Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Graphite Oxide as a Catalyst for Dehydration of Alcohols

Author(s): Liang Xu*, Peng Yan, Guangzhou Zhao and Pengsheng An

Volume 19, Issue 12, 2022

Published on: 30 June, 2022

Page: [1094 - 1100] Pages: 7

DOI: 10.2174/1570178619666220509093041

Price: $65

Abstract

Background: The methods of dehydration of alcohols frequently suffer from the following drawbacks: high reaction temperature, toxic catalysts, high catalyst loading, and difficulty to remove catalysts.

Therefore, the development of a new catalyst for the dehydration of alcohols is still of importance.

Methods: Graphite oxide is used as a catalyst for dehydration of alcohols.

Results: Graphite oxide is used as a catalyst for dehydrating tertiary and secondary alcohols to the corresponding alkenes as well as dehydrating primary alcohols and diols to the corresponding ethers and cycloethers in moderate to excellent conversion rates and good selectivity.

Conclusion: In these reactions, GO prepared by the improved Hummers method showed high catalytic activity. As an efficient catalyst, GO is easily available, cheap, weakly acidic with low toxicity, and well tolerant to various functional groups.

Keywords: Graphite oxide, alcohols, dehydration, catalyst, alkenes, ethers.

Graphical Abstract
[1]
Larock, R.C. John Wiley & Sons: New York, 1999, 1, p. 291-294.
[2]
Reddy, B.M.; Reddy, G.K.; Katta, L. J. Mol. Catal. Chem., 2010, 319, 52-57.
[http://dx.doi.org/10.1016/j.molcata.2009.11.020]
[3]
Lauriol-Garbey, P.; Millet, J.M.M.; Loridant, S.; Bellière-Baca, V.; Rey, P. J. Catal., 2011, 281, 362-370.
[http://dx.doi.org/10.1016/j.jcat.2011.05.014]
[4]
Cheng, L.; Ye, X.P. Catal. Lett., 2009, 130, 100-107.
[http://dx.doi.org/10.1007/s10562-009-9887-0]
[5]
Ivanova, S.; Vanhaecke, E.; Dreibine, L.; Louis, B.; Pham, C.; Pham-Huu, C. Appl. Catal., A, 2009, 359, 151-157.
[6]
Kim, Y.K.; Rousseau, R.; Kay, B.D.; White, J.M.; Dohnálek, Z. J. Am. Chem. Soc., 2008, 130(15), 5059-5061.
[http://dx.doi.org/10.1021/ja800730g] [PMID: 18361489]
[7]
Figueiredo, J.L.; Pereira, M.F.R. John Wiley & Sons: New Jersey, 2009, p. 131-217.
[8]
Dreyer, D.R.; Bielawski, C.W. Chem. Sci. (Camb.), 2011, 2, 1233-1240.
[http://dx.doi.org/10.1039/c1sc00035g]
[9]
Toda, M.; Takagaki, A.; Okamura, M.; Kondo, J.N.; Hayashi, S.; Domen, K.; Hara, M. Nature, 2005, 438(7065), 178-178.
[http://dx.doi.org/10.1038/438178a] [PMID: 16281026]
[10]
Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Schlögl, R.; Su, D.S. Science, 2008, 322(5898), 73-77.
[http://dx.doi.org/10.1126/science.1161916] [PMID: 18832641]
[11]
Guo, S.; Dong, S. Chem. Soc. Rev., 2011, 40(5), 2644-2672.
[http://dx.doi.org/10.1039/c0cs00079e] [PMID: 21283849]
[12]
Yu, I.K.M.; Xiong, X.; Tsang, D.C.; Ng, Y.H.; Clark, J.H.; Fan, J.; Zhang, S.; Hu, C.; Ok, Y.S. Green Chem., 2019, 21, 4341-4353.
[http://dx.doi.org/10.1039/C9GC00734B]
[13]
Qiu, Y.; Moore, S.; Hurt, R.; Külaots, I. Carbon, 2017, 111, 651-657.
[http://dx.doi.org/10.1016/j.carbon.2016.10.051] [PMID: 28042164]
[14]
Ahadi, E.; Hosseini-Monfared, H.; Schlüsener, C.; Janiak, C.; Farokhi, A. Catal. Lett., 2019, 150, 861-873.
[http://dx.doi.org/10.1007/s10562-019-02933-1]
[15]
Hummers, W.S.; Offeman, R.E. J. Am. Chem. Soc., 1958, 80, 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[16]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[17]
Szabó, T.; Tombácz, E.; Illés, E.; Dékány, I. Carbon, 2006, 44, 537-545.
[http://dx.doi.org/10.1016/j.carbon.2005.08.005]
[18]
Lerf, A.; He, H.; Forster, M.; Klinowski, J. J. Phys. Chem. B, 1998, 102, 4477-4482.
[http://dx.doi.org/10.1021/jp9731821]
[19]
Dreyer, D.R.; Jia, H.P.; Bielawski, C.W. Angew. Chem. Int. Ed. Engl., 2010, 49(38), 6813-6816.
[http://dx.doi.org/10.1002/anie.201003238] [PMID: 20602388]
[20]
Yeh, T.F.; Syu, J.M.; Cheng, C.; Chang, T.H.; Teng, H. Adv. Funct. Mater., 2010, 20, 2255-2262.
[http://dx.doi.org/10.1002/adfm.201000274]
[21]
Jia, H.P.; Dreyer, D.R.; Bielawski, C.W. Adv. Synth. Catal., 2011, 353, 528-532.
[http://dx.doi.org/10.1002/adsc.201000748]
[22]
Kumar, A.V.; Rao, K.R. Tetrahedron Lett., 2011, 52, 5188-5191.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.002]
[23]
Singh Chauhan, S.M.; Mishra, S. Molecules, 2011, 16(9), 7256-7266.
[http://dx.doi.org/10.3390/molecules16097256] [PMID: 21869753]
[24]
Verma, S.; Mungse, H.P.; Kumar, N.; Choudhary, S.; Jain, S.L.; Sain, B.; Khatri, O.P. Chem. Commun. (Camb.), 2011, 47(47), 12673-12675.
[http://dx.doi.org/10.1039/c1cc15230k] [PMID: 22039588]
[25]
Huang, H.; Huang, J.; Liu, Y.M.; He, H.Y.; Cao, Y.; Fan, K.N. Green Chem., 2012, 14, 930-934.
[http://dx.doi.org/10.1039/c2gc16681j]
[26]
Pan, Y.; Wang, S.; Kee, C.W.; Dubuisson, E.; Yang, Y.; Loha, K.P.; Tan, C.H. Green Chem., 2011, 13, 3341-3344.
[http://dx.doi.org/10.1039/c1gc15865a]
[27]
Jia, H.P.; Dreyer, D.R.; Bielawski, C.W. Tetrahedron, 2011, 67, 4431-4434.
[http://dx.doi.org/10.1016/j.tet.2011.02.065]
[28]
Dreyer, D.R.; Jia, H.P.; Todd, A.D.; Geng, J.; Bielawski, C.W. Org. Biomol. Chem., 2011, 9(21), 7292-7295.
[http://dx.doi.org/10.1039/c1ob06102j] [PMID: 21909587]
[29]
Mirza-Aghayan, M.; Boukherroub, R.; Nemati, M.; Rahimifard, M. Tetrahedron Lett., 2012, 53, 2473-2475.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.026]
[30]
Zhang, X.; Xu, L.; Wang, X.; Ma, N.; Sun, F. Chin. J. Chem., 2012, 30, 1525-1530.
[http://dx.doi.org/10.1002/cjoc.201200174]
[31]
De Luca, L.; Giacomelli, G. J. Org. Chem., 2008, 73(10), 3967-3969.
[http://dx.doi.org/10.1021/jo800424g] [PMID: 18393527]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy