypogonadism. PLoS One, 2015, 10(6)e0131417
[http://dx.doi.org/10.1371/journal.pone.0131417] [PMID: 26120850]
[69]
Millington, G.W. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr. Metab. (Lond.), 2007, 4(1), 18.
[http://dx.doi.org/10.1186/1743-7075-4-18] [PMID: 17764572]
[70]
Ju, S.H.; Cho, G.B.; Sohn, J.W. Understanding melanocortin-4 receptor control of neuronal circuits: Toward novel therapeutics for obesity syndrome. Pharmacol. Res., 2018, 129, 10-19.
[http://dx.doi.org/10.1016/j.phrs.2018.01.004] [PMID: 29329999]
[71]
Geets, E.; Zegers, D.; Beckers, S.; Verrijken, A.; Massa, G.; Van Hoorenbeeck, K.; Verhulst, S.; Van Gaal, L.; Van Hul, W. Copy Number Variation (CNV) analysis and mutation analysis of the 6q14.1-6q16.3 genes SIM1 and MRAP2 in Prader Willi like patients. Mol. Genet. Metab., 2016, 117(3), 383-388.
[http://dx.doi.org/10.1016/j.ymgme.2016.01.003] [PMID: 26795956]
[72]
Chaly, A.L.; Srisai, D.; Gardner, E.E.; Sebag, J.A. The melanocortin receptor accessory protein 2 promotes food intake through inhibition of the prokineticin receptor-1. eLife, 2016, 5, 5.
[http://dx.doi.org/10.7554/eLife.12397] [PMID: 26829592]
[73]
Jackson, D.S.; Ramachandrappa, S.; Clark, A.J.; Chan, L.F. Melanocortin receptor accessory proteins in adrenal disease and obesity. Front. Neurosci., 2015, 9, 213.
[http://dx.doi.org/10.3389/fnins.2015.00213] [PMID: 26113808]
[74]
Liu, T.; Elmquist, J.K.; Williams, K.W. Mrap2: An accessory protein linked to obesity. Cell Metab., 2013, 18(3), 309-311.
[http://dx.doi.org/10.1016/j.cmet.2013.08.016] [PMID: 24011068]
[75]
Gray, J.; Yeo, G.S.H.; Cox, J.J.; Morton, J.; Adlam, A.L.R.; Keogh, J.M.; Yanovski, J.A.; El Gharbawy, A.; Han, J.C.; Tung, Y.C.L.; Hodges, J.R.; Raymond, F.L.; O’rahilly, S.; Farooqi, I.S. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes, 2006, 55(12), 3366-3371.
[http://dx.doi.org/10.2337/db06-0550] [PMID: 17130481]
[76]
Grarup, N.; Moltke, I.; Andersen, M.K.; Dalby, M.; Vitting-Seerup, K.; Kern, T.; Mahendran, Y.; Jørsboe, E.; Larsen, C.V.L.; Dahl-Petersen, I.K.; Gilly, A.; Suveges, D.; Dedoussis, G.; Zeggini, E.; Pedersen, O.; Andersson, R.; Bjerregaard, P.; Jørgensen, M.E.; Albrechtsen, A.; Hansen, T. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet., 2018, 50(2), 172-174.
[http://dx.doi.org/10.1038/s41588-017-0022-7] [PMID: 29311636]
[77]
Siljee, J.E.; Wang, Y.; Bernard, A.A.; Ersoy, B.A.; Zhang, S.; Marley, A.; Von Zastrow, M.; Reiter, J.F.; Vaisse, C. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet., 2018, 50(2), 180-185.
[http://dx.doi.org/10.1038/s41588-017-0020-9] [PMID: 29311635]
[78]
Stanikova, D.; Buzga, M.; Krumpolec, P.; Skopkova, M.; Surova, M.; Ukropcova, B.; Ticha, L.; Petrasova, M.; Gabcova, D.; Huckova, M.; Piskorova, L.; Bozensky, J.; Mokan, M.; Ukropec, J.; Zavacka, I.; Klimes, I.; Stanik, J.; Gasperikova, D. Genetic analysis of single-minded 1 gene in early-onset severely obese children and adolescents. PLoS One, 2017, 12(5)e0177222
[http://dx.doi.org/10.1371/journal.pone.0177222] [PMID: 28472148]
[79]
Gray, J.; Yeo, G.; Hung, C.; Keogh, J.; Clayton, P.; Banerjee, K.; McAulay, A.; O’Rahilly, S.; Farooqi, I.S. Functional characterization of human NTRK2 mutations identified in patients with severe early-onset obesity. Int. J. Obes., 2007, 31(2), 359-364.
[http://dx.doi.org/10.1038/sj.ijo.0803390] [PMID: 16702999]
[80]
Elias, C.F.; Lee, C.; Kelly, J.; Aschkenasi, C.; Ahima, R.S.; Couceyro, P.R.; Kuhar, M.J.; Saper, C.B.; Elmquist, J.K. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron, 1998, 21(6), 1375-1385.
[http://dx.doi.org/10.1016/S0896-6273(00)80656-X] [PMID: 9883730]
[81]
del Giudice, E.M.; Santoro, N.; Cirillo, G.; D’Urso, L.; Di Toro, R.; Perrone, L. Mutational screening of the CART gene in obese children: Identifying a mutation (Leu34Phe) associated with reduced resting energy expenditure and cosegregating with obesity phenotype in a large family. Diabetes, 2001, 50(9), 2157-2160.
[http://dx.doi.org/10.2337/diabetes.50.9.2157] [PMID: 11522684]
[82]
Echwald, S.M.; Sørensen, T.I.; Andersen, T.; Hansen, C.; Tommerup, N.; Pedersen, O. Sequence variants in the human Cocaine and Amphetamine-Regulated Transcript (CART) gene in subjects with early onset obesity. Obes. Res., 1999, 7(6), 532-536.
[http://dx.doi.org/10.1002/j.1550-8528.1999.tb00710.x] [PMID: 10574510]
[83]
Suzuki, K.; Jayasena, C.N.; Bloom, S.R. Obesity and appetite control. Exp. Diabetes Res., 2012, 2012824305
[http://dx.doi.org/10.1155/2012/824305] [PMID: 22899902]
[84]
Wen, S.; Wang, C.; Gong, M.; Zhou, L. An overview of energy and metabolic regulation. Sci. China Life Sci., 2019, 62(6), 771-790.
[http://dx.doi.org/10.1007/s11427-018-9371-4] [PMID: 30367342]
[85]
Aerts, E.; Geets, E.; Sorber, L.; Beckers, S.; Verrijken, A.; Massa, G.; Van Hoorenbeeck, K.; Verhulst, S.L.; Van Gaal, L.F.; Van Hul, W. Evaluation of a role for NPY and NPY2R in the pathogenesis of obesity by mutation and copy number variation analysis in obese children and adolescents. Ann. Hum. Genet., 2018, 82(1), 1-10.
[http://dx.doi.org/10.1111/ahg.12211] [PMID: 28857123]
[86]
Tatemoto, K.; Mutt, V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature, 1980, 285(5764), 417-418.
[http://dx.doi.org/10.1038/285417a0] [PMID: 6892950]
[87]
Ashby, D.; Bloom, S.R. Recent progress in PYY research--an update report for 8th NPY meeting. Peptides, 2007, 28(2), 198-202.
[http://dx.doi.org/10.1016/j.peptides.2006.10.019] [PMID: 17354277]
[88]
Kasher, P.R.; Schertz, K.E.; Thomas, M.; Jackson, A.; Annunziata, S.; Ballesta-Martínez, M.J.; Campeau, P.M.; Clayton, P.E.; Eaton, J.L.; Granata, T.; Guillén-Navarro, E.; Hernando, C.; Laverriere, C.E.; Liedén, A.; Villa-Marcos, O.; McEntagart, M.; Nordgren, A.; Pantaleoni, C.; Pebrel-Richard, C.; Sarret, C.; Sciacca, F.L.; Wright, R.; Kerr, B.; Glasgow, E.; Banka, S. Small 6q16.1 deletions encompassing pou3f2 cause susceptibility to obesity and variable developmental delay with intellectual disability. Am. J. Hum. Genet., 2016, 98(2), 363-372.
[http://dx.doi.org/10.1016/j.ajhg.2015.12.014] [PMID: 26833329]
[89]
Spikol, E.D.; Laverriere, C.E.; Robnett, M.; Carter, G.; Wolfe, E.M.; Glasgow, E. Zebrafish models of prader-willi syndrome: Fast track to pharmacotherapeutics. Diseases, 2016, 4(1), 13.
[90]
Ricquier, D.; Bouillaud, F. Mitochondrial uncoupling proteins: From mitochondria to the regulation of energy balance. J. Physiol, 2000, 529 Pt 1(Pt 1), 3-10.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00003.x]
[91]
Jia, J.J.; Zhang, X.; Ge, C.R.; Jois, M. The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity and diabetes. Obes. Rev., 2009, 10(5), 519-526.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00569.x] [PMID: 19413708]
[92]
Shalata, A.; Ramirez, M.C.; Desnick, R.J.; Priedigkeit, N.; Buettner, C.; Lindtner, C.; Mahroum, M.; Abdul-Ghani, M.; Dong, F.; Arar, N.; Camacho-Vanegas, O.; Zhang, R.; Camacho, S.C.; Chen, Y.; Ibdah, M.; DeFronzo, R.; Gillespie, V.; Kelley, K.; Dynlacht, B.D.; Kim, S.; Glucksman, M.J.; Borochowitz, Z.U.; Martignetti, J.A. Morbid obesity resulting from inactivation of the ciliary protein CEP19 in humans and mice. Am. J. Hum. Genet., 2013, 93(6), 1061-1071.
[http://dx.doi.org/10.1016/j.ajhg.2013.10.025] [PMID: 24268657]
[93]
Yıldız Bölükbaşı, E.; Mumtaz, S.; Afzal, M.; Woehlbier, U.; Malik, S.; Tolun, A. Homozygous mutation in CEP19, a gene mutated in morbid obesity, in Bardet-Biedl syndrome with predominant postaxial polydactyly. J. Med. Genet., 2018, 55(3), 189-197.
[http://dx.doi.org/10.1136/jmedgenet-2017-104758] [PMID: 29127258]
[94]
Keramati, A.R.; Fathzadeh, M.; Go, G.W.; Singh, R.; Choi, M.; Faramarzi, S.; Mane, S.; Kasaei, M.; Sarajzadeh-Fard, K.; Hwa, J.; Kidd, K.K.; Babaee Bigi, M.A.; Malekzadeh, R.; Hosseinian, A.; Babaei, M.; Lifton, R.P.; Mani, A. A form of the metabolic syndrome associated with mutations in DYRK1B. N. Engl. J. Med., 2014, 370(20), 1909-1919.
[http://dx.doi.org/10.1056/NEJMoa1301824] [PMID: 24827035]
[95]
Kleinendorst, L.; Massink, M.P.G.; Cooiman, M.I.; Savas, M.; van der Baan-Slootweg, O.H.; Roelants, R.J.; Janssen, I.C.M.; Meijers-Heijboer, H.J.; Knoers, N.V.A.M.; Ploos van Amstel, H.K.; van Rossum, E.F.C.; van den Akker, E.L.T.; van Haaften, G.; van der Zwaag, B.; van Haelst, M.M. Genetic obesity: Next-generation sequencing results of 1230 patients with obesity. J. Med. Genet., 2018, 55(9), 578-586.
[http://dx.doi.org/10.1136/jmedgenet-2018-105315] [PMID: 29970488]
[96]
Lee, H.; Deignan, J.L.; Dorrani, N.; Strom, S.P.; Kantarci, S.; Quintero-Rivera, F.; Das, K.; Toy, T.; Harry, B.; Yourshaw, M.; Fox, M.; Fogel, B.L.; Martinez-Agosto, J.A.; Wong, D.A.; Chang, V.Y.; Shieh, P.B.S.; Palmer, C.G.S.; Dipple, K.M.; Grody, W.W.; Vilain, E.; Nelson, S.F. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA, 2014, 312(18), 1880-1887.
[http://dx.doi.org/10.1001/jama.2014.14604] [PMID: 25326637]
[97]
Biesecker, L.G.; Green, R.C. Diagnostic clinical genome and exome sequencing. N. Engl. J. Med., 2014, 370(25), 2418-2425.
[http://dx.doi.org/10.1056/NEJMra1312543] [PMID: 24941179]
[98]
MacArthur, D.G.; Manolio, T.A.; Dimmock, D.P.; Rehm, H.L.; Shendure, J.; Abecasis, G.R.; Adams, D.R.; Altman, R.B.; Antonarakis, S.E.; Ashley, E.A.; Barrett, J.C.; Biesecker, L.G.; Conrad, D.F.; Cooper, G.M.; Cox, N.J.; Daly, M.J.; Gerstein, M.B.; Goldstein, D.B.; Hirschhorn, J.N.; Leal, S.M.; Pennacchio, L.A.; Stamatoyannopoulos, J.A.; Sunyaev, S.R.; Valle, D.; Voight, B.F.; Winckler, W.; Gunter, C. Guidelines for investigating causality of sequence variants in human disease. Nature, 2014, 508(7497), 469-476.
[http://dx.doi.org/10.1038/nature13127] [PMID: 24759409]
[99]
Swaminathan, R.; Huang, Y.; Astbury, C.; Fitzgerald-Butt, S.; Miller, K.; Cole, J.; Bartlett, C.; Lin, S. Clinical exome sequencing reports: Current informatics practice and future opportunities. J. Am. Med. Inform. Assoc., 2017, 24(6), 1184-1191.
[http://dx.doi.org/10.1093/jamia/ocx048] [PMID: 28535206]
[100]
Córdoba, M.; Rodriguez-Quiroga, S.A.; Vega, P.A.; Salinas, V.; Perez-Maturo, J.; Amartino, H.; Vásquez-Dusefante, C.; Medina, N.; González-Morón, D.; Kauffman, M.A. Whole exome sequencing in neurogenetic odysseys: An effective, cost- and time-saving diagnostic approach. PLoS One, 2018, 13(2)e0191228
[http://dx.doi.org/10.1371/journal.pone.0191228] [PMID: 29389947]
[101]
Bainbridge, M.N.; Wiszniewski, W.; Murdock, D.R.; Friedman, J.; Gonzaga-Jauregui, C.; Newsham, I.; Reid, J.G.; Fink, J.K.; Morgan, M.B.; Gingras, M.C.; Muzny, D.M.; Hoang, L.D.; Yousaf, S.; Lupski, J.R.; Gibbs, R.A. Whole-genome sequencing for optimized patient management. Sci. Transl. Med., 2011, 3(87), 87re3.
[http://dx.doi.org/10.1126/scitranslmed.3002243] [PMID: 21677200]
[102]
Narasimhan, V.M.; Hunt, K.A.; Mason, D.; Baker, C.L.; Karczewski, K.J.; Barnes, M.R.; Barnett, A.H.; Bates, C.; Bellary, S.; Bockett, N.A.; Giorda, K.; Griffiths, C.J.; Hemingway, H.; Jia, Z.; Kelly, M.A.; Khawaja, H.A.; Lek, M.; McCarthy, S.; McEachan, R.; O’Donnell-Luria, A.; Paigen, K.; Parisinos, C.A.; Sheridan, E.; Southgate, L.; Tee, L.; Thomas, M.; Xue, Y.; Schnall-Levin, M.; Petkov, P.M.; Tyler-Smith, C.; Maher, E.R.; Trembath, R.C.; MacArthur, D.G.; Wright, J.; Durbin, R.; van Heel, D.A. Health and population effects of rare gene knockouts in adult humans with related parents. Science, 2016, 352(6284), 474-477.
[http://dx.doi.org/10.1126/science.aac8624] [PMID: 26940866]
[103]
Jang, K.; Tong, T.; Lee, J.; Park, T.; Lee, H. Altered gene expression profiles in peripheral blood mononuclear cells in obese subjects. Obes. Facts, 2020, 13(3)(375), 385.
[http://dx.doi.org/10.1159/000507817] [PMID: 32544907]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy